Properties

Label 1450.2.d.b.1449.1
Level $1450$
Weight $2$
Character 1450.1449
Analytic conductor $11.578$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1450,2,Mod(1449,1450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1450.1449"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1450 = 2 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1450.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5783082931\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1449.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1450.1449
Dual form 1450.2.d.b.1449.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} -2.00000i q^{7} -1.00000 q^{8} -2.00000 q^{9} -5.00000i q^{11} +1.00000 q^{12} +1.00000i q^{13} +2.00000i q^{14} +1.00000 q^{16} +2.00000 q^{17} +2.00000 q^{18} -4.00000i q^{19} -2.00000i q^{21} +5.00000i q^{22} +6.00000i q^{23} -1.00000 q^{24} -1.00000i q^{26} -5.00000 q^{27} -2.00000i q^{28} +(-5.00000 - 2.00000i) q^{29} +5.00000i q^{31} -1.00000 q^{32} -5.00000i q^{33} -2.00000 q^{34} -2.00000 q^{36} -8.00000 q^{37} +4.00000i q^{38} +1.00000i q^{39} -10.0000i q^{41} +2.00000i q^{42} -9.00000 q^{43} -5.00000i q^{44} -6.00000i q^{46} -3.00000 q^{47} +1.00000 q^{48} +3.00000 q^{49} +2.00000 q^{51} +1.00000i q^{52} +1.00000i q^{53} +5.00000 q^{54} +2.00000i q^{56} -4.00000i q^{57} +(5.00000 + 2.00000i) q^{58} -10.0000 q^{59} -10.0000i q^{61} -5.00000i q^{62} +4.00000i q^{63} +1.00000 q^{64} +5.00000i q^{66} +8.00000i q^{67} +2.00000 q^{68} +6.00000i q^{69} -8.00000 q^{71} +2.00000 q^{72} +16.0000 q^{73} +8.00000 q^{74} -4.00000i q^{76} -10.0000 q^{77} -1.00000i q^{78} +1.00000i q^{79} +1.00000 q^{81} +10.0000i q^{82} -14.0000i q^{83} -2.00000i q^{84} +9.00000 q^{86} +(-5.00000 - 2.00000i) q^{87} +5.00000i q^{88} -14.0000i q^{89} +2.00000 q^{91} +6.00000i q^{92} +5.00000i q^{93} +3.00000 q^{94} -1.00000 q^{96} +2.00000 q^{97} -3.00000 q^{98} +10.0000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} - 2 q^{6} - 2 q^{8} - 4 q^{9} + 2 q^{12} + 2 q^{16} + 4 q^{17} + 4 q^{18} - 2 q^{24} - 10 q^{27} - 10 q^{29} - 2 q^{32} - 4 q^{34} - 4 q^{36} - 16 q^{37} - 18 q^{43} - 6 q^{47}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1450\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1277\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 2.00000i 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 5.00000i 1.50756i −0.657129 0.753778i \(-0.728229\pi\)
0.657129 0.753778i \(-0.271771\pi\)
\(12\) 1.00000 0.288675
\(13\) 1.00000i 0.277350i 0.990338 + 0.138675i \(0.0442844\pi\)
−0.990338 + 0.138675i \(0.955716\pi\)
\(14\) 2.00000i 0.534522i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 2.00000 0.471405
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 0 0
\(21\) 2.00000i 0.436436i
\(22\) 5.00000i 1.06600i
\(23\) 6.00000i 1.25109i 0.780189 + 0.625543i \(0.215123\pi\)
−0.780189 + 0.625543i \(0.784877\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) 1.00000i 0.196116i
\(27\) −5.00000 −0.962250
\(28\) 2.00000i 0.377964i
\(29\) −5.00000 2.00000i −0.928477 0.371391i
\(30\) 0 0
\(31\) 5.00000i 0.898027i 0.893525 + 0.449013i \(0.148224\pi\)
−0.893525 + 0.449013i \(0.851776\pi\)
\(32\) −1.00000 −0.176777
\(33\) 5.00000i 0.870388i
\(34\) −2.00000 −0.342997
\(35\) 0 0
\(36\) −2.00000 −0.333333
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 4.00000i 0.648886i
\(39\) 1.00000i 0.160128i
\(40\) 0 0
\(41\) 10.0000i 1.56174i −0.624695 0.780869i \(-0.714777\pi\)
0.624695 0.780869i \(-0.285223\pi\)
\(42\) 2.00000i 0.308607i
\(43\) −9.00000 −1.37249 −0.686244 0.727372i \(-0.740742\pi\)
−0.686244 + 0.727372i \(0.740742\pi\)
\(44\) 5.00000i 0.753778i
\(45\) 0 0
\(46\) 6.00000i 0.884652i
\(47\) −3.00000 −0.437595 −0.218797 0.975770i \(-0.570213\pi\)
−0.218797 + 0.975770i \(0.570213\pi\)
\(48\) 1.00000 0.144338
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 1.00000i 0.138675i
\(53\) 1.00000i 0.137361i 0.997639 + 0.0686803i \(0.0218788\pi\)
−0.997639 + 0.0686803i \(0.978121\pi\)
\(54\) 5.00000 0.680414
\(55\) 0 0
\(56\) 2.00000i 0.267261i
\(57\) 4.00000i 0.529813i
\(58\) 5.00000 + 2.00000i 0.656532 + 0.262613i
\(59\) −10.0000 −1.30189 −0.650945 0.759125i \(-0.725627\pi\)
−0.650945 + 0.759125i \(0.725627\pi\)
\(60\) 0 0
\(61\) 10.0000i 1.28037i −0.768221 0.640184i \(-0.778858\pi\)
0.768221 0.640184i \(-0.221142\pi\)
\(62\) 5.00000i 0.635001i
\(63\) 4.00000i 0.503953i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 5.00000i 0.615457i
\(67\) 8.00000i 0.977356i 0.872464 + 0.488678i \(0.162521\pi\)
−0.872464 + 0.488678i \(0.837479\pi\)
\(68\) 2.00000 0.242536
\(69\) 6.00000i 0.722315i
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 2.00000 0.235702
\(73\) 16.0000 1.87266 0.936329 0.351123i \(-0.114200\pi\)
