Properties

Label 144.4.l.a.35.20
Level $144$
Weight $4$
Character 144.35
Analytic conductor $8.496$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,4,Mod(35,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.35"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 144.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.49627504083\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 35.20
Character \(\chi\) \(=\) 144.35
Dual form 144.4.l.a.107.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.19729 + 1.78098i) q^{2} +(1.65621 + 7.82668i) q^{4} +(-3.62348 - 3.62348i) q^{5} -33.7361 q^{7} +(-10.3000 + 20.1472i) q^{8} +(-1.50850 - 14.4152i) q^{10} +(-44.1694 + 44.1694i) q^{11} +(42.1143 + 42.1143i) q^{13} +(-74.1283 - 60.0835i) q^{14} +(-58.5139 + 25.9252i) q^{16} +17.6392i q^{17} +(99.2533 - 99.2533i) q^{19} +(22.3586 - 34.3611i) q^{20} +(-175.718 + 18.3883i) q^{22} +83.8215i q^{23} -98.7408i q^{25} +(17.5327 + 167.542i) q^{26} +(-55.8741 - 264.042i) q^{28} +(-89.7300 + 89.7300i) q^{29} +46.2516i q^{31} +(-174.745 - 47.2469i) q^{32} +(-31.4150 + 38.7584i) q^{34} +(122.242 + 122.242i) q^{35} +(-7.47930 + 7.47930i) q^{37} +(394.857 - 41.3205i) q^{38} +(110.325 - 35.6811i) q^{40} +299.247 q^{41} +(-56.3439 - 56.3439i) q^{43} +(-418.854 - 272.546i) q^{44} +(-149.285 + 184.181i) q^{46} -280.235 q^{47} +795.127 q^{49} +(175.856 - 216.963i) q^{50} +(-259.865 + 399.365i) q^{52} +(8.15996 + 8.15996i) q^{53} +320.094 q^{55} +(347.482 - 679.689i) q^{56} +(-356.971 + 37.3558i) q^{58} +(-193.284 + 193.284i) q^{59} +(127.057 + 127.057i) q^{61} +(-82.3732 + 101.628i) q^{62} +(-299.820 - 415.033i) q^{64} -305.201i q^{65} +(-110.221 + 110.221i) q^{67} +(-138.056 + 29.2141i) q^{68} +(50.8910 + 486.313i) q^{70} +1070.35i q^{71} +1015.84i q^{73} +(-29.7547 + 3.11373i) q^{74} +(941.209 + 612.440i) q^{76} +(1490.11 - 1490.11i) q^{77} +161.531i q^{79} +(305.964 + 118.084i) q^{80} +(657.533 + 532.953i) q^{82} +(-64.4215 - 64.4215i) q^{83} +(63.9151 - 63.9151i) q^{85} +(-23.4567 - 224.152i) q^{86} +(-434.945 - 1344.84i) q^{88} -177.502 q^{89} +(-1420.77 - 1420.77i) q^{91} +(-656.045 + 138.826i) q^{92} +(-615.758 - 499.093i) q^{94} -719.285 q^{95} +559.412 q^{97} +(1747.13 + 1416.11i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 120 q^{10} - 144 q^{16} - 48 q^{19} + 72 q^{22} + 72 q^{28} - 984 q^{34} - 1272 q^{40} + 864 q^{43} - 1416 q^{46} + 2352 q^{49} - 648 q^{52} - 576 q^{55} + 1128 q^{58} + 1824 q^{61} + 3024 q^{64}+ \cdots - 11304 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.19729 + 1.78098i 0.776861 + 0.629672i
\(3\) 0 0
\(4\) 1.65621 + 7.82668i 0.207026 + 0.978335i
\(5\) −3.62348 3.62348i −0.324094 0.324094i 0.526241 0.850335i \(-0.323601\pi\)
−0.850335 + 0.526241i \(0.823601\pi\)
\(6\) 0 0
\(7\) −33.7361 −1.82158 −0.910790 0.412869i \(-0.864527\pi\)
−0.910790 + 0.412869i \(0.864527\pi\)
\(8\) −10.3000 + 20.1472i −0.455200 + 0.890389i
\(9\) 0 0
\(10\) −1.50850 14.4152i −0.0477030 0.455849i
\(11\) −44.1694 + 44.1694i −1.21069 + 1.21069i −0.239889 + 0.970800i \(0.577111\pi\)
−0.970800 + 0.239889i \(0.922889\pi\)
\(12\) 0 0
\(13\) 42.1143 + 42.1143i 0.898493 + 0.898493i 0.995303 0.0968099i \(-0.0308639\pi\)
−0.0968099 + 0.995303i \(0.530864\pi\)
\(14\) −74.1283 60.0835i −1.41511 1.14700i
\(15\) 0 0
\(16\) −58.5139 + 25.9252i −0.914280 + 0.405082i
\(17\) 17.6392i 0.251654i 0.992052 + 0.125827i \(0.0401585\pi\)
−0.992052 + 0.125827i \(0.959842\pi\)
\(18\) 0 0
\(19\) 99.2533 99.2533i 1.19844 1.19844i 0.223801 0.974635i \(-0.428153\pi\)
0.974635 0.223801i \(-0.0718465\pi\)
\(20\) 22.3586 34.3611i 0.249977 0.384168i
\(21\) 0 0
\(22\) −175.718 + 18.3883i −1.70287 + 0.178200i
\(23\) 83.8215i 0.759913i 0.925004 + 0.379956i \(0.124061\pi\)
−0.925004 + 0.379956i \(0.875939\pi\)
\(24\) 0 0
\(25\) 98.7408i 0.789926i
\(26\) 17.5327 + 167.542i 0.132248 + 1.26376i
\(27\) 0 0
\(28\) −55.8741 264.042i −0.377115 1.78212i
\(29\) −89.7300 + 89.7300i −0.574567 + 0.574567i −0.933401 0.358834i \(-0.883174\pi\)
0.358834 + 0.933401i \(0.383174\pi\)
\(30\) 0 0
\(31\) 46.2516i 0.267969i 0.990983 + 0.133984i \(0.0427772\pi\)
−0.990983 + 0.133984i \(0.957223\pi\)
\(32\) −174.745 47.2469i −0.965338 0.261005i
\(33\) 0 0
\(34\) −31.4150 + 38.7584i −0.158460 + 0.195500i
\(35\) 122.242 + 122.242i 0.590363 + 0.590363i
\(36\) 0 0
\(37\) −7.47930 + 7.47930i −0.0332321 + 0.0332321i −0.723528 0.690295i \(-0.757481\pi\)
0.690295 + 0.723528i \(0.257481\pi\)
\(38\) 394.857 41.3205i 1.68564 0.176396i
\(39\) 0 0
\(40\) 110.325 35.6811i 0.436097 0.141042i
\(41\) 299.247 1.13986 0.569932 0.821692i \(-0.306969\pi\)
0.569932 + 0.821692i \(0.306969\pi\)
\(42\) 0 0
\(43\) −56.3439 56.3439i −0.199823 0.199823i 0.600101 0.799924i \(-0.295127\pi\)
−0.799924 + 0.600101i \(0.795127\pi\)
\(44\) −418.854 272.546i −1.43510 0.933816i
\(45\) 0 0
\(46\) −149.285 + 184.181i −0.478496 + 0.590347i
\(47\) −280.235 −0.869711 −0.434855 0.900500i \(-0.643201\pi\)
−0.434855 + 0.900500i \(0.643201\pi\)
\(48\) 0 0
\(49\) 795.127 2.31816
\(50\) 175.856 216.963i 0.497395 0.613663i
\(51\) 0 0
\(52\) −259.865 + 399.365i −0.693016 + 1.06504i
\(53\) 8.15996 + 8.15996i 0.0211482 + 0.0211482i 0.717602 0.696454i \(-0.245240\pi\)
−0.696454 + 0.717602i \(0.745240\pi\)
\(54\) 0 0
\(55\) 320.094 0.784754
\(56\) 347.482 679.689i 0.829184 1.62192i
\(57\) 0 0
