Properties

Label 1450.2.c.a.1101.1
Level $1450$
Weight $2$
Character 1450.1101
Analytic conductor $11.578$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1450,2,Mod(1101,1450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1450.1101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1450 = 2 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1450.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,0,-2,4,0,4,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5783082931\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1101.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1450.1101
Dual form 1450.2.c.a.1101.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} -1.00000 q^{6} +2.00000 q^{7} +1.00000i q^{8} +2.00000 q^{9} -5.00000i q^{11} +1.00000i q^{12} +1.00000 q^{13} -2.00000i q^{14} +1.00000 q^{16} +2.00000i q^{17} -2.00000i q^{18} +4.00000i q^{19} -2.00000i q^{21} -5.00000 q^{22} +6.00000 q^{23} +1.00000 q^{24} -1.00000i q^{26} -5.00000i q^{27} -2.00000 q^{28} +(5.00000 + 2.00000i) q^{29} +5.00000i q^{31} -1.00000i q^{32} -5.00000 q^{33} +2.00000 q^{34} -2.00000 q^{36} -8.00000i q^{37} +4.00000 q^{38} -1.00000i q^{39} -10.0000i q^{41} -2.00000 q^{42} +9.00000i q^{43} +5.00000i q^{44} -6.00000i q^{46} -3.00000i q^{47} -1.00000i q^{48} -3.00000 q^{49} +2.00000 q^{51} -1.00000 q^{52} +1.00000 q^{53} -5.00000 q^{54} +2.00000i q^{56} +4.00000 q^{57} +(2.00000 - 5.00000i) q^{58} +10.0000 q^{59} -10.0000i q^{61} +5.00000 q^{62} +4.00000 q^{63} -1.00000 q^{64} +5.00000i q^{66} -8.00000 q^{67} -2.00000i q^{68} -6.00000i q^{69} -8.00000 q^{71} +2.00000i q^{72} -16.0000i q^{73} -8.00000 q^{74} -4.00000i q^{76} -10.0000i q^{77} -1.00000 q^{78} -1.00000i q^{79} +1.00000 q^{81} -10.0000 q^{82} -14.0000 q^{83} +2.00000i q^{84} +9.00000 q^{86} +(2.00000 - 5.00000i) q^{87} +5.00000 q^{88} +14.0000i q^{89} +2.00000 q^{91} -6.00000 q^{92} +5.00000 q^{93} -3.00000 q^{94} -1.00000 q^{96} +2.00000i q^{97} +3.00000i q^{98} -10.0000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 2 q^{6} + 4 q^{7} + 4 q^{9} + 2 q^{13} + 2 q^{16} - 10 q^{22} + 12 q^{23} + 2 q^{24} - 4 q^{28} + 10 q^{29} - 10 q^{33} + 4 q^{34} - 4 q^{36} + 8 q^{38} - 4 q^{42} - 6 q^{49} + 4 q^{51}+ \cdots - 2 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1450\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1277\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.00000i 0.577350i −0.957427 0.288675i \(-0.906785\pi\)
0.957427 0.288675i \(-0.0932147\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.00000 0.666667
\(10\) 0 0
\(11\) 5.00000i 1.50756i −0.657129 0.753778i \(-0.728229\pi\)
0.657129 0.753778i \(-0.271771\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 2.00000i 0.534522i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.00000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 2.00000i 0.471405i
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 0 0
\(21\) 2.00000i 0.436436i
\(22\) −5.00000 −1.06600
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) 1.00000i 0.196116i
\(27\) 5.00000i 0.962250i
\(28\) −2.00000 −0.377964
\(29\) 5.00000 + 2.00000i 0.928477 + 0.371391i
\(30\) 0 0
\(31\) 5.00000i 0.898027i 0.893525 + 0.449013i \(0.148224\pi\)
−0.893525 + 0.449013i \(0.851776\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −5.00000 −0.870388
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) −2.00000 −0.333333
\(37\) 8.00000i 1.31519i −0.753371 0.657596i \(-0.771573\pi\)
0.753371 0.657596i \(-0.228427\pi\)
\(38\) 4.00000 0.648886
\(39\) 1.00000i 0.160128i
\(40\) 0 0
\(41\) 10.0000i 1.56174i −0.624695 0.780869i \(-0.714777\pi\)
0.624695 0.780869i \(-0.285223\pi\)
\(42\) −2.00000 −0.308607
\(43\) 9.00000i 1.37249i 0.727372 + 0.686244i \(0.240742\pi\)
−0.727372 + 0.686244i \(0.759258\pi\)
\(44\) 5.00000i 0.753778i
\(45\) 0 0
\(46\) 6.00000i 0.884652i
\(47\) 3.00000i 0.437595i −0.975770 0.218797i \(-0.929787\pi\)
0.975770 0.218797i \(-0.0702134\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) −1.00000 −0.138675
\(53\) 1.00000 0.137361 0.0686803 0.997639i \(-0.478121\pi\)
0.0686803 + 0.997639i \(0.478121\pi\)
\(54\) −5.00000 −0.680414
\(55\) 0 0
\(56\) 2.00000i 0.267261i
\(57\) 4.00000 0.529813
\(58\) 2.00000 5.00000i 0.262613 0.656532i
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) 10.0000i 1.28037i −0.768221 0.640184i \(-0.778858\pi\)
0.768221 0.640184i \(-0.221142\pi\)
\(62\) 5.00000 0.635001
\(63\) 4.00000 0.503953
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 5.00000i 0.615457i
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 2.00000i 0.242536i
\(69\) 6.00000i 0.722315i
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 2.00000i 0.235702i
\(73\) 16.0000i 1.87266i −0.351123 0.936329i \(-0.614200\pi\)