0.936329 + 0.351123i \(0.114200\pi\)
\(74\) 8.00000 0.929981
\(75\) 0 0
\(76\) 4.00000i 0.458831i
\(77\) −10.0000 −1.13961
\(78\) 1.00000i 0.113228i
\(79\) 1.00000i 0.112509i 0.998416 + 0.0562544i \(0.0179158\pi\)
−0.998416 + 0.0562544i \(0.982084\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 10.0000i 1.10432i
\(83\) 14.0000i 1.53670i −0.640030 0.768350i \(-0.721078\pi\)
0.640030 0.768350i \(-0.278922\pi\)
\(84\) 2.00000i 0.218218i
\(85\) 0 0
\(86\) 9.00000 0.970495
\(87\) −5.00000 2.00000i −0.536056 0.214423i
\(88\) 5.00000i 0.533002i
\(89\) 14.0000i 1.48400i −0.670402 0.741999i \(-0.733878\pi\)
0.670402 0.741999i \(-0.266122\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 6.00000i 0.625543i
\(93\) 5.00000i 0.518476i
\(94\) 3.00000 0.309426
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) −3.00000 −0.303046
\(99\) 10.0000i 1.00504i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) −2.00000 −0.198030
\(103\) 4.00000i 0.394132i −0.980390 0.197066i \(-0.936859\pi\)
0.980390 0.197066i \(-0.0631413\pi\)
\(104\) 1.00000i 0.0980581i
\(105\) 0 0
\(106\) 1.00000i 0.0971286i
\(107\) 2.00000i 0.193347i −0.995316 0.0966736i \(-0.969180\pi\)
0.995316 0.0966736i \(-0.0308203\pi\)
\(108\) −5.00000 −0.481125
\(109\) 15.0000 1.43674 0.718370 0.695662i \(-0.244889\pi\)
0.718370 + 0.695662i \(0.244889\pi\)
\(110\) 0 0
\(111\) −8.00000 −0.759326
\(112\) 2.00000i 0.188982i
\(113\) −4.00000 −0.376288 −0.188144 0.982141i \(-0.560247\pi\)
−0.188144 + 0.982141i \(0.560247\pi\)
\(114\) 4.00000i 0.374634i
\(115\) 0 0
\(116\) −5.00000 2.00000i −0.464238 0.185695i
\(117\) 2.00000i 0.184900i
\(118\) 10.0000 0.920575
\(119\) 4.00000i 0.366679i
\(120\) 0 0
\(121\) −14.0000 −1.27273
\(122\) 10.0000i 0.905357i
\(123\) 10.0000i 0.901670i
\(124\) 5.00000i 0.449013i
\(125\) 0 0
\(126\) 4.00000i 0.356348i
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −9.00000 −0.792406
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 5.00000i 0.435194i
\(133\) −8.00000 −0.693688
\(134\) 8.00000i 0.691095i
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 6.00000i 0.510754i
\(139\) −10.0000 −0.848189 −0.424094 0.905618i \(-0.639408\pi\)
−0.424094 + 0.905618i \(0.639408\pi\)
\(140\) 0 0
\(141\) −3.00000 −0.252646
\(142\) 8.00000 0.671345
\(143\) 5.00000 0.418121
\(144\) −2.00000 −0.166667
\(145\) 0 0
\(146\) −16.0000 −1.32417
\(147\) 3.00000 0.247436
\(148\) −8.00000 −0.657596
\(149\) −15.0000 −1.22885 −0.614424 0.788976i \(-0.710612\pi\)
−0.614424 + 0.788976i \(0.710612\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) 4.00000i 0.324443i
\(153\) −4.00000 −0.323381
\(154\) 10.0000 0.805823
\(155\) 0 0
\(156\) 1.00000i 0.0800641i
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) 1.00000i 0.0795557i
\(159\) 1.00000i 0.0793052i
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) −1.00000 −0.0785674
\(163\) 1.00000 0.0783260 0.0391630 0.999233i \(-0.487531\pi\)
0.0391630 + 0.999233i \(0.487531\pi\)
\(164\) 10.0000i 0.780869i
\(165\) 0 0
\(166\) 14.0000i 1.08661i
\(167\) 12.0000i 0.928588i −0.885681 0.464294i \(-0.846308\pi\)
0.885681 0.464294i \(-0.153692\pi\)
\(168\) 2.00000i 0.154303i
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 8.00000i 0.611775i
\(172\) −9.00000 −0.686244
\(173\) 6.00000i 0.456172i 0.973641 + 0.228086i \(0.0732467\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(174\) 5.00000 + 2.00000i 0.379049 + 0.151620i
\(175\) 0 0
\(176\) 5.00000i 0.376889i
\(177\) −10.0000 −0.751646
\(178\) 14.0000i 1.04934i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) −2.00000 −0.148250
\(183\) 10.0000i 0.739221i
\(184\) 6.00000i 0.442326i
\(185\) 0 0
\(186\) 5.00000i 0.366618i
\(187\) 10.0000i 0.731272i
\(188\) −3.00000 −0.218797
\(189\) 10.0000i 0.727393i
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 1.00000 0.0721688
\(193\) −14.0000 −1.00774 −0.503871 0.863779i \(-0.668091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) 3.00000 0.214286
\(197\) 2.00000i 0.142494i −0.997459 0.0712470i \(-0.977302\pi\)
0.997459 0.0712470i \(-0.0226979\pi\)
\(198\) 10.0000i 0.710669i
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) 8.00000i 0.564276i
\(202\) 0 0
\(203\) −4.00000 + 10.0000i −0.280745 + 0.701862i
\(204\) 2.00000 0.140028
\(205\) 0 0
\(206\) 4.00000i 0.278693i
\(207\) 12.0000i 0.834058i
\(208\) 1.00000i 0.0693375i
\(209\) −20.0000 −1.38343
\(210\) 0 0
\(211\) 5.00000i 0.344214i 0.985078 + 0.172107i \(0.0550575\pi\)
−0.985078 + 0.172107i \(0.944942\pi\)
\(212\) 1.00000i 0.0686803i
\(213\) −8.00000 −0.548151
\(214\) 2.00000i 0.136717i
\(215\) 0 0
\(216\) 5.00000 0.340207
\(217\) 10.0000 0.678844
\(218\) −15.0000 −1.01593
\(219\) 16.0000 1.08118
\(220\) 0 0
\(221\) 2.00000i 0.134535i
\(222\) 8.00000 0.536925