\(58\) −356.971 + 37.3558i −0.808148 + 0.0845699i
\(59\) −193.284 + 193.284i −0.426499 + 0.426499i −0.887434 0.460935i \(-0.847514\pi\)
0.460935 + 0.887434i \(0.347514\pi\)
\(60\) 0 0
\(61\) 127.057 + 127.057i 0.266688 + 0.266688i 0.827764 0.561076i \(-0.189612\pi\)
−0.561076 + 0.827764i \(0.689612\pi\)
\(62\) −82.3732 + 101.628i −0.168732 + 0.208174i
\(63\) 0 0
\(64\) −299.820 415.033i −0.585586 0.810610i
\(65\) 305.201i 0.582392i
\(66\) 0 0
\(67\) −110.221 + 110.221i −0.200980 + 0.200980i −0.800420 0.599440i \(-0.795390\pi\)
0.599440 + 0.800420i \(0.295390\pi\)
\(68\) −138.056 + 29.2141i −0.246202 + 0.0520990i
\(69\) 0 0
\(70\) 50.8910 + 486.313i 0.0868949 + 0.830365i
\(71\) 1070.35i 1.78911i 0.446955 + 0.894556i \(0.352508\pi\)
−0.446955 + 0.894556i \(0.647492\pi\)
\(72\) 0 0
\(73\) 1015.84i 1.62870i 0.580373 + 0.814351i \(0.302907\pi\)
−0.580373 + 0.814351i \(0.697093\pi\)
\(74\) −29.7547 + 3.11373i −0.0467421 + 0.00489140i
\(75\) 0 0
\(76\) 941.209 + 612.440i 1.42058 + 0.924365i
\(77\) 1490.11 1490.11i 2.20537 2.20537i
\(78\) 0 0
\(79\) 161.531i 0.230047i 0.993363 + 0.115023i \(0.0366943\pi\)
−0.993363 + 0.115023i \(0.963306\pi\)
\(80\) 305.964 + 118.084i 0.427597 + 0.165028i
\(81\) 0 0
\(82\) 657.533 + 532.953i 0.885517 + 0.717741i
\(83\) −64.4215 64.4215i −0.0851950 0.0851950i 0.663225 0.748420i \(-0.269187\pi\)
−0.748420 + 0.663225i \(0.769187\pi\)
\(84\) 0 0
\(85\) 63.9151 63.9151i 0.0815596 0.0815596i
\(86\) −23.4567 224.152i −0.0294117 0.281057i
\(87\) 0 0
\(88\) −434.945 1344.84i −0.526879 1.62909i
\(89\) −177.502 −0.211406 −0.105703 0.994398i \(-0.533709\pi\)
−0.105703 + 0.994398i \(0.533709\pi\)
\(90\) 0 0
\(91\) −1420.77 1420.77i −1.63668 1.63668i
\(92\) −656.045 + 138.826i −0.743450 + 0.157322i
\(93\) 0 0
\(94\) −615.758 499.093i −0.675644 0.547633i
\(95\) −719.285 −0.776811
\(96\) 0 0
\(97\) 559.412 0.585564 0.292782 0.956179i \(-0.405419\pi\)
0.292782 + 0.956179i \(0.405419\pi\)
\(98\) 1747.13 + 1416.11i 1.80088 + 1.45968i
\(99\) 0 0
\(100\) 772.813 163.535i 0.772813 0.163535i
\(101\) −850.608 850.608i −0.838006 0.838006i 0.150590 0.988596i \(-0.451883\pi\)
−0.988596 + 0.150590i \(0.951883\pi\)
\(102\) 0 0
\(103\) −757.707 −0.724845 −0.362423 0.932014i \(-0.618050\pi\)
−0.362423 + 0.932014i \(0.618050\pi\)
\(104\) −1282.26 + 414.708i −1.20900 + 0.391014i
\(105\) 0 0
\(106\) 3.39710 + 32.4626i 0.00311279 + 0.0297457i
\(107\) 364.469 364.469i 0.329295 0.329295i −0.523024 0.852318i \(-0.675196\pi\)
0.852318 + 0.523024i \(0.175196\pi\)
\(108\) 0 0
\(109\) −206.900 206.900i −0.181812 0.181812i 0.610333 0.792145i \(-0.291036\pi\)
−0.792145 + 0.610333i \(0.791036\pi\)
\(110\) 703.341 + 570.082i 0.609645 + 0.494138i
\(111\) 0 0
\(112\) 1974.03 874.618i 1.66544 0.737889i
\(113\) 1379.24i 1.14821i 0.818781 + 0.574105i \(0.194650\pi\)
−0.818781 + 0.574105i \(0.805350\pi\)
\(114\) 0 0
\(115\) 303.726 303.726i 0.246283 0.246283i
\(116\) −850.900 553.677i −0.681070 0.443169i
\(117\) 0 0
\(118\) −768.938 + 80.4667i −0.599885 + 0.0627759i
\(119\) 595.077i 0.458409i
\(120\) 0 0
\(121\) 2570.88i 1.93154i
\(122\) 52.8955 + 505.468i 0.0392535 + 0.375106i
\(123\) 0 0
\(124\) −361.996 + 76.6022i −0.262163 + 0.0554765i
\(125\) −810.720 + 810.720i −0.580104 + 0.580104i
\(126\) 0 0
\(127\) 1260.84i 0.880958i 0.897763 + 0.440479i \(0.145191\pi\)
−0.897763 + 0.440479i \(0.854809\pi\)
\(128\) 80.3725 1445.92i 0.0555000 0.998459i
\(129\) 0 0
\(130\) 543.557 670.616i 0.366716 0.452438i
\(131\) 1015.28 + 1015.28i 0.677138 + 0.677138i 0.959352 0.282214i \(-0.0910687\pi\)
−0.282214 + 0.959352i \(0.591069\pi\)
\(132\) 0 0
\(133\) −3348.43 + 3348.43i −2.18305 + 2.18305i
\(134\) −438.491 + 45.8866i −0.282686 + 0.0295821i
\(135\) 0 0
\(136\) −355.380 181.683i −0.224070 0.114553i
\(137\) 1875.46 1.16957 0.584785 0.811189i \(-0.301179\pi\)
0.584785 + 0.811189i \(0.301179\pi\)
\(138\) 0 0
\(139\) −1048.87 1048.87i −0.640031 0.640031i 0.310532 0.950563i \(-0.399493\pi\)
−0.950563 + 0.310532i \(0.899493\pi\)
\(140\) −754.293 + 1159.21i −0.455353 + 0.699794i
\(141\) 0 0
\(142\) −1906.27 + 2351.87i −1.12655 + 1.38989i
\(143\) −3720.33 −2.17559
\(144\) 0 0
\(145\) 650.270 0.372427
\(146\) −1809.19 + 2232.10i −1.02555 + 1.26527i
\(147\) 0 0
\(148\) −70.9254 46.1508i −0.0393921 0.0256323i
\(149\) −1943.41 1943.41i −1.06852 1.06852i −0.997473 0.0710521i \(-0.977364\pi\)
−0.0710521 0.997473i \(-0.522636\pi\)
\(150\) 0 0
\(151\) −1790.47 −0.964945 −0.482472 0.875911i \(-0.660261\pi\)
−0.482472 + 0.875911i \(0.660261\pi\)
\(152\) 977.368 + 3021.99i 0.521546 + 1.61260i
\(153\) 0 0
\(154\) 5928.05 620.351i 3.10192 0.324606i
\(155\) 167.592 167.592i 0.0868470 0.0868470i
\(156\) 0 0
\(157\) −872.163 872.163i −0.443351 0.443351i 0.449785 0.893137i \(-0.351500\pi\)
−0.893137 + 0.449785i \(0.851500\pi\)
\(158\) −287.685 + 354.932i −0.144854 + 0.178714i
\(159\) 0 0
\(160\) 461.986 + 804.382i 0.228270 + 0.397450i
\(161\) 2827.82i 1.38424i
\(162\) 0 0
\(163\) 541.663 541.663i 0.260284 0.260284i −0.564885 0.825169i \(-0.691080\pi\)
0.825169 + 0.564885i \(0.191080\pi\)
\(164\) 495.615 + 2342.11i 0.235982 + 1.11517i
\(165\) 0 0
\(166\) −26.8195 256.287i −0.0125398 0.119830i
\(167\) 271.228i 0.125678i −0.998024 0.0628390i \(-0.979985\pi\)
0.998024 0.0628390i \(-0.0200155\pi\)
\(168\) 0 0
\(169\) 1350.23i 0.614579i
\(170\) 254.272 26.6087i 0.114716 0.0120047i