0.351123 0.936329i \(-0.385800\pi\)
\(74\) −8.00000 −0.929981
\(75\) 0 0
\(76\) 4.00000i 0.458831i
\(77\) 10.0000i 1.13961i
\(78\) −1.00000 −0.113228
\(79\) 1.00000i 0.112509i −0.998416 0.0562544i \(-0.982084\pi\)
0.998416 0.0562544i \(-0.0179158\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −10.0000 −1.10432
\(83\) −14.0000 −1.53670 −0.768350 0.640030i \(-0.778922\pi\)
−0.768350 + 0.640030i \(0.778922\pi\)
\(84\) 2.00000i 0.218218i
\(85\) 0 0
\(86\) 9.00000 0.970495
\(87\) 2.00000 5.00000i 0.214423 0.536056i
\(88\) 5.00000 0.533002
\(89\) 14.0000i 1.48400i 0.670402 + 0.741999i \(0.266122\pi\)
−0.670402 + 0.741999i \(0.733878\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) −6.00000 −0.625543
\(93\) 5.00000 0.518476
\(94\) −3.00000 −0.309426
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) 2.00000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 3.00000i 0.303046i
\(99\) 10.0000i 1.00504i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 2.00000i 0.198030i
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 1.00000i 0.0980581i
\(105\) 0 0
\(106\) 1.00000i 0.0971286i
\(107\) 2.00000 0.193347 0.0966736 0.995316i \(-0.469180\pi\)
0.0966736 + 0.995316i \(0.469180\pi\)
\(108\) 5.00000i 0.481125i
\(109\) −15.0000 −1.43674 −0.718370 0.695662i \(-0.755111\pi\)
−0.718370 + 0.695662i \(0.755111\pi\)
\(110\) 0 0
\(111\) −8.00000 −0.759326
\(112\) 2.00000 0.188982
\(113\) 4.00000i 0.376288i 0.982141 + 0.188144i \(0.0602472\pi\)
−0.982141 + 0.188144i \(0.939753\pi\)
\(114\) 4.00000i 0.374634i
\(115\) 0 0
\(116\) −5.00000 2.00000i −0.464238 0.185695i
\(117\) 2.00000 0.184900
\(118\) 10.0000i 0.920575i
\(119\) 4.00000i 0.366679i
\(120\) 0 0
\(121\) −14.0000 −1.27273
\(122\) −10.0000 −0.905357
\(123\) −10.0000 −0.901670
\(124\) 5.00000i 0.449013i
\(125\) 0 0
\(126\) 4.00000i 0.356348i
\(127\) 12.0000i 1.06483i 0.846484 + 0.532414i \(0.178715\pi\)
−0.846484 + 0.532414i \(0.821285\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 9.00000 0.792406
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 5.00000 0.435194
\(133\) 8.00000i 0.693688i
\(134\) 8.00000i 0.691095i
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) 12.0000i 1.02523i 0.858619 + 0.512615i \(0.171323\pi\)
−0.858619 + 0.512615i \(0.828677\pi\)
\(138\) −6.00000 −0.510754
\(139\) 10.0000 0.848189 0.424094 0.905618i \(-0.360592\pi\)
0.424094 + 0.905618i \(0.360592\pi\)
\(140\) 0 0
\(141\) −3.00000 −0.252646
\(142\) 8.00000i 0.671345i
\(143\) 5.00000i 0.418121i
\(144\) 2.00000 0.166667
\(145\) 0 0
\(146\) −16.0000 −1.32417
\(147\) 3.00000i 0.247436i
\(148\) 8.00000i 0.657596i
\(149\) 15.0000 1.22885 0.614424 0.788976i \(-0.289388\pi\)
0.614424 + 0.788976i \(0.289388\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) −4.00000 −0.324443
\(153\) 4.00000i 0.323381i
\(154\) −10.0000 −0.805823
\(155\) 0 0
\(156\) 1.00000i 0.0800641i
\(157\) 18.0000i 1.43656i −0.695756 0.718278i \(-0.744931\pi\)
0.695756 0.718278i \(-0.255069\pi\)
\(158\) −1.00000 −0.0795557
\(159\) 1.00000i 0.0793052i
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) 1.00000i 0.0785674i
\(163\) 1.00000i 0.0783260i −0.999233 0.0391630i \(-0.987531\pi\)
0.999233 0.0391630i \(-0.0124692\pi\)
\(164\) 10.0000i 0.780869i
\(165\) 0 0
\(166\) 14.0000i 1.08661i
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 2.00000 0.154303
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 8.00000i 0.611775i
\(172\) 9.00000i 0.686244i
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) −5.00000 2.00000i −0.379049 0.151620i
\(175\) 0 0
\(176\) 5.00000i 0.376889i
\(177\) 10.0000i 0.751646i
\(178\) 14.0000 1.04934
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) 2.00000i 0.148250i
\(183\) −10.0000 −0.739221
\(184\) 6.00000i 0.442326i
\(185\) 0 0
\(186\) 5.00000i 0.366618i
\(187\) 10.0000 0.731272
\(188\) 3.00000i 0.218797i
\(189\) 10.0000i 0.727393i
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) 14.0000i 1.00774i 0.863779 + 0.503871i \(0.168091\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) 2.00000 0.143592
\(195\) 0 0
\(196\) 3.00000 0.214286
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) −10.0000 −0.710669
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) 0 0
\(201\) 8.00000i 0.564276i
\(202\) 0 0
\(203\) 10.0000 + 4.00000i 0.701862 + 0.280745i
\(204\) −2.00000 −0.140028
\(205\) 0 0
\(206\) 4.00000i 0.278693i
\(207\) 12.0000 0.834058
\(208\) 1.00000 0.0693375
\(209\) 20.0000 1.38343
\(210\) 0 0
\(211\) 5.00000i 0.344214i 0.985078 + 0.172107i \(0.0550575\pi\)
−0.985078 + 0.172107i \(0.944942\pi\)
\(212\) −1.00000 −0.0686803
\(213\) 8.00000i 0.548151i
\(214\) 2.00000i 0.136717i
\(215\) 0 0
\(216\) 5.00000 0.340207
\(217\) 10.0000i 0.678844i
\(218\) 15.0000i 1.01593i
\(219\) −16.0000 −1.08118