\(223\) 24.0000i 1.60716i −0.595198 0.803579i \(-0.702926\pi\)
0.595198 0.803579i \(-0.297074\pi\)
\(224\) 2.00000i 0.133631i
\(225\) 0 0
\(226\) 4.00000 0.266076
\(227\) 12.0000i 0.796468i −0.917284 0.398234i \(-0.869623\pi\)
0.917284 0.398234i \(-0.130377\pi\)
\(228\) 4.00000i 0.264906i
\(229\) 6.00000i 0.396491i 0.980152 + 0.198246i \(0.0635244\pi\)
−0.980152 + 0.198246i \(0.936476\pi\)
\(230\) 0 0
\(231\) −10.0000 −0.657952
\(232\) 5.00000 + 2.00000i 0.328266 + 0.131306i
\(233\) 1.00000i 0.0655122i 0.999463 + 0.0327561i \(0.0104285\pi\)
−0.999463 + 0.0327561i \(0.989572\pi\)
\(234\) 2.00000i 0.130744i
\(235\) 0 0
\(236\) −10.0000 −0.650945
\(237\) 1.00000i 0.0649570i
\(238\) 4.00000i 0.259281i
\(239\) 30.0000 1.94054 0.970269 0.242028i \(-0.0778125\pi\)
0.970269 + 0.242028i \(0.0778125\pi\)
\(240\) 0 0
\(241\) 7.00000 0.450910 0.225455 0.974254i \(-0.427613\pi\)
0.225455 + 0.974254i \(0.427613\pi\)
\(242\) 14.0000 0.899954
\(243\) 16.0000 1.02640
\(244\) 10.0000i 0.640184i
\(245\) 0 0
\(246\) 10.0000i 0.637577i
\(247\) 4.00000 0.254514
\(248\) 5.00000i 0.317500i
\(249\) 14.0000i 0.887214i
\(250\) 0 0
\(251\) 15.0000i 0.946792i −0.880850 0.473396i \(-0.843028\pi\)
0.880850 0.473396i \(-0.156972\pi\)
\(252\) 4.00000i 0.251976i
\(253\) 30.0000 1.88608
\(254\) −12.0000 −0.752947
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 7.00000i 0.436648i −0.975876 0.218324i \(-0.929941\pi\)
0.975876 0.218324i \(-0.0700590\pi\)
\(258\) 9.00000 0.560316
\(259\) 16.0000i 0.994192i
\(260\) 0 0
\(261\) 10.0000 + 4.00000i 0.618984 + 0.247594i
\(262\) 0 0
\(263\) −19.0000 −1.17159 −0.585795 0.810459i \(-0.699218\pi\)
−0.585795 + 0.810459i \(0.699218\pi\)
\(264\) 5.00000i 0.307729i
\(265\) 0 0
\(266\) 8.00000 0.490511
\(267\) 14.0000i 0.856786i
\(268\) 8.00000i 0.488678i
\(269\) 26.0000i 1.58525i 0.609711 + 0.792624i \(0.291286\pi\)
−0.609711 + 0.792624i \(0.708714\pi\)
\(270\) 0 0
\(271\) 25.0000i 1.51864i 0.650716 + 0.759321i \(0.274469\pi\)
−0.650716 + 0.759321i \(0.725531\pi\)
\(272\) 2.00000 0.121268
\(273\) 2.00000 0.121046
\(274\) −12.0000 −0.724947
\(275\) 0 0
\(276\) 6.00000i 0.361158i
\(277\) 18.0000i 1.08152i 0.841178 + 0.540758i \(0.181862\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 10.0000 0.599760
\(279\) 10.0000i 0.598684i
\(280\) 0 0
\(281\) −13.0000 −0.775515 −0.387757 0.921761i \(-0.626750\pi\)
−0.387757 + 0.921761i \(0.626750\pi\)
\(282\) 3.00000 0.178647
\(283\) 6.00000i 0.356663i 0.983970 + 0.178331i \(0.0570699\pi\)
−0.983970 + 0.178331i \(0.942930\pi\)
\(284\) −8.00000 −0.474713
\(285\) 0 0
\(286\) −5.00000 −0.295656
\(287\) −20.0000 −1.18056
\(288\) 2.00000 0.117851
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 2.00000 0.117242
\(292\) 16.0000 0.936329
\(293\) −4.00000 −0.233682 −0.116841 0.993151i \(-0.537277\pi\)
−0.116841 + 0.993151i \(0.537277\pi\)
\(294\) −3.00000 −0.174964
\(295\) 0 0
\(296\) 8.00000 0.464991
\(297\) 25.0000i 1.45065i
\(298\) 15.0000 0.868927
\(299\) −6.00000 −0.346989
\(300\) 0 0
\(301\) 18.0000i 1.03750i
\(302\) −2.00000 −0.115087
\(303\) 0 0
\(304\) 4.00000i 0.229416i
\(305\) 0 0
\(306\) 4.00000 0.228665
\(307\) −3.00000 −0.171219 −0.0856095 0.996329i \(-0.527284\pi\)
−0.0856095 + 0.996329i \(0.527284\pi\)
\(308\) −10.0000 −0.569803
\(309\) 4.00000i 0.227552i
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 1.00000i 0.0566139i
\(313\) 31.0000i 1.75222i 0.482108 + 0.876112i \(0.339871\pi\)
−0.482108 + 0.876112i \(0.660129\pi\)
\(314\) 18.0000 1.01580
\(315\) 0 0
\(316\) 1.00000i 0.0562544i
\(317\) 22.0000 1.23564 0.617822 0.786318i \(-0.288015\pi\)
0.617822 + 0.786318i \(0.288015\pi\)
\(318\) 1.00000i 0.0560772i
\(319\) −10.0000 + 25.0000i −0.559893 + 1.39973i
\(320\) 0 0
\(321\) 2.00000i 0.111629i
\(322\) −12.0000 −0.668734
\(323\) 8.00000i 0.445132i
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −1.00000 −0.0553849
\(327\) 15.0000 0.829502
\(328\) 10.0000i 0.552158i
\(329\) 6.00000i 0.330791i
\(330\) 0 0
\(331\) 25.0000i 1.37412i 0.726599 + 0.687062i \(0.241100\pi\)
−0.726599 + 0.687062i \(0.758900\pi\)
\(332\) 14.0000i 0.768350i
\(333\) 16.0000 0.876795
\(334\) 12.0000i 0.656611i
\(335\) 0 0
\(336\) 2.00000i 0.109109i
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) −12.0000 −0.652714
\(339\) −4.00000 −0.217250
\(340\) 0 0
\(341\) 25.0000 1.35383
\(342\) 8.00000i 0.432590i
\(343\) 20.0000i 1.07990i
\(344\) 9.00000 0.485247
\(345\) 0 0
\(346\) 6.00000i 0.322562i
\(347\) 12.0000i 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) −5.00000 2.00000i −0.268028 0.107211i
\(349\) 25.0000 1.33822 0.669110 0.743164i \(-0.266676\pi\)
0.669110 + 0.743164i \(0.266676\pi\)
\(350\) 0 0
\(351\) 5.00000i 0.266880i
\(352\) 5.00000i 0.266501i