\(171\) 0 0
\(172\) 347.669 534.303i 0.154125 0.236862i
\(173\) 1396.64 1396.64i 0.613783 0.613783i −0.330147 0.943930i \(-0.607098\pi\)
0.943930 + 0.330147i \(0.107098\pi\)
\(174\) 0 0
\(175\) 3331.13i 1.43891i
\(176\) 1439.42 3729.63i 0.616481 1.59734i
\(177\) 0 0
\(178\) −390.023 316.127i −0.164233 0.133116i
\(179\) 675.124 + 675.124i 0.281906 + 0.281906i 0.833869 0.551963i \(-0.186121\pi\)
−0.551963 + 0.833869i \(0.686121\pi\)
\(180\) 0 0
\(181\) 1306.81 1306.81i 0.536655 0.536655i −0.385890 0.922545i \(-0.626106\pi\)
0.922545 + 0.385890i \(0.126106\pi\)
\(182\) −591.487 5652.23i −0.240901 2.30204i
\(183\) 0 0
\(184\) −1688.77 863.362i −0.676618 0.345912i
\(185\) 54.2021 0.0215407
\(186\) 0 0
\(187\) −779.111 779.111i −0.304675 0.304675i
\(188\) −464.127 2193.31i −0.180053 0.850869i
\(189\) 0 0
\(190\) −1580.48 1281.03i −0.603474 0.489136i
\(191\) 1942.70 0.735961 0.367980 0.929834i \(-0.380049\pi\)
0.367980 + 0.929834i \(0.380049\pi\)
\(192\) 0 0
\(193\) 4145.80 1.54623 0.773113 0.634269i \(-0.218699\pi\)
0.773113 + 0.634269i \(0.218699\pi\)
\(194\) 1229.19 + 996.302i 0.454901 + 0.368713i
\(195\) 0 0
\(196\) 1316.90 + 6223.21i 0.479919 + 2.26793i
\(197\) 1926.84 + 1926.84i 0.696860 + 0.696860i 0.963732 0.266872i \(-0.0859902\pi\)
−0.266872 + 0.963732i \(0.585990\pi\)
\(198\) 0 0
\(199\) 3804.49 1.35524 0.677622 0.735411i \(-0.263011\pi\)
0.677622 + 0.735411i \(0.263011\pi\)
\(200\) 1989.35 + 1017.03i 0.703342 + 0.359575i
\(201\) 0 0
\(202\) −354.119 3383.95i −0.123345 1.17868i
\(203\) 3027.15 3027.15i 1.04662 1.04662i
\(204\) 0 0
\(205\) −1084.31 1084.31i −0.369423 0.369423i
\(206\) −1664.91 1349.46i −0.563104 0.456415i
\(207\) 0 0
\(208\) −3556.10 1372.45i −1.18544 0.457511i
\(209\) 8767.93i 2.90187i
\(210\) 0 0
\(211\) 2274.25 2274.25i 0.742019 0.742019i −0.230947 0.972966i \(-0.574182\pi\)
0.972966 + 0.230947i \(0.0741825\pi\)
\(212\) −50.3508 + 77.3800i −0.0163118 + 0.0250683i
\(213\) 0 0
\(214\) 1449.96 151.733i 0.463164 0.0484685i
\(215\) 408.322i 0.129523i
\(216\) 0 0
\(217\) 1560.35i 0.488126i
\(218\) −86.1353 823.107i −0.0267606 0.255724i
\(219\) 0 0
\(220\) 530.142 + 2505.27i 0.162465 + 0.767753i
\(221\) −742.861 + 742.861i −0.226110 + 0.226110i
\(222\) 0 0
\(223\) 2370.49i 0.711836i 0.934517 + 0.355918i \(0.115832\pi\)
−0.934517 + 0.355918i \(0.884168\pi\)
\(224\) 5895.21 + 1593.93i 1.75844 + 0.475441i
\(225\) 0 0
\(226\) −2456.40 + 3030.59i −0.722996 + 0.892000i
\(227\) −3494.40 3494.40i −1.02172 1.02172i −0.999759 0.0219659i \(-0.993007\pi\)
−0.0219659 0.999759i \(-0.506993\pi\)
\(228\) 0 0
\(229\) −2251.16 + 2251.16i −0.649611 + 0.649611i −0.952899 0.303288i \(-0.901916\pi\)
0.303288 + 0.952899i \(0.401916\pi\)
\(230\) 1208.30 126.445i 0.346405 0.0362501i
\(231\) 0 0
\(232\) −883.590 2732.03i −0.250045 0.773132i
\(233\) −3104.86 −0.872989 −0.436494 0.899707i \(-0.643780\pi\)
−0.436494 + 0.899707i \(0.643780\pi\)
\(234\) 0 0
\(235\) 1015.42 + 1015.42i 0.281868 + 0.281868i
\(236\) −1832.89 1192.65i −0.505556 0.328963i
\(237\) 0 0
\(238\) 1059.82 1307.56i 0.288647 0.356120i
\(239\) 5602.27 1.51624 0.758119 0.652117i \(-0.226119\pi\)
0.758119 + 0.652117i \(0.226119\pi\)
\(240\) 0 0
\(241\) −278.260 −0.0743748 −0.0371874 0.999308i \(-0.511840\pi\)
−0.0371874 + 0.999308i \(0.511840\pi\)
\(242\) 4578.68 5648.97i 1.21624 1.50054i
\(243\) 0 0
\(244\) −784.002 + 1204.87i −0.205699 + 0.316122i
\(245\) −2881.13 2881.13i −0.751300 0.751300i
\(246\) 0 0
\(247\) 8359.97 2.15357
\(248\) −931.840 476.391i −0.238596 0.121979i
\(249\) 0 0
\(250\) −3225.27 + 337.513i −0.815936 + 0.0853849i
\(251\) 4432.83 4432.83i 1.11473 1.11473i 0.122231 0.992502i \(-0.460995\pi\)
0.992502 0.122231i \(-0.0390048\pi\)
\(252\) 0 0
\(253\) −3702.35 3702.35i −0.920019 0.920019i
\(254\) −2245.54 + 2770.44i −0.554715 + 0.684382i
\(255\) 0 0
\(256\) 2751.76 3033.98i 0.671817 0.740717i
\(257\) 3828.87i 0.929332i 0.885486 + 0.464666i \(0.153826\pi\)
−0.885486 + 0.464666i \(0.846174\pi\)
\(258\) 0 0
\(259\) 252.323 252.323i 0.0605350 0.0605350i
\(260\) 2388.71 505.476i 0.569775 0.120570i
\(261\) 0 0
\(262\) 422.673 + 4039.05i 0.0996672 + 0.952417i
\(263\) 2299.83i 0.539216i 0.962970 + 0.269608i \(0.0868941\pi\)
−0.962970 + 0.269608i \(0.913106\pi\)
\(264\) 0 0
\(265\) 59.1349i 0.0137080i
\(266\) −13321.0 + 1393.99i −3.07053 + 0.321320i
\(267\) 0 0
\(268\) −1045.22 680.118i −0.238234 0.155018i
\(269\) −3350.78 + 3350.78i −0.759481 + 0.759481i −0.976228 0.216747i \(-0.930455\pi\)
0.216747 + 0.976228i \(0.430455\pi\)
\(270\) 0 0
\(271\) 3778.66i 0.847000i 0.905896 + 0.423500i \(0.139199\pi\)
−0.905896 + 0.423500i \(0.860801\pi\)
\(272\) −457.299 1032.14i −0.101941 0.230083i
\(273\) 0 0
\(274\) 4120.93 + 3340.15i 0.908593 + 0.736445i
\(275\) 4361.32 + 4361.32i 0.956356 + 0.956356i
\(276\) 0 0
\(277\) −161.818 + 161.818i −0.0351000 + 0.0351000i −0.724439 0.689339i \(-0.757901\pi\)
0.689339 + 0.724439i \(0.257901\pi\)
\(278\) −436.660 4172.71i −0.0942054 0.900224i
\(279\) 0 0
\(280\) −3721.93 + 1203.74i −0.794386 + 0.256920i
\(281\) −4259.63 −0.904299 −0.452149 0.891942i \(-0.649343\pi\)
−0.452149 + 0.891942i \(0.649343\pi\)
\(282\) 0 0
\(283\) −769.856 769.856i −0.161707 0.161707i 0.621615 0.783323i \(-0.286477\pi\)
−0.783323 + 0.621615i \(0.786477\pi\)
\(284\) −8377.28 + 1772.72i −1.75035 + 0.370393i
\(285\) 0 0