\(220\) 0 0
\(221\) 2.00000i 0.134535i
\(222\) 8.00000i 0.536925i
\(223\) −24.0000 −1.60716 −0.803579 0.595198i \(-0.797074\pi\)
−0.803579 + 0.595198i \(0.797074\pi\)
\(224\) 2.00000i 0.133631i
\(225\) 0 0
\(226\) 4.00000 0.266076
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) −4.00000 −0.264906
\(229\) 6.00000i 0.396491i −0.980152 0.198246i \(-0.936476\pi\)
0.980152 0.198246i \(-0.0635244\pi\)
\(230\) 0 0
\(231\) −10.0000 −0.657952
\(232\) −2.00000 + 5.00000i −0.131306 + 0.328266i
\(233\) 1.00000 0.0655122 0.0327561 0.999463i \(-0.489572\pi\)
0.0327561 + 0.999463i \(0.489572\pi\)
\(234\) 2.00000i 0.130744i
\(235\) 0 0
\(236\) −10.0000 −0.650945
\(237\) −1.00000 −0.0649570
\(238\) 4.00000 0.259281
\(239\) −30.0000 −1.94054 −0.970269 0.242028i \(-0.922188\pi\)
−0.970269 + 0.242028i \(0.922188\pi\)
\(240\) 0 0
\(241\) 7.00000 0.450910 0.225455 0.974254i \(-0.427613\pi\)
0.225455 + 0.974254i \(0.427613\pi\)
\(242\) 14.0000i 0.899954i
\(243\) 16.0000i 1.02640i
\(244\) 10.0000i 0.640184i
\(245\) 0 0
\(246\) 10.0000i 0.637577i
\(247\) 4.00000i 0.254514i
\(248\) −5.00000 −0.317500
\(249\) 14.0000i 0.887214i
\(250\) 0 0
\(251\) 15.0000i 0.946792i −0.880850 0.473396i \(-0.843028\pi\)
0.880850 0.473396i \(-0.156972\pi\)
\(252\) −4.00000 −0.251976
\(253\) 30.0000i 1.88608i
\(254\) 12.0000 0.752947
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 7.00000 0.436648 0.218324 0.975876i \(-0.429941\pi\)
0.218324 + 0.975876i \(0.429941\pi\)
\(258\) 9.00000i 0.560316i
\(259\) 16.0000i 0.994192i
\(260\) 0 0
\(261\) 10.0000 + 4.00000i 0.618984 + 0.247594i
\(262\) 0 0
\(263\) 19.0000i 1.17159i 0.810459 + 0.585795i \(0.199218\pi\)
−0.810459 + 0.585795i \(0.800782\pi\)
\(264\) 5.00000i 0.307729i
\(265\) 0 0
\(266\) 8.00000 0.490511
\(267\) 14.0000 0.856786
\(268\) 8.00000 0.488678
\(269\) 26.0000i 1.58525i −0.609711 0.792624i \(-0.708714\pi\)
0.609711 0.792624i \(-0.291286\pi\)
\(270\) 0 0
\(271\) 25.0000i 1.51864i 0.650716 + 0.759321i \(0.274469\pi\)
−0.650716 + 0.759321i \(0.725531\pi\)
\(272\) 2.00000i 0.121268i
\(273\) 2.00000i 0.121046i
\(274\) 12.0000 0.724947
\(275\) 0 0
\(276\) 6.00000i 0.361158i
\(277\) −18.0000 −1.08152 −0.540758 0.841178i \(-0.681862\pi\)
−0.540758 + 0.841178i \(0.681862\pi\)
\(278\) 10.0000i 0.599760i
\(279\) 10.0000i 0.598684i
\(280\) 0 0
\(281\) −13.0000 −0.775515 −0.387757 0.921761i \(-0.626750\pi\)
−0.387757 + 0.921761i \(0.626750\pi\)
\(282\) 3.00000i 0.178647i
\(283\) 6.00000 0.356663 0.178331 0.983970i \(-0.442930\pi\)
0.178331 + 0.983970i \(0.442930\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) −5.00000 −0.295656
\(287\) 20.0000i 1.18056i
\(288\) 2.00000i 0.117851i
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) 2.00000 0.117242
\(292\) 16.0000i 0.936329i
\(293\) 4.00000i 0.233682i 0.993151 + 0.116841i \(0.0372769\pi\)
−0.993151 + 0.116841i \(0.962723\pi\)
\(294\) 3.00000 0.174964
\(295\) 0 0
\(296\) 8.00000 0.464991
\(297\) −25.0000 −1.45065
\(298\) 15.0000i 0.868927i
\(299\) 6.00000 0.346989
\(300\) 0 0
\(301\) 18.0000i 1.03750i
\(302\) 2.00000i 0.115087i
\(303\) 0 0
\(304\) 4.00000i 0.229416i
\(305\) 0 0
\(306\) 4.00000 0.228665
\(307\) 3.00000i 0.171219i −0.996329 0.0856095i \(-0.972716\pi\)
0.996329 0.0856095i \(-0.0272838\pi\)
\(308\) 10.0000i 0.569803i
\(309\) 4.00000i 0.227552i
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 1.00000 0.0566139
\(313\) 31.0000 1.75222 0.876112 0.482108i \(-0.160129\pi\)
0.876112 + 0.482108i \(0.160129\pi\)
\(314\) −18.0000 −1.01580
\(315\) 0 0
\(316\) 1.00000i 0.0562544i
\(317\) 22.0000i 1.23564i 0.786318 + 0.617822i \(0.211985\pi\)
−0.786318 + 0.617822i \(0.788015\pi\)
\(318\) −1.00000 −0.0560772
\(319\) 10.0000 25.0000i 0.559893 1.39973i
\(320\) 0 0
\(321\) 2.00000i 0.111629i
\(322\) 12.0000i 0.668734i
\(323\) −8.00000 −0.445132
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −1.00000 −0.0553849
\(327\) 15.0000i 0.829502i
\(328\) 10.0000 0.552158
\(329\) 6.00000i 0.330791i
\(330\) 0 0
\(331\) 25.0000i 1.37412i 0.726599 + 0.687062i \(0.241100\pi\)
−0.726599 + 0.687062i \(0.758900\pi\)
\(332\) 14.0000 0.768350
\(333\) 16.0000i 0.876795i
\(334\) 12.0000i 0.656611i
\(335\) 0 0
\(336\) 2.00000i 0.109109i
\(337\) 22.0000i 1.19842i 0.800593 + 0.599208i \(0.204518\pi\)
−0.800593 + 0.599208i \(0.795482\pi\)
\(338\) 12.0000i 0.652714i
\(339\) 4.00000 0.217250
\(340\) 0 0
\(341\) 25.0000 1.35383
\(342\) 8.00000 0.432590
\(343\) −20.0000 −1.07990
\(344\) −9.00000 −0.485247
\(345\) 0 0
\(346\) 6.00000i 0.322562i
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) −2.00000 + 5.00000i −0.107211 + 0.268028i
\(349\) −25.0000 −1.33822 −0.669110 0.743164i \(-0.733324\pi\)
−0.669110 + 0.743164i \(0.733324\pi\)
\(350\) 0 0
\(351\) 5.00000i 0.266880i
\(352\) −5.00000 −0.266501