\(353\) 6.00000i 0.319348i 0.987170 + 0.159674i \(0.0510443\pi\)
−0.987170 + 0.159674i \(0.948956\pi\)
\(354\) 10.0000 0.531494
\(355\) 0 0
\(356\) 14.0000i 0.741999i
\(357\) 4.00000i 0.211702i
\(358\) 0 0
\(359\) 19.0000i 1.00278i −0.865221 0.501391i \(-0.832822\pi\)
0.865221 0.501391i \(-0.167178\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) −17.0000 −0.893500
\(363\) −14.0000 −0.734809
\(364\) 2.00000 0.104828
\(365\) 0 0
\(366\) 10.0000i 0.522708i
\(367\) 32.0000 1.67039 0.835193 0.549957i \(-0.185356\pi\)
0.835193 + 0.549957i \(0.185356\pi\)
\(368\) 6.00000i 0.312772i
\(369\) 20.0000i 1.04116i
\(370\) 0 0
\(371\) 2.00000 0.103835
\(372\) 5.00000i 0.259238i
\(373\) 11.0000i 0.569558i 0.958593 + 0.284779i \(0.0919203\pi\)
−0.958593 + 0.284779i \(0.908080\pi\)
\(374\) 10.0000i 0.517088i
\(375\) 0 0
\(376\) 3.00000 0.154713
\(377\) 2.00000 5.00000i 0.103005 0.257513i
\(378\) 10.0000i 0.514344i
\(379\) 4.00000i 0.205466i −0.994709 0.102733i \(-0.967241\pi\)
0.994709 0.102733i \(-0.0327588\pi\)
\(380\) 0 0
\(381\) 12.0000 0.614779
\(382\) 0 0
\(383\) 6.00000i 0.306586i 0.988181 + 0.153293i \(0.0489878\pi\)
−0.988181 + 0.153293i \(0.951012\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 14.0000 0.712581
\(387\) 18.0000 0.914991
\(388\) 2.00000 0.101535
\(389\) 24.0000i 1.21685i −0.793612 0.608424i \(-0.791802\pi\)
0.793612 0.608424i \(-0.208198\pi\)
\(390\) 0 0
\(391\) 12.0000i 0.606866i
\(392\) −3.00000 −0.151523
\(393\) 0 0
\(394\) 2.00000i 0.100759i
\(395\) 0 0
\(396\) 10.0000i 0.502519i
\(397\) 27.0000i 1.35509i −0.735481 0.677546i \(-0.763044\pi\)
0.735481 0.677546i \(-0.236956\pi\)
\(398\) 10.0000 0.501255
\(399\) −8.00000 −0.400501
\(400\) 0 0
\(401\) 7.00000 0.349563 0.174782 0.984607i \(-0.444078\pi\)
0.174782 + 0.984607i \(0.444078\pi\)
\(402\) 8.00000i 0.399004i
\(403\) −5.00000 −0.249068
\(404\) 0 0
\(405\) 0 0
\(406\) 4.00000 10.0000i 0.198517 0.496292i
\(407\) 40.0000i 1.98273i
\(408\) −2.00000 −0.0990148
\(409\) 4.00000i 0.197787i −0.995098 0.0988936i \(-0.968470\pi\)
0.995098 0.0988936i \(-0.0315304\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 4.00000i 0.197066i
\(413\) 20.0000i 0.984136i
\(414\) 12.0000i 0.589768i
\(415\) 0 0
\(416\) 1.00000i 0.0490290i
\(417\) −10.0000 −0.489702
\(418\) 20.0000 0.978232
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 10.0000i 0.487370i −0.969854 0.243685i \(-0.921644\pi\)
0.969854 0.243685i \(-0.0783563\pi\)
\(422\) 5.00000i 0.243396i
\(423\) 6.00000 0.291730
\(424\) 1.00000i 0.0485643i
\(425\) 0 0
\(426\) 8.00000 0.387601
\(427\) −20.0000 −0.967868
\(428\) 2.00000i 0.0966736i
\(429\) 5.00000 0.241402
\(430\) 0 0
\(431\) 22.0000 1.05970 0.529851 0.848091i \(-0.322248\pi\)
0.529851 + 0.848091i \(0.322248\pi\)
\(432\) −5.00000 −0.240563
\(433\) 16.0000 0.768911 0.384455 0.923144i \(-0.374389\pi\)
0.384455 + 0.923144i \(0.374389\pi\)
\(434\) −10.0000 −0.480015
\(435\) 0 0
\(436\) 15.0000 0.718370
\(437\) 24.0000 1.14808
\(438\) −16.0000 −0.764510
\(439\) 30.0000 1.43182 0.715911 0.698192i \(-0.246012\pi\)
0.715911 + 0.698192i \(0.246012\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 2.00000i 0.0951303i
\(443\) −4.00000 −0.190046 −0.0950229 0.995475i \(-0.530292\pi\)
−0.0950229 + 0.995475i \(0.530292\pi\)
\(444\) −8.00000 −0.379663
\(445\) 0 0
\(446\) 24.0000i 1.13643i
\(447\) −15.0000 −0.709476
\(448\) 2.00000i 0.0944911i
\(449\) 24.0000i 1.13263i −0.824189 0.566315i \(-0.808369\pi\)
0.824189 0.566315i \(-0.191631\pi\)
\(450\) 0 0
\(451\) −50.0000 −2.35441
\(452\) −4.00000 −0.188144
\(453\) 2.00000 0.0939682
\(454\) 12.0000i 0.563188i
\(455\) 0 0
\(456\) 4.00000i 0.187317i
\(457\) 18.0000i 0.842004i 0.907060 + 0.421002i \(0.138322\pi\)
−0.907060 + 0.421002i \(0.861678\pi\)
\(458\) 6.00000i 0.280362i
\(459\) −10.0000 −0.466760
\(460\) 0 0
\(461\) 20.0000i 0.931493i 0.884918 + 0.465746i \(0.154214\pi\)
−0.884918 + 0.465746i \(0.845786\pi\)
\(462\) 10.0000 0.465242
\(463\) 14.0000i 0.650635i −0.945605 0.325318i \(-0.894529\pi\)
0.945605 0.325318i \(-0.105471\pi\)
\(464\) −5.00000 2.00000i −0.232119 0.0928477i
\(465\) 0 0
\(466\) 1.00000i 0.0463241i
\(467\) −3.00000 −0.138823 −0.0694117 0.997588i \(-0.522112\pi\)
−0.0694117 + 0.997588i \(0.522112\pi\)
\(468\) 2.00000i 0.0924500i
\(469\) 16.0000 0.738811
\(470\) 0 0
\(471\) −18.0000 −0.829396
\(472\) 10.0000 0.460287
\(473\) 45.0000i 2.06910i
\(474\) 1.00000i 0.0459315i
\(475\) 0 0
\(476\) 4.00000i 0.183340i
\(477\) 2.00000i 0.0915737i
\(478\) −30.0000 −1.37217
\(479\) 11.0000i 0.502603i 0.967909 + 0.251301i \(0.0808585\pi\)
−0.967909 + 0.251301i \(0.919141\pi\)
\(480\) 0 0
\(481\) 8.00000i 0.364769i
\(482\) −7.00000 −0.318841
\(483\) 12.0000 0.546019
\(484\) −14.0000 −0.636364
\(485\) 0 0
\(486\) −16.0000 −0.725775