\(286\) −8174.66 6625.84i −1.69013 1.36991i
\(287\) −10095.4 −2.07636
\(288\) 0 0
\(289\) 4601.86 0.936670
\(290\) 1428.83 + 1158.12i 0.289324 + 0.234507i
\(291\) 0 0
\(292\) −7950.66 + 1682.44i −1.59342 + 0.337184i
\(293\) 4375.88 + 4375.88i 0.872497 + 0.872497i 0.992744 0.120247i \(-0.0383685\pi\)
−0.120247 + 0.992744i \(0.538369\pi\)
\(294\) 0 0
\(295\) 1400.72 0.276451
\(296\) −73.6502 227.724i −0.0144623 0.0447168i
\(297\) 0 0
\(298\) −809.066 7731.41i −0.157275 1.50292i
\(299\) −3530.09 + 3530.09i −0.682776 + 0.682776i
\(300\) 0 0
\(301\) 1900.83 + 1900.83i 0.363993 + 0.363993i
\(302\) −3934.20 3188.80i −0.749628 0.607599i
\(303\) 0 0
\(304\) −3234.54 + 8380.87i −0.610242 + 1.58117i
\(305\) 920.776i 0.172864i
\(306\) 0 0
\(307\) −1892.89 + 1892.89i −0.351899 + 0.351899i −0.860816 0.508917i \(-0.830046\pi\)
0.508917 + 0.860816i \(0.330046\pi\)
\(308\) 14130.5 + 9194.66i 2.61416 + 1.70102i
\(309\) 0 0
\(310\) 666.726 69.7706i 0.122153 0.0127829i
\(311\) 4969.36i 0.906067i −0.891494 0.453033i \(-0.850342\pi\)
0.891494 0.453033i \(-0.149658\pi\)
\(312\) 0 0
\(313\) 431.319i 0.0778901i −0.999241 0.0389450i \(-0.987600\pi\)
0.999241 0.0389450i \(-0.0123997\pi\)
\(314\) −363.093 3469.70i −0.0652564 0.623588i
\(315\) 0 0
\(316\) −1264.26 + 267.530i −0.225063 + 0.0476257i
\(317\) −4151.14 + 4151.14i −0.735493 + 0.735493i −0.971702 0.236209i \(-0.924095\pi\)
0.236209 + 0.971702i \(0.424095\pi\)
\(318\) 0 0
\(319\) 7926.65i 1.39125i
\(320\) −417.470 + 2590.25i −0.0729291 + 0.452499i
\(321\) 0 0
\(322\) 5036.29 6213.54i 0.871619 1.07536i
\(323\) 1750.74 + 1750.74i 0.301591 + 0.301591i
\(324\) 0 0
\(325\) 4158.40 4158.40i 0.709743 0.709743i
\(326\) 2154.88 225.501i 0.366098 0.0383109i
\(327\) 0 0
\(328\) −3082.24 + 6028.98i −0.518867 + 1.01492i
\(329\) 9454.03 1.58425
\(330\) 0 0
\(331\) 3350.31 + 3350.31i 0.556343 + 0.556343i 0.928264 0.371921i \(-0.121301\pi\)
−0.371921 + 0.928264i \(0.621301\pi\)
\(332\) 397.511 610.902i 0.0657117 0.100987i
\(333\) 0 0
\(334\) 483.051 595.967i 0.0791359 0.0976343i
\(335\) 798.770 0.130273
\(336\) 0 0
\(337\) −9901.48 −1.60050 −0.800249 0.599668i \(-0.795299\pi\)
−0.800249 + 0.599668i \(0.795299\pi\)
\(338\) −2404.74 + 2966.86i −0.386983 + 0.477443i
\(339\) 0 0
\(340\) 606.100 + 394.386i 0.0966776 + 0.0629077i
\(341\) −2042.90 2042.90i −0.324427 0.324427i
\(342\) 0 0
\(343\) −15253.0 −2.40113
\(344\) 1715.52 554.830i 0.268879 0.0869606i
\(345\) 0 0
\(346\) 5556.21 581.439i 0.863306 0.0903420i
\(347\) −1244.90 + 1244.90i −0.192593 + 0.192593i −0.796816 0.604222i \(-0.793484\pi\)
0.604222 + 0.796816i \(0.293484\pi\)
\(348\) 0 0
\(349\) 84.2939 + 84.2939i 0.0129288 + 0.0129288i 0.713542 0.700613i \(-0.247090\pi\)
−0.700613 + 0.713542i \(0.747090\pi\)
\(350\) −5932.69 + 7319.48i −0.906044 + 1.11784i
\(351\) 0 0
\(352\) 9805.24 5631.51i 1.48472 0.852729i
\(353\) 366.806i 0.0553063i −0.999618 0.0276531i \(-0.991197\pi\)
0.999618 0.0276531i \(-0.00880339\pi\)
\(354\) 0 0
\(355\) 3878.39 3878.39i 0.579840 0.579840i
\(356\) −293.980 1389.25i −0.0437665 0.206826i
\(357\) 0 0
\(358\) 281.063 + 2685.83i 0.0414934 + 0.396510i
\(359\) 6841.31i 1.00577i −0.864354 0.502884i \(-0.832272\pi\)
0.864354 0.502884i \(-0.167728\pi\)
\(360\) 0 0
\(361\) 12843.5i 1.87250i
\(362\) 5198.85 544.042i 0.754822 0.0789896i
\(363\) 0 0
\(364\) 8766.85 13473.1i 1.26238 1.94005i
\(365\) 3680.88 3680.88i 0.527852 0.527852i
\(366\) 0 0
\(367\) 1916.32i 0.272564i 0.990670 + 0.136282i \(0.0435153\pi\)
−0.990670 + 0.136282i \(0.956485\pi\)
\(368\) −2173.09 4904.73i −0.307827 0.694774i
\(369\) 0 0
\(370\) 119.098 + 96.5330i 0.0167341 + 0.0135636i
\(371\) −275.286 275.286i −0.0385232 0.0385232i
\(372\) 0 0
\(373\) −7158.65 + 7158.65i −0.993728 + 0.993728i −0.999980 0.00625218i \(-0.998010\pi\)
0.00625218 + 0.999980i \(0.498010\pi\)
\(374\) −324.354 3099.52i −0.0448448 0.428536i
\(375\) 0 0
\(376\) 2886.42 5645.94i 0.395892 0.774381i
\(377\) −7557.84 −1.03249
\(378\) 0 0
\(379\) 5108.00 + 5108.00i 0.692297 + 0.692297i 0.962737 0.270440i \(-0.0871692\pi\)
−0.270440 + 0.962737i \(0.587169\pi\)
\(380\) −1191.29 5629.61i −0.160820 0.759982i
\(381\) 0 0
\(382\) 4268.68 + 3459.91i 0.571739 + 0.463414i
\(383\) 10334.0 1.37870 0.689349 0.724429i \(-0.257897\pi\)
0.689349 + 0.724429i \(0.257897\pi\)
\(384\) 0 0
\(385\) −10798.7 −1.42949
\(386\) 9109.55 + 7383.60i 1.20120 + 0.973615i
\(387\) 0 0
\(388\) 926.503 + 4378.34i 0.121227 + 0.572878i
\(389\) −4119.25 4119.25i −0.536900 0.536900i 0.385717 0.922617i \(-0.373954\pi\)
−0.922617 + 0.385717i \(0.873954\pi\)
\(390\) 0 0
\(391\) −1478.54 −0.191235
\(392\) −8189.81 + 16019.6i −1.05522 + 2.06406i
\(393\) 0 0
\(394\) 802.167 + 7665.49i 0.102570 + 0.980156i
\(395\) 585.306 585.306i 0.0745568 0.0745568i
\(396\) 0 0
\(397\) 6024.12 + 6024.12i 0.761566 + 0.761566i 0.976605 0.215039i \(-0.0689880\pi\)
−0.215039 + 0.976605i \(0.568988\pi\)
\(398\) 8359.60 + 6775.73i 1.05284 + 0.853359i
\(399\) 0 0
\(400\) 2559.88 + 5777.71i 0.319985 + 0.722214i
\(401\) 11848.6i 1.47554i −0.675050 0.737772i \(-0.735878\pi\)
0.675050 0.737772i \(-0.264122\pi\)
\(402\) 0 0
\(403\) −1947.85 + 1947.85i −0.240768 + 0.240768i
\(404\) 5248.65 8066.22i 0.646362 0.993341i
\(405\) 0 0
\(406\) 12042.8 1260.24i 1.47211 0.154051i
\(407\) 660.713i 0.0804676i
\(408\) 0 0
\(409\) 12692.3i 1.53446i 0.641374 + 0.767228i \(0.278365\pi\)