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) −10.0000 −0.531494
\(355\) 0 0
\(356\) 14.0000i 0.741999i
\(357\) 4.00000 0.211702
\(358\) 0 0
\(359\) 19.0000i 1.00278i 0.865221 + 0.501391i \(0.167178\pi\)
−0.865221 + 0.501391i \(0.832822\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 17.0000i 0.893500i
\(363\) 14.0000i 0.734809i
\(364\) −2.00000 −0.104828
\(365\) 0 0
\(366\) 10.0000i 0.522708i
\(367\) 32.0000i 1.67039i 0.549957 + 0.835193i \(0.314644\pi\)
−0.549957 + 0.835193i \(0.685356\pi\)
\(368\) 6.00000 0.312772
\(369\) 20.0000i 1.04116i
\(370\) 0 0
\(371\) 2.00000 0.103835
\(372\) −5.00000 −0.259238
\(373\) 11.0000 0.569558 0.284779 0.958593i \(-0.408080\pi\)
0.284779 + 0.958593i \(0.408080\pi\)
\(374\) 10.0000i 0.517088i
\(375\) 0 0
\(376\) 3.00000 0.154713
\(377\) 5.00000 + 2.00000i 0.257513 + 0.103005i
\(378\) −10.0000 −0.514344
\(379\) 4.00000i 0.205466i 0.994709 + 0.102733i \(0.0327588\pi\)
−0.994709 + 0.102733i \(0.967241\pi\)
\(380\) 0 0
\(381\) 12.0000 0.614779
\(382\) 0 0
\(383\) 6.00000 0.306586 0.153293 0.988181i \(-0.451012\pi\)
0.153293 + 0.988181i \(0.451012\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 14.0000 0.712581
\(387\) 18.0000i 0.914991i
\(388\) 2.00000i 0.101535i
\(389\) 24.0000i 1.21685i 0.793612 + 0.608424i \(0.208198\pi\)
−0.793612 + 0.608424i \(0.791802\pi\)
\(390\) 0 0
\(391\) 12.0000i 0.606866i
\(392\) 3.00000i 0.151523i
\(393\) 0 0
\(394\) 2.00000i 0.100759i
\(395\) 0 0
\(396\) 10.0000i 0.502519i
\(397\) 27.0000 1.35509 0.677546 0.735481i \(-0.263044\pi\)
0.677546 + 0.735481i \(0.263044\pi\)
\(398\) 10.0000i 0.501255i
\(399\) 8.00000 0.400501
\(400\) 0 0
\(401\) 7.00000 0.349563 0.174782 0.984607i \(-0.444078\pi\)
0.174782 + 0.984607i \(0.444078\pi\)
\(402\) 8.00000 0.399004
\(403\) 5.00000i 0.249068i
\(404\) 0 0
\(405\) 0 0
\(406\) 4.00000 10.0000i 0.198517 0.496292i
\(407\) −40.0000 −1.98273
\(408\) 2.00000i 0.0990148i
\(409\) 4.00000i 0.197787i 0.995098 + 0.0988936i \(0.0315304\pi\)
−0.995098 + 0.0988936i \(0.968470\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 4.00000 0.197066
\(413\) 20.0000 0.984136
\(414\) 12.0000i 0.589768i
\(415\) 0 0
\(416\) 1.00000i 0.0490290i
\(417\) 10.0000i 0.489702i
\(418\) 20.0000i 0.978232i
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 10.0000i 0.487370i −0.969854 0.243685i \(-0.921644\pi\)
0.969854 0.243685i \(-0.0783563\pi\)
\(422\) 5.00000 0.243396
\(423\) 6.00000i 0.291730i
\(424\) 1.00000i 0.0485643i
\(425\) 0 0
\(426\) 8.00000 0.387601
\(427\) 20.0000i 0.967868i
\(428\) −2.00000 −0.0966736
\(429\) −5.00000 −0.241402
\(430\) 0 0
\(431\) 22.0000 1.05970 0.529851 0.848091i \(-0.322248\pi\)
0.529851 + 0.848091i \(0.322248\pi\)
\(432\) 5.00000i 0.240563i
\(433\) 16.0000i 0.768911i −0.923144 0.384455i \(-0.874389\pi\)
0.923144 0.384455i \(-0.125611\pi\)
\(434\) 10.0000 0.480015
\(435\) 0 0
\(436\) 15.0000 0.718370
\(437\) 24.0000i 1.14808i
\(438\) 16.0000i 0.764510i
\(439\) −30.0000 −1.43182 −0.715911 0.698192i \(-0.753988\pi\)
−0.715911 + 0.698192i \(0.753988\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 2.00000 0.0951303
\(443\) 4.00000i 0.190046i 0.995475 + 0.0950229i \(0.0302924\pi\)
−0.995475 + 0.0950229i \(0.969708\pi\)
\(444\) 8.00000 0.379663
\(445\) 0 0
\(446\) 24.0000i 1.13643i
\(447\) 15.0000i 0.709476i
\(448\) −2.00000 −0.0944911
\(449\) 24.0000i 1.13263i 0.824189 + 0.566315i \(0.191631\pi\)
−0.824189 + 0.566315i \(0.808369\pi\)
\(450\) 0 0
\(451\) −50.0000 −2.35441
\(452\) 4.00000i 0.188144i
\(453\) 2.00000i 0.0939682i
\(454\) 12.0000i 0.563188i
\(455\) 0 0
\(456\) 4.00000i 0.187317i
\(457\) −18.0000 −0.842004 −0.421002 0.907060i \(-0.638322\pi\)
−0.421002 + 0.907060i \(0.638322\pi\)
\(458\) −6.00000 −0.280362
\(459\) 10.0000 0.466760
\(460\) 0 0
\(461\) 20.0000i 0.931493i 0.884918 + 0.465746i \(0.154214\pi\)
−0.884918 + 0.465746i \(0.845786\pi\)
\(462\) 10.0000i 0.465242i
\(463\) −14.0000 −0.650635 −0.325318 0.945605i \(-0.605471\pi\)
−0.325318 + 0.945605i \(0.605471\pi\)
\(464\) 5.00000 + 2.00000i 0.232119 + 0.0928477i
\(465\) 0 0
\(466\) 1.00000i 0.0463241i
\(467\) 3.00000i 0.138823i −0.997588 0.0694117i \(-0.977888\pi\)
0.997588 0.0694117i \(-0.0221122\pi\)
\(468\) −2.00000 −0.0924500
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) −18.0000 −0.829396
\(472\) 10.0000i 0.460287i
\(473\) 45.0000 2.06910
\(474\) 1.00000i 0.0459315i
\(475\) 0 0
\(476\) 4.00000i 0.183340i
\(477\) 2.00000 0.0915737
\(478\) 30.0000i 1.37217i
\(479\) 11.0000i 0.502603i −0.967909 0.251301i \(-0.919141\pi\)
0.967909 0.251301i \(-0.0808585\pi\)
\(480\) 0 0
\(481\) 8.00000i 0.364769i
\(482\) 7.00000i 0.318841i
\(483\) 12.0000i 0.546019i
\(484\) 14.0000 0.636364
\(485\) 0 0
\(486\) −16.0000 −0.725775
\(487\) −38.0000 −1.72194 −0.860972 0.508652i \(-0.830144\pi\)