\(487\) 38.0000i 1.72194i 0.508652 + 0.860972i \(0.330144\pi\)
−0.508652 + 0.860972i \(0.669856\pi\)
\(488\) 10.0000i 0.452679i
\(489\) 1.00000 0.0452216
\(490\) 0 0
\(491\) 15.0000i 0.676941i 0.940977 + 0.338470i \(0.109909\pi\)
−0.940977 + 0.338470i \(0.890091\pi\)
\(492\) 10.0000i 0.450835i
\(493\) −10.0000 4.00000i −0.450377 0.180151i
\(494\) −4.00000 −0.179969
\(495\) 0 0
\(496\) 5.00000i 0.224507i
\(497\) 16.0000i 0.717698i
\(498\) 14.0000i 0.627355i
\(499\) 30.0000 1.34298 0.671492 0.741012i \(-0.265654\pi\)
0.671492 + 0.741012i \(0.265654\pi\)
\(500\) 0 0
\(501\) 12.0000i 0.536120i
\(502\) 15.0000i 0.669483i
\(503\) −39.0000 −1.73892 −0.869462 0.494000i \(-0.835534\pi\)
−0.869462 + 0.494000i \(0.835534\pi\)
\(504\) 4.00000i 0.178174i
\(505\) 0 0
\(506\) −30.0000 −1.33366
\(507\) 12.0000 0.532939
\(508\) 12.0000 0.532414
\(509\) −15.0000 −0.664863 −0.332432 0.943127i \(-0.607869\pi\)
−0.332432 + 0.943127i \(0.607869\pi\)
\(510\) 0 0
\(511\) 32.0000i 1.41560i
\(512\) −1.00000 −0.0441942
\(513\) 20.0000i 0.883022i
\(514\) 7.00000i 0.308757i
\(515\) 0 0
\(516\) −9.00000 −0.396203
\(517\) 15.0000i 0.659699i
\(518\) 16.0000i 0.703000i
\(519\) 6.00000i 0.263371i
\(520\) 0 0
\(521\) 17.0000 0.744784 0.372392 0.928076i \(-0.378538\pi\)
0.372392 + 0.928076i \(0.378538\pi\)
\(522\) −10.0000 4.00000i −0.437688 0.175075i
\(523\) 4.00000i 0.174908i −0.996169 0.0874539i \(-0.972127\pi\)
0.996169 0.0874539i \(-0.0278730\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 19.0000 0.828439
\(527\) 10.0000i 0.435607i
\(528\) 5.00000i 0.217597i
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) 20.0000 0.867926
\(532\) −8.00000 −0.346844
\(533\) 10.0000 0.433148
\(534\) 14.0000i 0.605839i
\(535\) 0 0
\(536\) 8.00000i 0.345547i
\(537\) 0 0
\(538\) 26.0000i 1.12094i
\(539\) 15.0000i 0.646096i
\(540\) 0 0
\(541\) 40.0000i 1.71973i −0.510518 0.859867i \(-0.670546\pi\)
0.510518 0.859867i \(-0.329454\pi\)
\(542\) 25.0000i 1.07384i
\(543\) 17.0000 0.729540
\(544\) −2.00000 −0.0857493
\(545\) 0 0
\(546\) −2.00000 −0.0855921
\(547\) 22.0000i 0.940652i −0.882493 0.470326i \(-0.844136\pi\)
0.882493 0.470326i \(-0.155864\pi\)
\(548\) 12.0000 0.512615
\(549\) 20.0000i 0.853579i
\(550\) 0 0
\(551\) −8.00000 + 20.0000i −0.340811 + 0.852029i
\(552\) 6.00000i 0.255377i
\(553\) 2.00000 0.0850487
\(554\) 18.0000i 0.764747i
\(555\) 0 0
\(556\) −10.0000 −0.424094
\(557\) 18.0000i 0.762684i 0.924434 + 0.381342i \(0.124538\pi\)
−0.924434 + 0.381342i \(0.875462\pi\)
\(558\) 10.0000i 0.423334i
\(559\) 9.00000i 0.380659i
\(560\) 0 0
\(561\) 10.0000i 0.422200i
\(562\) 13.0000 0.548372
\(563\) −19.0000 −0.800755 −0.400377 0.916350i \(-0.631121\pi\)
−0.400377 + 0.916350i \(0.631121\pi\)
\(564\) −3.00000 −0.126323
\(565\) 0 0
\(566\) 6.00000i 0.252199i
\(567\) 2.00000i 0.0839921i
\(568\) 8.00000 0.335673
\(569\) 24.0000i 1.00613i −0.864248 0.503066i \(-0.832205\pi\)
0.864248 0.503066i \(-0.167795\pi\)
\(570\) 0 0
\(571\) −8.00000 −0.334790 −0.167395 0.985890i \(-0.553535\pi\)
−0.167395 + 0.985890i \(0.553535\pi\)
\(572\) 5.00000 0.209061
\(573\) 0 0
\(574\) 20.0000 0.834784
\(575\) 0 0
\(576\) −2.00000 −0.0833333
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 13.0000 0.540729
\(579\) −14.0000 −0.581820
\(580\) 0 0
\(581\) −28.0000 −1.16164
\(582\) −2.00000 −0.0829027
\(583\) 5.00000 0.207079
\(584\) −16.0000 −0.662085
\(585\) 0 0
\(586\) 4.00000 0.165238
\(587\) 18.0000i 0.742940i 0.928445 + 0.371470i \(0.121146\pi\)
−0.928445 + 0.371470i \(0.878854\pi\)
\(588\) 3.00000 0.123718
\(589\) 20.0000 0.824086
\(590\) 0 0
\(591\) 2.00000i 0.0822690i
\(592\) −8.00000 −0.328798
\(593\) 29.0000i 1.19089i −0.803397 0.595444i \(-0.796976\pi\)
0.803397 0.595444i \(-0.203024\pi\)
\(594\) 25.0000i 1.02576i
\(595\) 0 0
\(596\) −15.0000 −0.614424
\(597\) −10.0000 −0.409273
\(598\) 6.00000 0.245358
\(599\) 39.0000i 1.59350i −0.604311 0.796748i \(-0.706552\pi\)
0.604311 0.796748i \(-0.293448\pi\)
\(600\) 0 0
\(601\) 30.0000i 1.22373i 0.790964 + 0.611863i \(0.209580\pi\)
−0.790964 + 0.611863i \(0.790420\pi\)
\(602\) 18.0000i 0.733625i
\(603\) 16.0000i 0.651570i
\(604\) 2.00000 0.0813788
\(605\) 0 0
\(606\) 0 0
\(607\) −13.0000 −0.527654 −0.263827 0.964570i \(-0.584985\pi\)
−0.263827 + 0.964570i \(0.584985\pi\)
\(608\) 4.00000i 0.162221i
\(609\) −4.00000 + 10.0000i −0.162088 + 0.405220i
\(610\) 0 0
\(611\) 3.00000i 0.121367i
\(612\) −4.00000 −0.161690
\(613\) 29.0000i 1.17130i −0.810564 0.585649i \(-0.800840\pi\)
0.810564 0.585649i \(-0.199160\pi\)
\(614\) 3.00000 0.121070
\(615\) 0 0
\(616\) 10.0000 0.402911
\(617\) −28.0000 −1.12724 −0.563619 0.826035i \(-0.690591\pi\)
−0.563619 + 0.826035i \(0.690591\pi\)
\(618\) 4.00000i 0.160904i
\(619\) 49.0000i 1.96948i −0.174042 0.984738i \(-0.555683\pi\)