−0.641374 + 0.767228i \(0.721635\pi\)
\(410\) −451.414 4313.70i −0.0543750 0.519606i
\(411\) 0 0
\(412\) −1254.92 5930.33i −0.150062 0.709142i
\(413\) 6520.66 6520.66i 0.776903 0.776903i
\(414\) 0 0
\(415\) 466.860i 0.0552223i
\(416\) −5369.49 9349.03i −0.632838 1.10186i
\(417\) 0 0
\(418\) −15615.5 + 19265.7i −1.82722 + 2.25435i
\(419\) −9974.97 9974.97i −1.16303 1.16303i −0.983809 0.179220i \(-0.942643\pi\)
−0.179220 0.983809i \(-0.557357\pi\)
\(420\) 0 0
\(421\) 6979.64 6979.64i 0.807997 0.807997i −0.176333 0.984331i \(-0.556424\pi\)
0.984331 + 0.176333i \(0.0564236\pi\)
\(422\) 9047.61 946.801i 1.04367 0.109217i
\(423\) 0 0
\(424\) −248.448 + 80.3528i −0.0284568 + 0.00920348i
\(425\) 1741.70 0.198788
\(426\) 0 0
\(427\) −4286.41 4286.41i −0.485794 0.485794i
\(428\) 3456.22 + 2248.95i 0.390333 + 0.253988i
\(429\) 0 0
\(430\) −727.214 + 897.204i −0.0815567 + 0.100621i
\(431\) 6433.80 0.719038 0.359519 0.933138i \(-0.382941\pi\)
0.359519 + 0.933138i \(0.382941\pi\)
\(432\) 0 0
\(433\) 2276.81 0.252694 0.126347 0.991986i \(-0.459675\pi\)
0.126347 + 0.991986i \(0.459675\pi\)
\(434\) 2778.95 3428.55i 0.307360 0.379206i
\(435\) 0 0
\(436\) 1276.67 1962.01i 0.140233 0.215512i
\(437\) 8319.57 + 8319.57i 0.910707 + 0.910707i
\(438\) 0 0
\(439\) 8874.90 0.964866 0.482433 0.875933i \(-0.339753\pi\)
0.482433 + 0.875933i \(0.339753\pi\)
\(440\) −3296.97 + 6449.00i −0.357220 + 0.698736i
\(441\) 0 0
\(442\) −2955.31 + 309.263i −0.318031 + 0.0332808i
\(443\) −801.170 + 801.170i −0.0859249 + 0.0859249i −0.748763 0.662838i \(-0.769352\pi\)
0.662838 + 0.748763i \(0.269352\pi\)
\(444\) 0 0
\(445\) 643.173 + 643.173i 0.0685154 + 0.0685154i
\(446\) −4221.79 + 5208.66i −0.448224 + 0.552998i
\(447\) 0 0
\(448\) 10114.8 + 14001.6i 1.06669 + 1.47659i
\(449\) 453.819i 0.0476995i 0.999716 + 0.0238497i \(0.00759232\pi\)
−0.999716 + 0.0238497i \(0.992408\pi\)
\(450\) 0 0
\(451\) −13217.6 + 13217.6i −1.38002 + 1.38002i
\(452\) −10794.9 + 2284.31i −1.12334 + 0.237710i
\(453\) 0 0
\(454\) −1454.76 13901.7i −0.150387 1.43709i
\(455\) 10296.3i 1.06087i
\(456\) 0 0
\(457\) 17430.4i 1.78416i 0.451876 + 0.892081i \(0.350755\pi\)
−0.451876 + 0.892081i \(0.649245\pi\)
\(458\) −8955.74 + 937.188i −0.913700 + 0.0956156i
\(459\) 0 0
\(460\) 2880.20 + 1874.13i 0.291934 + 0.189960i
\(461\) −2812.24 + 2812.24i −0.284119 + 0.284119i −0.834749 0.550630i \(-0.814387\pi\)
0.550630 + 0.834749i \(0.314387\pi\)
\(462\) 0 0
\(463\) 8580.37i 0.861260i −0.902528 0.430630i \(-0.858291\pi\)
0.902528 0.430630i \(-0.141709\pi\)
\(464\) 2924.19 7576.73i 0.292569 0.758062i
\(465\) 0 0
\(466\) −6822.30 5529.70i −0.678191 0.549697i
\(467\) −4028.61 4028.61i −0.399190 0.399190i 0.478757 0.877947i \(-0.341087\pi\)
−0.877947 + 0.478757i \(0.841087\pi\)
\(468\) 0 0
\(469\) 3718.45 3718.45i 0.366102 0.366102i
\(470\) 422.734 + 4039.64i 0.0414878 + 0.396457i
\(471\) 0 0
\(472\) −1903.31 5884.96i −0.185608 0.573893i
\(473\) 4977.36 0.483846
\(474\) 0 0
\(475\) −9800.35 9800.35i −0.946676 0.946676i
\(476\) 4657.48 985.572i 0.448477 0.0949025i
\(477\) 0 0
\(478\) 12309.8 + 9977.54i 1.17791 + 0.954732i
\(479\) −7073.65 −0.674746 −0.337373 0.941371i \(-0.609538\pi\)
−0.337373 + 0.941371i \(0.609538\pi\)
\(480\) 0 0
\(481\) −629.971 −0.0597177
\(482\) −611.420 495.577i −0.0577789 0.0468317i
\(483\) 0 0
\(484\) 20121.4 4257.91i 1.88969 0.399879i
\(485\) −2027.02 2027.02i −0.189778 0.189778i
\(486\) 0 0
\(487\) −16066.6 −1.49497 −0.747483 0.664281i \(-0.768738\pi\)
−0.747483 + 0.664281i \(0.768738\pi\)
\(488\) −3868.53 + 1251.16i −0.358853 + 0.116060i
\(489\) 0 0
\(490\) −1199.45 11461.9i −0.110583 1.05673i
\(491\) −4947.42 + 4947.42i −0.454733 + 0.454733i −0.896922 0.442189i \(-0.854202\pi\)
0.442189 + 0.896922i \(0.354202\pi\)
\(492\) 0 0
\(493\) −1582.76 1582.76i −0.144592 0.144592i
\(494\) 18369.3 + 14889.0i 1.67303 + 1.35604i
\(495\) 0 0
\(496\) −1199.08 2706.36i −0.108549 0.244998i
\(497\) 36109.4i 3.25901i
\(498\) 0 0
\(499\) −10229.8 + 10229.8i −0.917733 + 0.917733i −0.996864 0.0791313i \(-0.974785\pi\)
0.0791313 + 0.996864i \(0.474785\pi\)
\(500\) −7687.97 5002.53i −0.687633 0.447440i
\(501\) 0 0
\(502\) 17635.0 1845.45i 1.56791 0.164076i
\(503\) 6091.42i 0.539966i 0.962865 + 0.269983i \(0.0870181\pi\)
−0.962865 + 0.269983i \(0.912982\pi\)
\(504\) 0 0
\(505\) 6164.32i 0.543185i
\(506\) −1541.34 14729.0i −0.135417 1.29404i
\(507\) 0 0
\(508\) −9868.21 + 2088.22i −0.861872 + 0.182381i
\(509\) 10933.5 10933.5i 0.952097 0.952097i −0.0468068 0.998904i \(-0.514904\pi\)
0.998904 + 0.0468068i \(0.0149045\pi\)
\(510\) 0 0
\(511\) 34270.6i 2.96681i
\(512\) 11449.9 1765.70i 0.988317 0.152409i
\(513\) 0 0
\(514\) −6819.15 + 8413.15i −0.585174 + 0.721962i
\(515\) 2745.53 + 2745.53i 0.234918 + 0.234918i
\(516\) 0 0
\(517\) 12377.8 12377.8i 1.05295 1.05295i
\(518\) 1003.81 105.045i 0.0851445 0.00891008i
\(519\) 0 0
\(520\) 6148.94 + 3143.57i 0.518556 + 0.265105i
\(521\) −8966.41 −0.753984 −0.376992 0.926217i \(-0.623042\pi\)
−0.376992 + 0.926217i \(0.623042\pi\)
\(522\) 0 0
\(523\) 14085.5 + 14085.5i 1.17766 + 1.17766i 0.980340 + 0.197318i \(0.0632230\pi\)
0.197318 + 0.980340i \(0.436777\pi\)
\(524\) −6264.73 + 9627.75i −0.522283 + 0.802653i
\(525\) 0 0
\(526\) −4095.96 + 5053.41i −0.339529 + 0.418896i
\(527\) −815.838 −0.0674354
\(528\) 0 0
\(529\) 5140.95 0.422532