−0.860972 + 0.508652i \(0.830144\pi\)
\(488\) 10.0000 0.452679
\(489\) −1.00000 −0.0452216
\(490\) 0 0
\(491\) 15.0000i 0.676941i 0.940977 + 0.338470i \(0.109909\pi\)
−0.940977 + 0.338470i \(0.890091\pi\)
\(492\) 10.0000 0.450835
\(493\) −4.00000 + 10.0000i −0.180151 + 0.450377i
\(494\) 4.00000 0.179969
\(495\) 0 0
\(496\) 5.00000i 0.224507i
\(497\) −16.0000 −0.717698
\(498\) 14.0000 0.627355
\(499\) −30.0000 −1.34298 −0.671492 0.741012i \(-0.734346\pi\)
−0.671492 + 0.741012i \(0.734346\pi\)
\(500\) 0 0
\(501\) 12.0000i 0.536120i
\(502\) −15.0000 −0.669483
\(503\) 39.0000i 1.73892i 0.494000 + 0.869462i \(0.335534\pi\)
−0.494000 + 0.869462i \(0.664466\pi\)
\(504\) 4.00000i 0.178174i
\(505\) 0 0
\(506\) −30.0000 −1.33366
\(507\) 12.0000i 0.532939i
\(508\) 12.0000i 0.532414i
\(509\) 15.0000 0.664863 0.332432 0.943127i \(-0.392131\pi\)
0.332432 + 0.943127i \(0.392131\pi\)
\(510\) 0 0
\(511\) 32.0000i 1.41560i
\(512\) 1.00000i 0.0441942i
\(513\) 20.0000 0.883022
\(514\) 7.00000i 0.308757i
\(515\) 0 0
\(516\) −9.00000 −0.396203
\(517\) −15.0000 −0.659699
\(518\) −16.0000 −0.703000
\(519\) 6.00000i 0.263371i
\(520\) 0 0
\(521\) 17.0000 0.744784 0.372392 0.928076i \(-0.378538\pi\)
0.372392 + 0.928076i \(0.378538\pi\)
\(522\) 4.00000 10.0000i 0.175075 0.437688i
\(523\) −4.00000 −0.174908 −0.0874539 0.996169i \(-0.527873\pi\)
−0.0874539 + 0.996169i \(0.527873\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 19.0000 0.828439
\(527\) −10.0000 −0.435607
\(528\) −5.00000 −0.217597
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 20.0000 0.867926
\(532\) 8.00000i 0.346844i
\(533\) 10.0000i 0.433148i
\(534\) 14.0000i 0.605839i
\(535\) 0 0
\(536\) 8.00000i 0.345547i
\(537\) 0 0
\(538\) −26.0000 −1.12094
\(539\) 15.0000i 0.646096i
\(540\) 0 0
\(541\) 40.0000i 1.71973i −0.510518 0.859867i \(-0.670546\pi\)
0.510518 0.859867i \(-0.329454\pi\)
\(542\) 25.0000 1.07384
\(543\) 17.0000i 0.729540i
\(544\) 2.00000 0.0857493
\(545\) 0 0
\(546\) −2.00000 −0.0855921
\(547\) 22.0000 0.940652 0.470326 0.882493i \(-0.344136\pi\)
0.470326 + 0.882493i \(0.344136\pi\)
\(548\) 12.0000i 0.512615i
\(549\) 20.0000i 0.853579i
\(550\) 0 0
\(551\) −8.00000 + 20.0000i −0.340811 + 0.852029i
\(552\) 6.00000 0.255377
\(553\) 2.00000i 0.0850487i
\(554\) 18.0000i 0.764747i
\(555\) 0 0
\(556\) −10.0000 −0.424094
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 10.0000 0.423334
\(559\) 9.00000i 0.380659i
\(560\) 0 0
\(561\) 10.0000i 0.422200i
\(562\) 13.0000i 0.548372i
\(563\) 19.0000i 0.800755i 0.916350 + 0.400377i \(0.131121\pi\)
−0.916350 + 0.400377i \(0.868879\pi\)
\(564\) 3.00000 0.126323
\(565\) 0 0
\(566\) 6.00000i 0.252199i
\(567\) 2.00000 0.0839921
\(568\) 8.00000i 0.335673i
\(569\) 24.0000i 1.00613i 0.864248 + 0.503066i \(0.167795\pi\)
−0.864248 + 0.503066i \(0.832205\pi\)
\(570\) 0 0
\(571\) −8.00000 −0.334790 −0.167395 0.985890i \(-0.553535\pi\)
−0.167395 + 0.985890i \(0.553535\pi\)
\(572\) 5.00000i 0.209061i
\(573\) 0 0
\(574\) −20.0000 −0.834784
\(575\) 0 0
\(576\) −2.00000 −0.0833333
\(577\) 2.00000i 0.0832611i 0.999133 + 0.0416305i \(0.0132552\pi\)
−0.999133 + 0.0416305i \(0.986745\pi\)
\(578\) 13.0000i 0.540729i
\(579\) 14.0000 0.581820
\(580\) 0 0
\(581\) −28.0000 −1.16164
\(582\) 2.00000i 0.0829027i
\(583\) 5.00000i 0.207079i
\(584\) 16.0000 0.662085
\(585\) 0 0
\(586\) 4.00000 0.165238
\(587\) −18.0000 −0.742940 −0.371470 0.928445i \(-0.621146\pi\)
−0.371470 + 0.928445i \(0.621146\pi\)
\(588\) 3.00000i 0.123718i
\(589\) −20.0000 −0.824086
\(590\) 0 0
\(591\) 2.00000i 0.0822690i
\(592\) 8.00000i 0.328798i
\(593\) −29.0000 −1.19089 −0.595444 0.803397i \(-0.703024\pi\)
−0.595444 + 0.803397i \(0.703024\pi\)
\(594\) 25.0000i 1.02576i
\(595\) 0 0
\(596\) −15.0000 −0.614424
\(597\) 10.0000i 0.409273i
\(598\) 6.00000i 0.245358i
\(599\) 39.0000i 1.59350i 0.604311 + 0.796748i \(0.293448\pi\)
−0.604311 + 0.796748i \(0.706552\pi\)
\(600\) 0 0
\(601\) 30.0000i 1.22373i 0.790964 + 0.611863i \(0.209580\pi\)
−0.790964 + 0.611863i \(0.790420\pi\)
\(602\) 18.0000 0.733625
\(603\) −16.0000 −0.651570
\(604\) −2.00000 −0.0813788
\(605\) 0 0
\(606\) 0 0
\(607\) 13.0000i 0.527654i −0.964570 0.263827i \(-0.915015\pi\)
0.964570 0.263827i \(-0.0849848\pi\)
\(608\) 4.00000 0.162221
\(609\) 4.00000 10.0000i 0.162088 0.405220i
\(610\) 0 0
\(611\) 3.00000i 0.121367i
\(612\) 4.00000i 0.161690i
\(613\) −29.0000 −1.17130 −0.585649 0.810564i \(-0.699160\pi\)
−0.585649 + 0.810564i \(0.699160\pi\)
\(614\) −3.00000 −0.121070
\(615\) 0 0
\(616\) 10.0000 0.402911
\(617\) 28.0000i 1.12724i −0.826035 0.563619i \(-0.809409\pi\)
0.826035 0.563619i \(-0.190591\pi\)
\(618\) 4.00000 0.160904
\(619\) 49.0000i 1.96948i 0.174042 + 0.984738i \(0.444317\pi\)
−0.174042 + 0.984738i \(0.555683\pi\)