0.174042 0.984738i \(-0.444317\pi\)
\(620\) 0 0
\(621\) 30.0000i 1.20386i
\(622\) 0 0
\(623\) −28.0000 −1.12180
\(624\) 1.00000i 0.0400320i
\(625\) 0 0
\(626\) 31.0000i 1.23901i
\(627\) −20.0000 −0.798723
\(628\) −18.0000 −0.718278
\(629\) −16.0000 −0.637962
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 1.00000i 0.0397779i
\(633\) 5.00000i 0.198732i
\(634\) −22.0000 −0.873732
\(635\) 0 0
\(636\) 1.00000i 0.0396526i
\(637\) 3.00000i 0.118864i
\(638\) 10.0000 25.0000i 0.395904 0.989759i
\(639\) 16.0000 0.632950
\(640\) 0 0
\(641\) 30.0000i 1.18493i −0.805597 0.592464i \(-0.798155\pi\)
0.805597 0.592464i \(-0.201845\pi\)
\(642\) 2.00000i 0.0789337i
\(643\) 14.0000i 0.552106i −0.961142 0.276053i \(-0.910973\pi\)
0.961142 0.276053i \(-0.0890266\pi\)
\(644\) 12.0000 0.472866
\(645\) 0 0
\(646\) 8.00000i 0.314756i
\(647\) 22.0000i 0.864909i −0.901656 0.432455i \(-0.857648\pi\)
0.901656 0.432455i \(-0.142352\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 50.0000i 1.96267i
\(650\) 0 0
\(651\) 10.0000 0.391931
\(652\) 1.00000 0.0391630
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) −15.0000 −0.586546
\(655\) 0 0
\(656\) 10.0000i 0.390434i
\(657\) −32.0000 −1.24844
\(658\) 6.00000i 0.233904i
\(659\) 31.0000i 1.20759i 0.797140 + 0.603794i \(0.206345\pi\)
−0.797140 + 0.603794i \(0.793655\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) 25.0000i 0.971653i
\(663\) 2.00000i 0.0776736i
\(664\) 14.0000i 0.543305i
\(665\) 0 0
\(666\) −16.0000 −0.619987
\(667\) 12.0000 30.0000i 0.464642 1.16160i
\(668\) 12.0000i 0.464294i
\(669\) 24.0000i 0.927894i
\(670\) 0 0
\(671\) −50.0000 −1.93023
\(672\) 2.00000i 0.0771517i
\(673\) 19.0000i 0.732396i −0.930537 0.366198i \(-0.880659\pi\)
0.930537 0.366198i \(-0.119341\pi\)
\(674\) −22.0000 −0.847408
\(675\) 0 0
\(676\) 12.0000 0.461538
\(677\) −8.00000 −0.307465 −0.153732 0.988113i \(-0.549129\pi\)
−0.153732 + 0.988113i \(0.549129\pi\)
\(678\) 4.00000 0.153619
\(679\) 4.00000i 0.153506i
\(680\) 0 0
\(681\) 12.0000i 0.459841i
\(682\) −25.0000 −0.957299
\(683\) 36.0000i 1.37750i 0.724998 + 0.688751i \(0.241841\pi\)
−0.724998 + 0.688751i \(0.758159\pi\)
\(684\) 8.00000i 0.305888i
\(685\) 0 0
\(686\) 20.0000i 0.763604i
\(687\) 6.00000i 0.228914i
\(688\) −9.00000 −0.343122
\(689\) −1.00000 −0.0380970
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) 6.00000i 0.228086i
\(693\) 20.0000 0.759737
\(694\) 12.0000i 0.455514i
\(695\) 0 0
\(696\) 5.00000 + 2.00000i 0.189525 + 0.0758098i
\(697\) 20.0000i 0.757554i
\(698\) −25.0000 −0.946264
\(699\) 1.00000i 0.0378235i
\(700\) 0 0
\(701\) 27.0000 1.01978 0.509888 0.860241i \(-0.329687\pi\)
0.509888 + 0.860241i \(0.329687\pi\)
\(702\) 5.00000i 0.188713i
\(703\) 32.0000i 1.20690i
\(704\) 5.00000i 0.188445i
\(705\) 0 0
\(706\) 6.00000i 0.225813i
\(707\) 0 0
\(708\) −10.0000 −0.375823
\(709\) 5.00000 0.187779 0.0938895 0.995583i \(-0.470070\pi\)
0.0938895 + 0.995583i \(0.470070\pi\)
\(710\) 0 0
\(711\) 2.00000i 0.0750059i
\(712\) 14.0000i 0.524672i
\(713\) −30.0000 −1.12351
\(714\) 4.00000i 0.149696i
\(715\) 0 0
\(716\) 0 0
\(717\) 30.0000 1.12037
\(718\) 19.0000i 0.709074i
\(719\) 20.0000 0.745874 0.372937 0.927857i \(-0.378351\pi\)
0.372937 + 0.927857i \(0.378351\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) −3.00000 −0.111648
\(723\) 7.00000 0.260333
\(724\) 17.0000 0.631800
\(725\) 0 0
\(726\) 14.0000 0.519589
\(727\) −48.0000 −1.78022 −0.890111 0.455744i \(-0.849373\pi\)
−0.890111 + 0.455744i \(0.849373\pi\)
\(728\) −2.00000 −0.0741249
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −18.0000 −0.665754
\(732\) 10.0000i 0.369611i
\(733\) 36.0000 1.32969 0.664845 0.746981i \(-0.268498\pi\)
0.664845 + 0.746981i \(0.268498\pi\)
\(734\) −32.0000 −1.18114
\(735\) 0 0
\(736\) 6.00000i 0.221163i
\(737\) 40.0000 1.47342
\(738\) 20.0000i 0.736210i
\(739\) 9.00000i 0.331070i −0.986204 0.165535i \(-0.947065\pi\)
0.986204 0.165535i \(-0.0529351\pi\)
\(740\) 0 0
\(741\) 4.00000 0.146944
\(742\) −2.00000 −0.0734223
\(743\) 16.0000 0.586983 0.293492 0.955962i \(-0.405183\pi\)
0.293492 + 0.955962i \(0.405183\pi\)
\(744\) 5.00000i 0.183309i
\(745\) 0 0
\(746\) 11.0000i 0.402739i
\(747\) 28.0000i 1.02447i
\(748\) 10.0000i 0.365636i
\(749\) −4.00000 −0.146157
\(750\) 0 0
\(751\) 40.0000i 1.45962i −0.683650 0.729810i \(-0.739608\pi\)
0.683650 0.729810i \(-0.260392\pi\)
\(752\) −3.00000 −0.109399
\(753\) 15.0000i 0.546630i
\(754\) −2.00000 + 5.00000i −0.0728357 + 0.182089i
\(755\) 0 0
\(756\) 10.0000i 0.363696i
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 4.00000i 0.145287i
\(759\) 30.0000 1.08893
\(760\) 0 0
\(761\) 2.00000 0.0724999 0.0362500 0.999343i \(-0.488459\pi\)
0.0362500 + 0.999343i \(0.488459\pi\)