\(530\) 105.318 129.937i 0.00863156 0.0106492i
\(531\) 0 0
\(532\) −31752.8 20661.4i −2.58770 1.68380i
\(533\) 12602.6 + 12602.6i 1.02416 + 1.02416i
\(534\) 0 0
\(535\) −2641.29 −0.213445
\(536\) −1085.37 3355.93i −0.0874645 0.270437i
\(537\) 0 0
\(538\) −13330.3 + 1394.97i −1.06824 + 0.111787i
\(539\) −35120.3 + 35120.3i −2.80657 + 2.80657i
\(540\) 0 0
\(541\) 3398.59 + 3398.59i 0.270087 + 0.270087i 0.829135 0.559048i \(-0.188833\pi\)
−0.559048 + 0.829135i \(0.688833\pi\)
\(542\) −6729.72 + 8302.82i −0.533332 + 0.658001i
\(543\) 0 0
\(544\) 833.395 3082.35i 0.0656829 0.242931i
\(545\) 1499.40i 0.117848i
\(546\) 0 0
\(547\) 15912.7 15912.7i 1.24383 1.24383i 0.285438 0.958397i \(-0.407861\pi\)
0.958397 0.285438i \(-0.0921389\pi\)
\(548\) 3106.15 + 14678.6i 0.242131 + 1.14423i
\(549\) 0 0
\(550\) 1815.68 + 17350.6i 0.140765 + 1.34515i
\(551\) 17812.0i 1.37716i
\(552\) 0 0
\(553\) 5449.45i 0.419049i
\(554\) −643.757 + 67.3669i −0.0493693 + 0.00516633i
\(555\) 0 0
\(556\) 6472.04 9946.35i 0.493662 0.758668i
\(557\) −12309.2 + 12309.2i −0.936371 + 0.936371i −0.998093 0.0617225i \(-0.980341\pi\)
0.0617225 + 0.998093i \(0.480341\pi\)
\(558\) 0 0
\(559\) 4745.77i 0.359078i
\(560\) −10322.0 3983.72i −0.778903 0.300612i
\(561\) 0 0
\(562\) −9359.65 7586.32i −0.702515 0.569412i
\(563\) 13010.7 + 13010.7i 0.973955 + 0.973955i 0.999669 0.0257144i \(-0.00818604\pi\)
−0.0257144 + 0.999669i \(0.508186\pi\)
\(564\) 0 0
\(565\) 4997.64 4997.64i 0.372128 0.372128i
\(566\) −320.501 3062.70i −0.0238015 0.227447i
\(567\) 0 0
\(568\) −21564.5 11024.6i −1.59301 0.814404i
\(569\) 20663.0 1.52238 0.761192 0.648527i \(-0.224615\pi\)
0.761192 + 0.648527i \(0.224615\pi\)
\(570\) 0 0
\(571\) 6847.53 + 6847.53i 0.501857 + 0.501857i 0.912015 0.410158i \(-0.134526\pi\)
−0.410158 + 0.912015i \(0.634526\pi\)
\(572\) −6161.64 29117.8i −0.450404 2.12846i
\(573\) 0 0
\(574\) −22182.6 17979.8i −1.61304 1.30742i
\(575\) 8276.60 0.600275
\(576\) 0 0
\(577\) −12587.4 −0.908178 −0.454089 0.890956i \(-0.650035\pi\)
−0.454089 + 0.890956i \(0.650035\pi\)
\(578\) 10111.6 + 8195.83i 0.727663 + 0.589795i
\(579\) 0 0
\(580\) 1076.98 + 5089.46i 0.0771022 + 0.364359i
\(581\) 2173.33 + 2173.33i 0.155189 + 0.155189i
\(582\) 0 0
\(583\) −720.841 −0.0512079
\(584\) −20466.4 10463.2i −1.45018 0.741385i
\(585\) 0 0
\(586\) 1821.74 + 17408.5i 0.128422 + 1.22720i
\(587\) 10285.9 10285.9i 0.723241 0.723241i −0.246023 0.969264i \(-0.579124\pi\)
0.969264 + 0.246023i \(0.0791238\pi\)
\(588\) 0 0
\(589\) 4590.62 + 4590.62i 0.321143 + 0.321143i
\(590\) 3077.80 + 2494.66i 0.214764 + 0.174074i
\(591\) 0 0
\(592\) 243.741 631.546i 0.0169218 0.0438452i
\(593\) 19189.3i 1.32886i 0.747353 + 0.664428i \(0.231325\pi\)
−0.747353 + 0.664428i \(0.768675\pi\)
\(594\) 0 0
\(595\) −2156.25 + 2156.25i −0.148567 + 0.148567i
\(596\) 11991.8 18429.1i 0.824163 1.26659i
\(597\) 0 0
\(598\) −14043.7 + 1469.62i −0.960348 + 0.100497i
\(599\) 25709.1i 1.75366i −0.480796 0.876832i \(-0.659652\pi\)
0.480796 0.876832i \(-0.340348\pi\)
\(600\) 0 0
\(601\) 6062.56i 0.411476i −0.978607 0.205738i \(-0.934041\pi\)
0.978607 0.205738i \(-0.0659595\pi\)
\(602\) 791.339 + 7562.02i 0.0535757 + 0.511968i
\(603\) 0 0
\(604\) −2965.40 14013.5i −0.199769 0.944040i
\(605\) −9315.52 + 9315.52i −0.625999 + 0.625999i
\(606\) 0 0
\(607\) 21062.9i 1.40843i 0.709989 + 0.704213i \(0.248700\pi\)
−0.709989 + 0.704213i \(0.751300\pi\)
\(608\) −22033.4 + 12654.6i −1.46969 + 0.844098i
\(609\) 0 0
\(610\) 1639.89 2023.22i 0.108848 0.134291i
\(611\) −11801.9 11801.9i −0.781429 0.781429i
\(612\) 0 0
\(613\) 5955.84 5955.84i 0.392421 0.392421i −0.483128 0.875550i \(-0.660500\pi\)
0.875550 + 0.483128i \(0.160500\pi\)
\(614\) −7530.43 + 788.034i −0.494957 + 0.0517956i
\(615\) 0 0
\(616\) 14673.4 + 45369.6i 0.959752 + 2.96752i
\(617\) −28289.5 −1.84586 −0.922929 0.384970i \(-0.874212\pi\)
−0.922929 + 0.384970i \(0.874212\pi\)
\(618\) 0 0
\(619\) 9943.57 + 9943.57i 0.645664 + 0.645664i 0.951942 0.306278i \(-0.0990838\pi\)
−0.306278 + 0.951942i \(0.599084\pi\)
\(620\) 1589.25 + 1034.12i 0.102945 + 0.0669859i
\(621\) 0 0
\(622\) 8850.35 10919.2i 0.570525 0.703888i
\(623\) 5988.22 0.385093
\(624\) 0 0
\(625\) −6467.35 −0.413910
\(626\) 768.171 947.735i 0.0490452 0.0605098i
\(627\) 0 0
\(628\) 5381.66 8270.62i 0.341961 0.525532i
\(629\) −131.928 131.928i −0.00836301 0.00836301i
\(630\) 0 0
\(631\) 9728.67 0.613775 0.306888 0.951746i \(-0.400712\pi\)
0.306888 + 0.951746i \(0.400712\pi\)
\(632\) −3254.41 1663.77i −0.204831 0.104717i
\(633\) 0 0
\(634\) −16514.4 + 1728.17i −1.03450 + 0.108256i
\(635\) 4568.64 4568.64i 0.285513 0.285513i
\(636\) 0 0
\(637\) 33486.2 + 33486.2i 2.08285 + 2.08285i
\(638\) 14117.2 17417.2i 0.876028 1.08080i
\(639\) 0 0
\(640\) −5530.50 + 4948.04i −0.341581 + 0.305607i
\(641\) 445.753i 0.0274667i −0.999906 0.0137334i \(-0.995628\pi\)
0.999906 0.0137334i \(-0.00437160\pi\)
\(642\) 0 0
\(643\) 879.050 879.050i 0.0539134 0.0539134i −0.679636 0.733549i \(-0.737862\pi\)
0.733549 + 0.679636i \(0.237862\pi\)
\(644\) 22132.4 4683.45i 1.35425 0.286574i
\(645\) 0 0
\(646\) 728.858 + 6964.95i 0.0443909 + 0.424198i
\(647\) 4067.41i 0.247150i 0.992335 + 0.123575i \(0.0394360\pi\)
−0.992335 + 0.123575i \(0.960564\pi\)
\(648\) 0 0
\(649\) 17074.5i 1.03272i
\(650\) 16543.3 1731.20i 0.998278 0.104466i
\(651\) 0 0