\(620\) 0 0
\(621\) 30.0000i 1.20386i
\(622\) 0 0
\(623\) 28.0000i 1.12180i
\(624\) 1.00000i 0.0400320i
\(625\) 0 0
\(626\) 31.0000i 1.23901i
\(627\) 20.0000i 0.798723i
\(628\) 18.0000i 0.718278i
\(629\) 16.0000 0.637962
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 1.00000 0.0397779
\(633\) 5.00000 0.198732
\(634\) 22.0000 0.873732
\(635\) 0 0
\(636\) 1.00000i 0.0396526i
\(637\) −3.00000 −0.118864
\(638\) −25.0000 10.0000i −0.989759 0.395904i
\(639\) −16.0000 −0.632950
\(640\) 0 0
\(641\) 30.0000i 1.18493i −0.805597 0.592464i \(-0.798155\pi\)
0.805597 0.592464i \(-0.201845\pi\)
\(642\) −2.00000 −0.0789337
\(643\) −14.0000 −0.552106 −0.276053 0.961142i \(-0.589027\pi\)
−0.276053 + 0.961142i \(0.589027\pi\)
\(644\) −12.0000 −0.472866
\(645\) 0 0
\(646\) 8.00000i 0.314756i
\(647\) 22.0000 0.864909 0.432455 0.901656i \(-0.357648\pi\)
0.432455 + 0.901656i \(0.357648\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 50.0000i 1.96267i
\(650\) 0 0
\(651\) 10.0000 0.391931
\(652\) 1.00000i 0.0391630i
\(653\) 6.00000i 0.234798i −0.993085 0.117399i \(-0.962544\pi\)
0.993085 0.117399i \(-0.0374557\pi\)
\(654\) 15.0000 0.586546
\(655\) 0 0
\(656\) 10.0000i 0.390434i
\(657\) 32.0000i 1.24844i
\(658\) −6.00000 −0.233904
\(659\) 31.0000i 1.20759i −0.797140 0.603794i \(-0.793655\pi\)
0.797140 0.603794i \(-0.206345\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) 25.0000 0.971653
\(663\) 2.00000 0.0776736
\(664\) 14.0000i 0.543305i
\(665\) 0 0
\(666\) −16.0000 −0.619987
\(667\) 30.0000 + 12.0000i 1.16160 + 0.464642i
\(668\) −12.0000 −0.464294
\(669\) 24.0000i 0.927894i
\(670\) 0 0
\(671\) −50.0000 −1.93023
\(672\) −2.00000 −0.0771517
\(673\) −19.0000 −0.732396 −0.366198 0.930537i \(-0.619341\pi\)
−0.366198 + 0.930537i \(0.619341\pi\)
\(674\) 22.0000 0.847408
\(675\) 0 0
\(676\) 12.0000 0.461538
\(677\) 8.00000i 0.307465i −0.988113 0.153732i \(-0.950871\pi\)
0.988113 0.153732i \(-0.0491294\pi\)
\(678\) 4.00000i 0.153619i
\(679\) 4.00000i 0.153506i
\(680\) 0 0
\(681\) 12.0000i 0.459841i
\(682\) 25.0000i 0.957299i
\(683\) 36.0000 1.37750 0.688751 0.724998i \(-0.258159\pi\)
0.688751 + 0.724998i \(0.258159\pi\)
\(684\) 8.00000i 0.305888i
\(685\) 0 0
\(686\) 20.0000i 0.763604i
\(687\) −6.00000 −0.228914
\(688\) 9.00000i 0.343122i
\(689\) 1.00000 0.0380970
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) −6.00000 −0.228086
\(693\) 20.0000i 0.759737i
\(694\) 12.0000i 0.455514i
\(695\) 0 0
\(696\) 5.00000 + 2.00000i 0.189525 + 0.0758098i
\(697\) 20.0000 0.757554
\(698\) 25.0000i 0.946264i
\(699\) 1.00000i 0.0378235i
\(700\) 0 0
\(701\) 27.0000 1.01978 0.509888 0.860241i \(-0.329687\pi\)
0.509888 + 0.860241i \(0.329687\pi\)
\(702\) −5.00000 −0.188713
\(703\) 32.0000 1.20690
\(704\) 5.00000i 0.188445i
\(705\) 0 0
\(706\) 6.00000i 0.225813i
\(707\) 0 0
\(708\) 10.0000i 0.375823i
\(709\) −5.00000 −0.187779 −0.0938895 0.995583i \(-0.529930\pi\)
−0.0938895 + 0.995583i \(0.529930\pi\)
\(710\) 0 0
\(711\) 2.00000i 0.0750059i
\(712\) −14.0000 −0.524672
\(713\) 30.0000i 1.12351i
\(714\) 4.00000i 0.149696i
\(715\) 0 0
\(716\) 0 0
\(717\) 30.0000i 1.12037i
\(718\) 19.0000 0.709074
\(719\) −20.0000 −0.745874 −0.372937 0.927857i \(-0.621649\pi\)
−0.372937 + 0.927857i \(0.621649\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 3.00000i 0.111648i
\(723\) 7.00000i 0.260333i
\(724\) −17.0000 −0.631800
\(725\) 0 0
\(726\) 14.0000 0.519589
\(727\) 48.0000i 1.78022i −0.455744 0.890111i \(-0.650627\pi\)
0.455744 0.890111i \(-0.349373\pi\)
\(728\) 2.00000i 0.0741249i
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) −18.0000 −0.665754
\(732\) 10.0000 0.369611
\(733\) 36.0000i 1.32969i −0.746981 0.664845i \(-0.768498\pi\)
0.746981 0.664845i \(-0.231502\pi\)
\(734\) 32.0000 1.18114
\(735\) 0 0
\(736\) 6.00000i 0.221163i
\(737\) 40.0000i 1.47342i
\(738\) −20.0000 −0.736210
\(739\) 9.00000i 0.331070i 0.986204 + 0.165535i \(0.0529351\pi\)
−0.986204 + 0.165535i \(0.947065\pi\)
\(740\) 0 0
\(741\) 4.00000 0.146944
\(742\) 2.00000i 0.0734223i
\(743\) 16.0000i 0.586983i −0.955962 0.293492i \(-0.905183\pi\)
0.955962 0.293492i \(-0.0948173\pi\)
\(744\) 5.00000i 0.183309i
\(745\) 0 0
\(746\) 11.0000i 0.402739i
\(747\) −28.0000 −1.02447
\(748\) −10.0000 −0.365636
\(749\) 4.00000 0.146157
\(750\) 0 0
\(751\) 40.0000i 1.45962i −0.683650 0.729810i \(-0.739608\pi\)
0.683650 0.729810i \(-0.260392\pi\)
\(752\) 3.00000i 0.109399i
\(753\) −15.0000 −0.546630
\(754\) 2.00000 5.00000i 0.0728357 0.182089i
\(755\) 0 0
\(756\) 10.0000i 0.363696i
\(757\) 2.00000i 0.0726912i 0.999339 + 0.0363456i \(0.0115717\pi\)
−0.999339 + 0.0363456i \(0.988428\pi\)
\(758\) 4.00000 0.145287
\(759\) −30.0000 −1.08893
\(760\) 0 0
\(761\) 2.00000 0.0724999 0.0362500 0.999343i \(-0.488459\pi\)