\(762\) −12.0000 −0.434714
\(763\) 30.0000i 1.08607i
\(764\) 0 0
\(765\) 0 0
\(766\) 6.00000i 0.216789i
\(767\) 10.0000i 0.361079i
\(768\) 1.00000 0.0360844
\(769\) 34.0000i 1.22607i −0.790055 0.613036i \(-0.789948\pi\)
0.790055 0.613036i \(-0.210052\pi\)
\(770\) 0 0
\(771\) 7.00000i 0.252099i
\(772\) −14.0000 −0.503871
\(773\) −14.0000 −0.503545 −0.251773 0.967786i \(-0.581013\pi\)
−0.251773 + 0.967786i \(0.581013\pi\)
\(774\) −18.0000 −0.646997
\(775\) 0 0
\(776\) −2.00000 −0.0717958
\(777\) 16.0000i 0.573997i
\(778\) 24.0000i 0.860442i
\(779\) −40.0000 −1.43315
\(780\) 0 0
\(781\) 40.0000i 1.43131i
\(782\) 12.0000i 0.429119i
\(783\) 25.0000 + 10.0000i 0.893427 + 0.357371i
\(784\) 3.00000 0.107143
\(785\) 0 0
\(786\) 0 0
\(787\) 32.0000i 1.14068i −0.821410 0.570338i \(-0.806812\pi\)
0.821410 0.570338i \(-0.193188\pi\)
\(788\) 2.00000i 0.0712470i
\(789\) −19.0000 −0.676418
\(790\) 0 0
\(791\) 8.00000i 0.284447i
\(792\) 10.0000i 0.355335i
\(793\) 10.0000 0.355110
\(794\) 27.0000i 0.958194i
\(795\) 0 0
\(796\) −10.0000 −0.354441
\(797\) 2.00000 0.0708436 0.0354218 0.999372i \(-0.488723\pi\)
0.0354218 + 0.999372i \(0.488723\pi\)
\(798\) 8.00000 0.283197
\(799\) −6.00000 −0.212265
\(800\) 0 0
\(801\) 28.0000i 0.989331i
\(802\) −7.00000 −0.247179
\(803\) 80.0000i 2.82314i
\(804\) 8.00000i 0.282138i
\(805\) 0 0
\(806\) 5.00000 0.176117
\(807\) 26.0000i 0.915243i
\(808\) 0 0
\(809\) 4.00000i 0.140633i −0.997525 0.0703163i \(-0.977599\pi\)
0.997525 0.0703163i \(-0.0224008\pi\)
\(810\) 0 0
\(811\) −18.0000 −0.632065 −0.316033 0.948748i \(-0.602351\pi\)
−0.316033 + 0.948748i \(0.602351\pi\)
\(812\) −4.00000 + 10.0000i −0.140372 + 0.350931i
\(813\) 25.0000i 0.876788i
\(814\) 40.0000i 1.40200i
\(815\) 0 0
\(816\) 2.00000 0.0700140
\(817\) 36.0000i 1.25948i
\(818\) 4.00000i 0.139857i
\(819\) −4.00000 −0.139771
\(820\) 0 0
\(821\) −33.0000 −1.15171 −0.575854 0.817553i \(-0.695330\pi\)
−0.575854 + 0.817553i \(0.695330\pi\)
\(822\) −12.0000 −0.418548
\(823\) −4.00000 −0.139431 −0.0697156 0.997567i \(-0.522209\pi\)
−0.0697156 + 0.997567i \(0.522209\pi\)
\(824\) 4.00000i 0.139347i
\(825\) 0 0
\(826\) 20.0000i 0.695889i
\(827\) −33.0000 −1.14752 −0.573761 0.819023i \(-0.694516\pi\)
−0.573761 + 0.819023i \(0.694516\pi\)
\(828\) 12.0000i 0.417029i
\(829\) 26.0000i 0.903017i 0.892267 + 0.451509i \(0.149114\pi\)
−0.892267 + 0.451509i \(0.850886\pi\)
\(830\) 0 0
\(831\) 18.0000i 0.624413i
\(832\) 1.00000i 0.0346688i
\(833\) 6.00000 0.207888
\(834\) 10.0000 0.346272
\(835\) 0 0
\(836\) −20.0000 −0.691714
\(837\) 25.0000i 0.864126i
\(838\) 0 0
\(839\) 21.0000i 0.725001i 0.931984 + 0.362500i \(0.118077\pi\)
−0.931984 + 0.362500i \(0.881923\pi\)
\(840\) 0 0
\(841\) 21.0000 + 20.0000i 0.724138 + 0.689655i
\(842\) 10.0000i 0.344623i
\(843\) −13.0000 −0.447744
\(844\) 5.00000i 0.172107i
\(845\) 0 0
\(846\) −6.00000 −0.206284
\(847\) 28.0000i 0.962091i
\(848\) 1.00000i 0.0343401i
\(849\) 6.00000i 0.205919i
\(850\) 0 0
\(851\) 48.0000i 1.64542i
\(852\) −8.00000 −0.274075
\(853\) −4.00000 −0.136957 −0.0684787 0.997653i \(-0.521815\pi\)
−0.0684787 + 0.997653i \(0.521815\pi\)
\(854\) 20.0000 0.684386
\(855\) 0 0
\(856\) 2.00000i 0.0683586i
\(857\) 13.0000i 0.444072i 0.975039 + 0.222036i \(0.0712702\pi\)
−0.975039 + 0.222036i \(0.928730\pi\)
\(858\) −5.00000 −0.170697
\(859\) 41.0000i 1.39890i 0.714681 + 0.699451i \(0.246572\pi\)
−0.714681 + 0.699451i \(0.753428\pi\)
\(860\) 0 0
\(861\) −20.0000 −0.681598
\(862\) −22.0000 −0.749323
\(863\) 36.0000i 1.22545i 0.790295 + 0.612727i \(0.209928\pi\)
−0.790295 + 0.612727i \(0.790072\pi\)
\(864\) 5.00000 0.170103
\(865\) 0 0
\(866\) −16.0000 −0.543702
\(867\) −13.0000 −0.441503
\(868\) 10.0000 0.339422
\(869\) 5.00000 0.169613
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) −15.0000 −0.507964
\(873\) −4.00000 −0.135379
\(874\) −24.0000 −0.811812
\(875\) 0 0
\(876\) 16.0000 0.540590
\(877\) 43.0000i 1.45201i 0.687691 + 0.726003i \(0.258624\pi\)
−0.687691 + 0.726003i \(0.741376\pi\)
\(878\) −30.0000 −1.01245
\(879\) −4.00000 −0.134917
\(880\) 0 0
\(881\) 40.0000i 1.34763i −0.738898 0.673817i \(-0.764654\pi\)
0.738898 0.673817i \(-0.235346\pi\)
\(882\) 6.00000 0.202031
\(883\) 34.0000i 1.14419i −0.820187 0.572096i \(-0.806131\pi\)
0.820187 0.572096i \(-0.193869\pi\)
\(884\) 2.00000i 0.0672673i
\(885\) 0 0
\(886\) 4.00000 0.134383
\(887\) 27.0000 0.906571 0.453286 0.891365i \(-0.350252\pi\)
0.453286 + 0.891365i \(0.350252\pi\)
\(888\) 8.00000 0.268462
\(889\) 24.0000i 0.804934i
\(890\) 0 0
\(891\) 5.00000i 0.167506i
\(892\) 24.0000i 0.803579i
\(893\) 12.0000i 0.401565i
\(894\) 15.0000 0.501675
\(895\) 0 0
\(896\) 2.00000i 0.0668153i
\(897\) −6.00000 −0.200334
\(898\) 24.0000i 0.800890i
\(899\) 10.0000 25.0000i 0.333519 0.833797i