\(652\) 5136.53 + 3342.32i 0.308531 + 0.200760i
\(653\) 595.450 595.450i 0.0356842 0.0356842i −0.689040 0.724724i \(-0.741967\pi\)
0.724724 + 0.689040i \(0.241967\pi\)
\(654\) 0 0
\(655\) 7357.66i 0.438912i
\(656\) −17510.1 + 7758.04i −1.04216 + 0.461739i
\(657\) 0 0
\(658\) 20773.3 + 16837.5i 1.23074 + 0.997557i
\(659\) −9075.08 9075.08i −0.536441 0.536441i 0.386041 0.922482i \(-0.373842\pi\)
−0.922482 + 0.386041i \(0.873842\pi\)
\(660\) 0 0
\(661\) 1351.64 1351.64i 0.0795353 0.0795353i −0.666220 0.745755i \(-0.732089\pi\)
0.745755 + 0.666220i \(0.232089\pi\)
\(662\) 1394.78 + 13328.4i 0.0818875 + 0.782515i
\(663\) 0 0
\(664\) 1961.46 634.372i 0.114637 0.0370759i
\(665\) 24265.9 1.41502
\(666\) 0 0
\(667\) −7521.31 7521.31i −0.436621 0.436621i
\(668\) 2122.81 449.210i 0.122955 0.0260186i
\(669\) 0 0
\(670\) 1755.13 + 1422.59i 0.101204 + 0.0820293i
\(671\) −11224.1 −0.645753
\(672\) 0 0
\(673\) −10501.3 −0.601482 −0.300741 0.953706i \(-0.597234\pi\)
−0.300741 + 0.953706i \(0.597234\pi\)
\(674\) −21756.5 17634.3i −1.24336 1.00779i
\(675\) 0 0
\(676\) −10567.8 + 2236.26i −0.601265 + 0.127234i
\(677\) −10590.4 10590.4i −0.601215 0.601215i 0.339420 0.940635i \(-0.389769\pi\)
−0.940635 + 0.339420i \(0.889769\pi\)
\(678\) 0 0
\(679\) −18872.4 −1.06665
\(680\) 629.385 + 1946.04i 0.0354939 + 0.109746i
\(681\) 0 0
\(682\) −850.488 8127.24i −0.0477520 0.456317i
\(683\) −2888.12 + 2888.12i −0.161802 + 0.161802i −0.783365 0.621563i \(-0.786498\pi\)
0.621563 + 0.783365i \(0.286498\pi\)
\(684\) 0 0
\(685\) −6795.68 6795.68i −0.379050 0.379050i
\(686\) −33515.4 27165.4i −1.86534 1.51192i
\(687\) 0 0
\(688\) 4757.64 + 1836.18i 0.263638 + 0.101749i
\(689\) 687.302i 0.0380031i
\(690\) 0 0
\(691\) 12657.6 12657.6i 0.696844 0.696844i −0.266885 0.963728i \(-0.585994\pi\)
0.963728 + 0.266885i \(0.0859943\pi\)
\(692\) 13244.2 + 8617.92i 0.727555 + 0.473416i
\(693\) 0 0
\(694\) −4952.57 + 518.269i −0.270889 + 0.0283476i
\(695\) 7601.14i 0.414860i
\(696\) 0 0
\(697\) 5278.46i 0.286852i
\(698\) 35.0927 + 335.344i 0.00190298 + 0.0181848i
\(699\) 0 0
\(700\) −26071.7 + 5517.05i −1.40774 + 0.297893i
\(701\) 18873.8 18873.8i 1.01691 1.01691i 0.0170555 0.999855i \(-0.494571\pi\)
0.999855 0.0170555i \(-0.00542920\pi\)
\(702\) 0 0
\(703\) 1484.69i 0.0796531i
\(704\) 31574.6 + 5088.87i 1.69036 + 0.272435i
\(705\) 0 0
\(706\) 653.275 805.981i 0.0348248 0.0429653i
\(707\) 28696.2 + 28696.2i 1.52650 + 1.52650i
\(708\) 0 0
\(709\) −21572.6 + 21572.6i −1.14270 + 1.14270i −0.154747 + 0.987954i \(0.549456\pi\)
−0.987954 + 0.154747i \(0.950544\pi\)
\(710\) 15429.3 1614.62i 0.815565 0.0853461i
\(711\) 0 0
\(712\) 1828.27 3576.16i 0.0962320 0.188234i
\(713\) −3876.88 −0.203633
\(714\) 0 0
\(715\) 13480.5 + 13480.5i 0.705096 + 0.705096i
\(716\) −4165.84 + 6402.13i −0.217437 + 0.334160i
\(717\) 0 0
\(718\) 12184.2 15032.4i 0.633304 0.781341i
\(719\) 29101.6 1.50947 0.754733 0.656032i \(-0.227766\pi\)
0.754733 + 0.656032i \(0.227766\pi\)
\(720\) 0 0
\(721\) 25562.1 1.32036
\(722\) 22874.0 28220.9i 1.17906 1.45467i
\(723\) 0 0
\(724\) 12392.3 + 8063.64i 0.636130 + 0.413927i
\(725\) 8860.02 + 8860.02i 0.453866 + 0.453866i
\(726\) 0 0
\(727\) 23683.7 1.20822 0.604112 0.796899i \(-0.293528\pi\)
0.604112 + 0.796899i \(0.293528\pi\)
\(728\) 43258.6 13990.7i 2.20230 0.712264i
\(729\) 0 0
\(730\) 14643.6 1532.40i 0.742441 0.0776940i
\(731\) 993.859 993.859i 0.0502862 0.0502862i
\(732\) 0 0
\(733\) −1650.17 1650.17i −0.0831521 0.0831521i 0.664307 0.747460i \(-0.268727\pi\)
−0.747460 + 0.664307i \(0.768727\pi\)
\(734\) −3412.92 + 4210.71i −0.171626 + 0.211744i
\(735\) 0 0
\(736\) 3960.31 14647.4i 0.198341 0.733573i
\(737\) 9736.83i 0.486650i
\(738\) 0 0
\(739\) −9966.72 + 9966.72i −0.496119 + 0.496119i −0.910227 0.414109i \(-0.864093\pi\)
0.414109 + 0.910227i \(0.364093\pi\)
\(740\) 89.7701 + 424.223i 0.00445948 + 0.0210740i
\(741\) 0 0
\(742\) −114.605 1095.16i −0.00567019 0.0541842i
\(743\) 13180.6i 0.650806i −0.945576 0.325403i \(-0.894500\pi\)
0.945576 0.325403i \(-0.105500\pi\)
\(744\) 0 0
\(745\) 14083.8i 0.692605i
\(746\) −28479.1 + 2980.24i −1.39771 + 0.146266i
\(747\) 0 0
\(748\) 4807.49 7388.23i 0.234999 0.361150i
\(749\) −12295.8 + 12295.8i −0.599837 + 0.599837i
\(750\) 0 0
\(751\) 18926.8i 0.919641i −0.888012 0.459821i \(-0.847914\pi\)
0.888012 0.459821i \(-0.152086\pi\)
\(752\) 16397.6 7265.15i 0.795159 0.352304i
\(753\) 0 0
\(754\) −16606.8 13460.4i −0.802101 0.650130i
\(755\) 6487.74 + 6487.74i 0.312733 + 0.312733i
\(756\) 0 0
\(757\) 23156.4 23156.4i 1.11180 1.11180i 0.118896 0.992907i \(-0.462065\pi\)
0.992907 0.118896i \(-0.0379354\pi\)
\(758\) 2126.53 + 20321.0i 0.101898 + 0.973738i
\(759\) 0 0
\(760\) 7408.63 14491.6i 0.353605 0.691664i
\(761\) −6699.86 −0.319146 −0.159573 0.987186i \(-0.551012\pi\)
−0.159573 + 0.987186i \(0.551012\pi\)
\(762\) 0 0
\(763\) 6980.02 + 6980.02i 0.331184 + 0.331184i
\(764\) 3217.51 + 15204.9i 0.152363 + 0.720017i
\(765\) 0 0
\(766\) 22706.8 + 18404.6i 1.07106 + 0.868128i
\(767\) −16280.1 −0.766413
\(768\) 0 0
\(769\) −13009.6 −0.610064 −0.305032 0.952342i \(-0.598667\pi\)
−0.305032 + 0.952342i \(0.598667\pi\)
\(770\) −23728.0 19232.4i −1.11052 0.900112i
\(771\) 0 0
\(772\) 6866.32 + 32447.9i 0.320109 + 1.51273i
\(773\) −991.579 991.579i −0.0461379 0.0461379i 0.683661 0.729799i \(-0.260387\pi\)