0.0362500 + 0.999343i \(0.488459\pi\)
\(762\) 12.0000i 0.434714i
\(763\) −30.0000 −1.08607
\(764\) 0 0
\(765\) 0 0
\(766\) 6.00000i 0.216789i
\(767\) 10.0000 0.361079
\(768\) 1.00000i 0.0360844i
\(769\) 34.0000i 1.22607i 0.790055 + 0.613036i \(0.210052\pi\)
−0.790055 + 0.613036i \(0.789948\pi\)
\(770\) 0 0
\(771\) 7.00000i 0.252099i
\(772\) 14.0000i 0.503871i
\(773\) 14.0000i 0.503545i 0.967786 + 0.251773i \(0.0810135\pi\)
−0.967786 + 0.251773i \(0.918987\pi\)
\(774\) 18.0000 0.646997
\(775\) 0 0
\(776\) −2.00000 −0.0717958
\(777\) −16.0000 −0.573997
\(778\) 24.0000 0.860442
\(779\) 40.0000 1.43315
\(780\) 0 0
\(781\) 40.0000i 1.43131i
\(782\) 12.0000 0.429119
\(783\) 10.0000 25.0000i 0.357371 0.893427i
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) 0 0
\(787\) 32.0000 1.14068 0.570338 0.821410i \(-0.306812\pi\)
0.570338 + 0.821410i \(0.306812\pi\)
\(788\) −2.00000 −0.0712470
\(789\) 19.0000 0.676418
\(790\) 0 0
\(791\) 8.00000i 0.284447i
\(792\) 10.0000 0.355335
\(793\) 10.0000i 0.355110i
\(794\) 27.0000i 0.958194i
\(795\) 0 0
\(796\) −10.0000 −0.354441
\(797\) 2.00000i 0.0708436i 0.999372 + 0.0354218i \(0.0112775\pi\)
−0.999372 + 0.0354218i \(0.988723\pi\)
\(798\) 8.00000i 0.283197i
\(799\) 6.00000 0.212265
\(800\) 0 0
\(801\) 28.0000i 0.989331i
\(802\) 7.00000i 0.247179i
\(803\) −80.0000 −2.82314
\(804\) 8.00000i 0.282138i
\(805\) 0 0
\(806\) 5.00000 0.176117
\(807\) −26.0000 −0.915243
\(808\) 0 0
\(809\) 4.00000i 0.140633i 0.997525 + 0.0703163i \(0.0224008\pi\)
−0.997525 + 0.0703163i \(0.977599\pi\)
\(810\) 0 0
\(811\) −18.0000 −0.632065 −0.316033 0.948748i \(-0.602351\pi\)
−0.316033 + 0.948748i \(0.602351\pi\)
\(812\) −10.0000 4.00000i −0.350931 0.140372i
\(813\) 25.0000 0.876788
\(814\) 40.0000i 1.40200i
\(815\) 0 0
\(816\) 2.00000 0.0700140
\(817\) −36.0000 −1.25948
\(818\) 4.00000 0.139857
\(819\) 4.00000 0.139771
\(820\) 0 0
\(821\) −33.0000 −1.15171 −0.575854 0.817553i \(-0.695330\pi\)
−0.575854 + 0.817553i \(0.695330\pi\)
\(822\) 12.0000i 0.418548i
\(823\) 4.00000i 0.139431i 0.997567 + 0.0697156i \(0.0222092\pi\)
−0.997567 + 0.0697156i \(0.977791\pi\)
\(824\) 4.00000i 0.139347i
\(825\) 0 0
\(826\) 20.0000i 0.695889i
\(827\) 33.0000i 1.14752i −0.819023 0.573761i \(-0.805484\pi\)
0.819023 0.573761i \(-0.194516\pi\)
\(828\) −12.0000 −0.417029
\(829\) 26.0000i 0.903017i −0.892267 0.451509i \(-0.850886\pi\)
0.892267 0.451509i \(-0.149114\pi\)
\(830\) 0 0
\(831\) 18.0000i 0.624413i
\(832\) −1.00000 −0.0346688
\(833\) 6.00000i 0.207888i
\(834\) −10.0000 −0.346272
\(835\) 0 0
\(836\) −20.0000 −0.691714
\(837\) 25.0000 0.864126
\(838\) 0 0
\(839\) 21.0000i 0.725001i −0.931984 0.362500i \(-0.881923\pi\)
0.931984 0.362500i \(-0.118077\pi\)
\(840\) 0 0
\(841\) 21.0000 + 20.0000i 0.724138 + 0.689655i
\(842\) −10.0000 −0.344623
\(843\) 13.0000i 0.447744i
\(844\) 5.00000i 0.172107i
\(845\) 0 0
\(846\) −6.00000 −0.206284
\(847\) −28.0000 −0.962091
\(848\) 1.00000 0.0343401
\(849\) 6.00000i 0.205919i
\(850\) 0 0
\(851\) 48.0000i 1.64542i
\(852\) 8.00000i 0.274075i
\(853\) 4.00000i 0.136957i 0.997653 + 0.0684787i \(0.0218145\pi\)
−0.997653 + 0.0684787i \(0.978185\pi\)
\(854\) −20.0000 −0.684386
\(855\) 0 0
\(856\) 2.00000i 0.0683586i
\(857\) −13.0000 −0.444072 −0.222036 0.975039i \(-0.571270\pi\)
−0.222036 + 0.975039i \(0.571270\pi\)
\(858\) 5.00000i 0.170697i
\(859\) 41.0000i 1.39890i −0.714681 0.699451i \(-0.753428\pi\)
0.714681 0.699451i \(-0.246572\pi\)
\(860\) 0 0
\(861\) −20.0000 −0.681598
\(862\) 22.0000i 0.749323i
\(863\) 36.0000 1.22545 0.612727 0.790295i \(-0.290072\pi\)
0.612727 + 0.790295i \(0.290072\pi\)
\(864\) −5.00000 −0.170103
\(865\) 0 0
\(866\) −16.0000 −0.543702
\(867\) 13.0000i 0.441503i
\(868\) 10.0000i 0.339422i
\(869\) −5.00000 −0.169613
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 15.0000i 0.507964i
\(873\) 4.00000i 0.135379i
\(874\) 24.0000 0.811812
\(875\) 0 0
\(876\) 16.0000 0.540590
\(877\) −43.0000 −1.45201 −0.726003 0.687691i \(-0.758624\pi\)
−0.726003 + 0.687691i \(0.758624\pi\)
\(878\) 30.0000i 1.01245i
\(879\) 4.00000 0.134917
\(880\) 0 0
\(881\) 40.0000i 1.34763i −0.738898 0.673817i \(-0.764654\pi\)
0.738898 0.673817i \(-0.235346\pi\)
\(882\) 6.00000i 0.202031i
\(883\) −34.0000 −1.14419 −0.572096 0.820187i \(-0.693869\pi\)
−0.572096 + 0.820187i \(0.693869\pi\)
\(884\) 2.00000i 0.0672673i
\(885\) 0 0
\(886\) 4.00000 0.134383
\(887\) 27.0000i 0.906571i 0.891365 + 0.453286i \(0.149748\pi\)
−0.891365 + 0.453286i \(0.850252\pi\)
\(888\) 8.00000i 0.268462i
\(889\) 24.0000i 0.804934i
\(890\) 0 0
\(891\) 5.00000i 0.167506i
\(892\) 24.0000 0.803579
\(893\) 12.0000 0.401565
\(894\) −15.0000 −0.501675
\(895\) 0 0
\(896\) 2.00000i 0.0668153i
\(897\) 6.00000i 0.200334i
\(898\) 24.0000 0.800890
\(899\) −10.0000 + 25.0000i −0.333519 + 0.833797i