\(900\) 0 0
\(901\) 2.00000i 0.0666297i
\(902\) 50.0000 1.66482
\(903\) 18.0000i 0.599002i
\(904\) 4.00000 0.133038
\(905\) 0 0
\(906\) −2.00000 −0.0664455
\(907\) −28.0000 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(908\) 12.0000i 0.398234i
\(909\) 0 0
\(910\) 0 0
\(911\) 15.0000i 0.496972i −0.968635 0.248486i \(-0.920067\pi\)
0.968635 0.248486i \(-0.0799330\pi\)
\(912\) 4.00000i 0.132453i
\(913\) −70.0000 −2.31666
\(914\) 18.0000i 0.595387i
\(915\) 0 0
\(916\) 6.00000i 0.198246i
\(917\) 0 0
\(918\) 10.0000 0.330049
\(919\) 20.0000 0.659739 0.329870 0.944027i \(-0.392995\pi\)
0.329870 + 0.944027i \(0.392995\pi\)
\(920\) 0 0
\(921\) −3.00000 −0.0988534
\(922\) 20.0000i 0.658665i
\(923\) 8.00000i 0.263323i
\(924\) −10.0000 −0.328976
\(925\) 0 0
\(926\) 14.0000i 0.460069i
\(927\) 8.00000i 0.262754i
\(928\) 5.00000 + 2.00000i 0.164133 + 0.0656532i
\(929\) 50.0000 1.64045 0.820223 0.572043i \(-0.193849\pi\)
0.820223 + 0.572043i \(0.193849\pi\)
\(930\) 0 0
\(931\) 12.0000i 0.393284i
\(932\) 1.00000i 0.0327561i
\(933\) 0 0
\(934\) 3.00000 0.0981630
\(935\) 0 0
\(936\) 2.00000i 0.0653720i
\(937\) 22.0000i 0.718709i −0.933201 0.359354i \(-0.882997\pi\)
0.933201 0.359354i \(-0.117003\pi\)
\(938\) −16.0000 −0.522419
\(939\) 31.0000i 1.01165i
\(940\) 0 0
\(941\) 57.0000 1.85815 0.929073 0.369895i \(-0.120606\pi\)
0.929073 + 0.369895i \(0.120606\pi\)
\(942\) 18.0000 0.586472
\(943\) 60.0000 1.95387
\(944\) −10.0000 −0.325472
\(945\) 0 0
\(946\) 45.0000i 1.46308i
\(947\) −3.00000 −0.0974869 −0.0487435 0.998811i \(-0.515522\pi\)
−0.0487435 + 0.998811i \(0.515522\pi\)
\(948\) 1.00000i 0.0324785i
\(949\) 16.0000i 0.519382i
\(950\) 0 0
\(951\) 22.0000 0.713399
\(952\) 4.00000i 0.129641i
\(953\) 41.0000i 1.32812i 0.747679 + 0.664060i \(0.231168\pi\)
−0.747679 + 0.664060i \(0.768832\pi\)
\(954\) 2.00000i 0.0647524i
\(955\) 0 0
\(956\) 30.0000 0.970269
\(957\) −10.0000 + 25.0000i −0.323254 + 0.808135i
\(958\) 11.0000i 0.355394i
\(959\) 24.0000i 0.775000i
\(960\) 0 0
\(961\) 6.00000 0.193548
\(962\) 8.00000i 0.257930i
\(963\) 4.00000i 0.128898i
\(964\) 7.00000 0.225455
\(965\) 0 0
\(966\) −12.0000 −0.386094
\(967\) 17.0000 0.546683 0.273342 0.961917i \(-0.411871\pi\)
0.273342 + 0.961917i \(0.411871\pi\)
\(968\) 14.0000 0.449977
\(969\) 8.00000i 0.256997i
\(970\) 0 0
\(971\) 20.0000i 0.641831i −0.947108 0.320915i \(-0.896010\pi\)
0.947108 0.320915i \(-0.103990\pi\)
\(972\) 16.0000 0.513200
\(973\) 20.0000i 0.641171i
\(974\) 38.0000i 1.21760i
\(975\) 0 0
\(976\) 10.0000i 0.320092i
\(977\) 27.0000i 0.863807i −0.901920 0.431903i \(-0.857842\pi\)
0.901920 0.431903i \(-0.142158\pi\)
\(978\) −1.00000 −0.0319765
\(979\) −70.0000 −2.23721
\(980\) 0 0
\(981\) −30.0000 −0.957826
\(982\) 15.0000i 0.478669i
\(983\) 31.0000 0.988746 0.494373 0.869250i \(-0.335398\pi\)
0.494373 + 0.869250i \(0.335398\pi\)
\(984\) 10.0000i 0.318788i
\(985\) 0 0
\(986\) 10.0000 + 4.00000i 0.318465 + 0.127386i
\(987\) 6.00000i 0.190982i
\(988\) 4.00000 0.127257
\(989\) 54.0000i 1.71710i
\(990\) 0 0
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) 5.00000i 0.158750i
\(993\) 25.0000i 0.793351i
\(994\) 16.0000i 0.507489i
\(995\) 0 0
\(996\) 14.0000i 0.443607i
\(997\) −28.0000 −0.886769 −0.443384 0.896332i \(-0.646222\pi\)
−0.443384 + 0.896332i \(0.646222\pi\)
\(998\) −30.0000 −0.949633
\(999\) 40.0000 1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1450.2.d.b.1449.1 2
5.2 odd 4 1450.2.c.a.1101.1 2
5.3 odd 4 58.2.b.a.57.2 yes 2
5.4 even 2 1450.2.d.c.1449.2 2
15.8 even 4 522.2.d.a.289.1 2
20.3 even 4 464.2.e.c.289.1 2
29.28 even 2 1450.2.d.c.1449.1 2
40.3 even 4 1856.2.e.d.1217.2 2
40.13 odd 4 1856.2.e.b.1217.1 2
60.23 odd 4 4176.2.o.d.289.1 2
145.28 odd 4 58.2.b.a.57.1 2
145.57 odd 4 1450.2.c.a.1101.2 2
145.128 even 4 1682.2.a.c.1.1 1
145.133 even 4 1682.2.a.g.1.1 1
145.144 even 2 inner 1450.2.d.b.1449.2 2
435.173 even 4 522.2.d.a.289.2 2
580.463 even 4 464.2.e.c.289.2 2
1160.173 odd 4 1856.2.e.b.1217.2 2
1160.1043 even 4 1856.2.e.d.1217.1 2
1740.1043 odd 4 4176.2.o.d.289.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.b.a.57.1 2 145.28 odd 4
58.2.b.a.57.2 yes 2 5.3 odd 4
464.2.e.c.289.1 2 20.3 even 4
464.2.e.c.289.2 2 580.463 even 4
522.2.d.a.289.1 2 15.8 even 4
522.2.d.a.289.2 2 435.173 even 4
1450.2.c.a.1101.1 2 5.2 odd 4
1450.2.c.a.1101.2 2 145.57 odd 4
1450.2.d.b.1449.1 2 1.1 even 1 trivial
1450.2.d.b.1449.2 2 145.144 even 2 inner
1450.2.d.c.1449.1 2 29.28 even 2
1450.2.d.c.1449.2 2 5.4 even 2
1682.2.a.c.1.1 1 145.128 even 4
1682.2.a.g.1.1 1 145.133 even 4
1856.2.e.b.1217.1 2 40.13 odd 4
1856.2.e.b.1217.2 2 1160.173 odd 4
1856.2.e.d.1217.1 2 1160.1043 even 4
1856.2.e.d.1217.2 2 40.3 even 4
4176.2.o.d.289.1 2 60.23 odd 4
4176.2.o.d.289.2 2 1740.1043 odd 4