\(900\) 0 0
\(901\) 2.00000i 0.0666297i
\(902\) 50.0000i 1.66482i
\(903\) 18.0000 0.599002
\(904\) −4.00000 −0.133038
\(905\) 0 0
\(906\) −2.00000 −0.0664455
\(907\) 28.0000i 0.929725i −0.885383 0.464862i \(-0.846104\pi\)
0.885383 0.464862i \(-0.153896\pi\)
\(908\) −12.0000 −0.398234
\(909\) 0 0
\(910\) 0 0
\(911\) 15.0000i 0.496972i −0.968635 0.248486i \(-0.920067\pi\)
0.968635 0.248486i \(-0.0799330\pi\)
\(912\) 4.00000 0.132453
\(913\) 70.0000i 2.31666i
\(914\) 18.0000i 0.595387i
\(915\) 0 0
\(916\) 6.00000i 0.198246i
\(917\) 0 0
\(918\) 10.0000i 0.330049i
\(919\) −20.0000 −0.659739 −0.329870 0.944027i \(-0.607005\pi\)
−0.329870 + 0.944027i \(0.607005\pi\)
\(920\) 0 0
\(921\) −3.00000 −0.0988534
\(922\) 20.0000 0.658665
\(923\) −8.00000 −0.263323
\(924\) 10.0000 0.328976
\(925\) 0 0
\(926\) 14.0000i 0.460069i
\(927\) −8.00000 −0.262754
\(928\) 2.00000 5.00000i 0.0656532 0.164133i
\(929\) −50.0000 −1.64045 −0.820223 0.572043i \(-0.806151\pi\)
−0.820223 + 0.572043i \(0.806151\pi\)
\(930\) 0 0
\(931\) 12.0000i 0.393284i
\(932\) −1.00000 −0.0327561
\(933\) 0 0
\(934\) −3.00000 −0.0981630
\(935\) 0 0
\(936\) 2.00000i 0.0653720i
\(937\) 22.0000 0.718709 0.359354 0.933201i \(-0.382997\pi\)
0.359354 + 0.933201i \(0.382997\pi\)
\(938\) 16.0000i 0.522419i
\(939\) 31.0000i 1.01165i
\(940\) 0 0
\(941\) 57.0000 1.85815 0.929073 0.369895i \(-0.120606\pi\)
0.929073 + 0.369895i \(0.120606\pi\)
\(942\) 18.0000i 0.586472i
\(943\) 60.0000i 1.95387i
\(944\) 10.0000 0.325472
\(945\) 0 0
\(946\) 45.0000i 1.46308i
\(947\) 3.00000i 0.0974869i −0.998811 0.0487435i \(-0.984478\pi\)
0.998811 0.0487435i \(-0.0155217\pi\)
\(948\) 1.00000 0.0324785
\(949\) 16.0000i 0.519382i
\(950\) 0 0
\(951\) 22.0000 0.713399
\(952\) −4.00000 −0.129641
\(953\) 41.0000 1.32812 0.664060 0.747679i \(-0.268832\pi\)
0.664060 + 0.747679i \(0.268832\pi\)
\(954\) 2.00000i 0.0647524i
\(955\) 0 0
\(956\) 30.0000 0.970269
\(957\) −25.0000 10.0000i −0.808135 0.323254i
\(958\) −11.0000 −0.355394
\(959\) 24.0000i 0.775000i
\(960\) 0 0
\(961\) 6.00000 0.193548
\(962\) −8.00000 −0.257930
\(963\) 4.00000 0.128898
\(964\) −7.00000 −0.225455
\(965\) 0 0
\(966\) −12.0000 −0.386094
\(967\) 17.0000i 0.546683i 0.961917 + 0.273342i \(0.0881289\pi\)
−0.961917 + 0.273342i \(0.911871\pi\)
\(968\) 14.0000i 0.449977i
\(969\) 8.00000i 0.256997i
\(970\) 0 0
\(971\) 20.0000i 0.641831i −0.947108 0.320915i \(-0.896010\pi\)
0.947108 0.320915i \(-0.103990\pi\)
\(972\) 16.0000i 0.513200i
\(973\) 20.0000 0.641171
\(974\) 38.0000i 1.21760i
\(975\) 0 0
\(976\) 10.0000i 0.320092i
\(977\) 27.0000 0.863807 0.431903 0.901920i \(-0.357842\pi\)
0.431903 + 0.901920i \(0.357842\pi\)
\(978\) 1.00000i 0.0319765i
\(979\) 70.0000 2.23721
\(980\) 0 0
\(981\) −30.0000 −0.957826
\(982\) 15.0000 0.478669
\(983\) 31.0000i 0.988746i −0.869250 0.494373i \(-0.835398\pi\)
0.869250 0.494373i \(-0.164602\pi\)
\(984\) 10.0000i 0.318788i
\(985\) 0 0
\(986\) 10.0000 + 4.00000i 0.318465 + 0.127386i
\(987\) −6.00000 −0.190982
\(988\) 4.00000i 0.127257i
\(989\) 54.0000i 1.71710i
\(990\) 0 0
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) 5.00000 0.158750
\(993\) 25.0000 0.793351
\(994\) 16.0000i 0.507489i
\(995\) 0 0
\(996\) 14.0000i 0.443607i
\(997\) 28.0000i 0.886769i −0.896332 0.443384i \(-0.853778\pi\)
0.896332 0.443384i \(-0.146222\pi\)
\(998\) 30.0000i 0.949633i
\(999\) −40.0000 −1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1450.2.c.a.1101.1 2
5.2 odd 4 1450.2.d.c.1449.2 2
5.3 odd 4 1450.2.d.b.1449.1 2
5.4 even 2 58.2.b.a.57.2 yes 2
15.14 odd 2 522.2.d.a.289.1 2
20.19 odd 2 464.2.e.c.289.1 2
29.28 even 2 inner 1450.2.c.a.1101.2 2
40.19 odd 2 1856.2.e.d.1217.2 2
40.29 even 2 1856.2.e.b.1217.1 2
60.59 even 2 4176.2.o.d.289.1 2
145.28 odd 4 1450.2.d.c.1449.1 2
145.57 odd 4 1450.2.d.b.1449.2 2
145.99 odd 4 1682.2.a.c.1.1 1
145.104 odd 4 1682.2.a.g.1.1 1
145.144 even 2 58.2.b.a.57.1 2
435.434 odd 2 522.2.d.a.289.2 2
580.579 odd 2 464.2.e.c.289.2 2
1160.579 odd 2 1856.2.e.d.1217.1 2
1160.869 even 2 1856.2.e.b.1217.2 2
1740.1739 even 2 4176.2.o.d.289.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.b.a.57.1 2 145.144 even 2
58.2.b.a.57.2 yes 2 5.4 even 2
464.2.e.c.289.1 2 20.19 odd 2
464.2.e.c.289.2 2 580.579 odd 2
522.2.d.a.289.1 2 15.14 odd 2
522.2.d.a.289.2 2 435.434 odd 2
1450.2.c.a.1101.1 2 1.1 even 1 trivial
1450.2.c.a.1101.2 2 29.28 even 2 inner
1450.2.d.b.1449.1 2 5.3 odd 4
1450.2.d.b.1449.2 2 145.57 odd 4
1450.2.d.c.1449.1 2 145.28 odd 4
1450.2.d.c.1449.2 2 5.2 odd 4
1682.2.a.c.1.1 1 145.99 odd 4
1682.2.a.g.1.1 1 145.104 odd 4
1856.2.e.b.1217.1 2 40.29 even 2
1856.2.e.b.1217.2 2 1160.869 even 2
1856.2.e.d.1217.1 2 1160.579 odd 2
1856.2.e.d.1217.2 2 40.19 odd 2
4176.2.o.d.289.1 2 60.59 even 2
4176.2.o.d.289.2 2 1740.1739 even 2