−0.729799 + 0.683661i \(0.760387\pi\)
\(774\) 0 0
\(775\) 4566.92 0.211675
\(776\) −5761.94 + 11270.6i −0.266549 + 0.521379i
\(777\) 0 0
\(778\) −1714.90 16387.5i −0.0790258 0.755168i
\(779\) 29701.2 29701.2i 1.36605 1.36605i
\(780\) 0 0
\(781\) −47276.7 47276.7i −2.16606 2.16606i
\(782\) −3248.79 2633.25i −0.148563 0.120416i
\(783\) 0 0
\(784\) −46526.0 + 20613.9i −2.11944 + 0.939043i
\(785\) 6320.53i 0.287375i
\(786\) 0 0
\(787\) −19796.5 + 19796.5i −0.896659 + 0.896659i −0.995139 0.0984801i \(-0.968602\pi\)
0.0984801 + 0.995139i \(0.468602\pi\)
\(788\) −11889.5 + 18272.0i −0.537494 + 0.826031i
\(789\) 0 0
\(790\) 2328.51 243.670i 0.104867 0.0109739i
\(791\) 46530.2i 2.09156i
\(792\) 0 0
\(793\) 10701.8i 0.479235i
\(794\) 2507.92 + 23965.6i 0.112094 + 1.07117i
\(795\) 0 0
\(796\) 6301.04 + 29776.6i 0.280571 + 1.32588i
\(797\) −13170.1 + 13170.1i −0.585331 + 0.585331i −0.936363 0.351032i \(-0.885831\pi\)
0.351032 + 0.936363i \(0.385831\pi\)
\(798\) 0 0
\(799\) 4943.10i 0.218866i
\(800\) −4665.19 + 17254.4i −0.206174 + 0.762546i
\(801\) 0 0
\(802\) 21102.2 26035.0i 0.929109 1.14629i
\(803\) −44869.1 44869.1i −1.97185 1.97185i
\(804\) 0 0
\(805\) −10246.5 + 10246.5i −0.448624 + 0.448624i
\(806\) −7749.10 + 810.917i −0.338648 + 0.0354384i
\(807\) 0 0
\(808\) 25898.6 8376.11i 1.12761 0.364691i
\(809\) −19658.9 −0.854352 −0.427176 0.904169i \(-0.640491\pi\)
−0.427176 + 0.904169i \(0.640491\pi\)
\(810\) 0 0
\(811\) −26123.4 26123.4i −1.13109 1.13109i −0.989996 0.141099i \(-0.954936\pi\)
−0.141099 0.989996i \(-0.545064\pi\)
\(812\) 28706.1 + 18678.9i 1.24062 + 0.807268i
\(813\) 0 0
\(814\) 1176.72 1451.78i 0.0506682 0.0625121i
\(815\) −3925.41 −0.168713
\(816\) 0 0
\(817\) −11184.6 −0.478949
\(818\) −22604.7 + 27888.7i −0.966205 + 1.19206i
\(819\) 0 0
\(820\) 6690.73 10282.4i 0.284940 0.437900i
\(821\) 8922.97 + 8922.97i 0.379310 + 0.379310i 0.870853 0.491543i \(-0.163567\pi\)
−0.491543 + 0.870853i \(0.663567\pi\)
\(822\) 0 0
\(823\) 19943.0 0.844677 0.422339 0.906438i \(-0.361209\pi\)
0.422339 + 0.906438i \(0.361209\pi\)
\(824\) 7804.38 15265.7i 0.329950 0.645394i
\(825\) 0 0
\(826\) 25941.0 2714.64i 1.09274 0.114351i
\(827\) 18332.6 18332.6i 0.770843 0.770843i −0.207411 0.978254i \(-0.566504\pi\)
0.978254 + 0.207411i \(0.0665037\pi\)
\(828\) 0 0
\(829\) −26778.5 26778.5i −1.12190 1.12190i −0.991455 0.130446i \(-0.958359\pi\)
−0.130446 0.991455i \(-0.541641\pi\)
\(830\) −831.469 + 1025.83i −0.0347720 + 0.0429001i
\(831\) 0 0
\(832\) 4852.10 30105.5i 0.202183 1.25447i
\(833\) 14025.4i 0.583374i
\(834\) 0 0
\(835\) −982.788 + 982.788i −0.0407315 + 0.0407315i
\(836\) −68623.8 + 14521.5i −2.83900 + 0.600762i
\(837\) 0 0
\(838\) −4152.71 39683.2i −0.171185 1.63584i
\(839\) 28064.1i 1.15480i 0.816461 + 0.577401i \(0.195933\pi\)
−0.816461 + 0.577401i \(0.804067\pi\)
\(840\) 0 0
\(841\) 8286.04i 0.339745i
\(842\) 27766.9 2905.72i 1.13647 0.118928i
\(843\) 0 0
\(844\) 21566.5 + 14033.2i 0.879561 + 0.572326i
\(845\) 4892.53 4892.53i 0.199181 0.199181i
\(846\) 0 0
\(847\) 86731.5i 3.51845i
\(848\) −689.020 265.923i −0.0279022 0.0107687i
\(849\) 0 0
\(850\) 3827.04 + 3101.94i 0.154431 + 0.125171i
\(851\) −626.926 626.926i −0.0252535 0.0252535i
\(852\) 0 0
\(853\) −25918.5 + 25918.5i −1.04037 + 1.04037i −0.0412172 + 0.999150i \(0.513124\pi\)
−0.999150 + 0.0412172i \(0.986876\pi\)
\(854\) −1784.49 17052.5i −0.0715035 0.683285i
\(855\) 0 0
\(856\) 3589.00 + 11097.1i 0.143305 + 0.443095i
\(857\) −23507.5 −0.936992 −0.468496 0.883466i \(-0.655204\pi\)
−0.468496 + 0.883466i \(0.655204\pi\)
\(858\) 0 0
\(859\) −11981.1 11981.1i −0.475890 0.475890i 0.427925 0.903814i \(-0.359245\pi\)
−0.903814 + 0.427925i \(0.859245\pi\)
\(860\) −3195.81 + 676.267i −0.126716 + 0.0268145i
\(861\) 0 0
\(862\) 14137.0 + 11458.5i 0.558593 + 0.452758i
\(863\) −8191.53 −0.323109 −0.161554 0.986864i \(-0.551651\pi\)
−0.161554 + 0.986864i \(0.551651\pi\)
\(864\) 0 0
\(865\) −10121.4 −0.397846
\(866\) 5002.81 + 4054.95i 0.196308 + 0.159114i
\(867\) 0 0
\(868\) 12212.4 2584.26i 0.477551 0.101055i
\(869\) −7134.75 7134.75i −0.278515 0.278515i
\(870\) 0 0
\(871\) −9283.80 −0.361159
\(872\) 6299.54 2037.39i 0.244644 0.0791224i
\(873\) 0 0
\(874\) 3463.54 + 33097.5i 0.134046 + 1.28094i
\(875\) 27350.6 27350.6i 1.05671 1.05671i
\(876\) 0 0
\(877\) −7896.06 7896.06i −0.304026 0.304026i 0.538561 0.842587i \(-0.318968\pi\)
−0.842587 + 0.538561i \(0.818968\pi\)
\(878\) 19500.8 + 15806.0i 0.749566 + 0.607549i
\(879\) 0 0
\(880\) −18730.0 + 8298.51i −0.717485 + 0.317890i
\(881\) 43097.6i 1.64812i 0.566501 + 0.824061i \(0.308297\pi\)
−0.566501 + 0.824061i \(0.691703\pi\)
\(882\) 0 0
\(883\) −21106.8 + 21106.8i −0.804418 + 0.804418i −0.983783 0.179364i \(-0.942596\pi\)
0.179364 + 0.983783i \(0.442596\pi\)
\(884\) −7044.47 4583.80i −0.268022 0.174400i
\(885\) 0 0
\(886\) −3187.27 + 333.537i −0.120856 + 0.0126472i
\(887\) 5713.71i 0.216288i 0.994135 + 0.108144i \(0.0344908\pi\)
−0.994135 + 0.108144i \(0.965509\pi\)
\(888\) 0 0
\(889\) 42536.0i 1.60474i
\(890\) 267.761 + 2558.72i 0.0100847 + 0.0963691i
\(891\) 0 0
\(892\) −18553.0 + 3926.02i −0.696415 + 0.147369i
\(893\) −27814.2 + 27814.2i −1.04229 + 1.04229i
\(894\) 0 0
\(895\) 4892.59i 0.182728i
\(896\) −2711.46 + 48779.9i −0.101098 + 1.81877i
\(897\) 0 0
\(898\) −808.244 + 997.175i −0.0300350 + 0.0370558i
\(899\) −4150.15 4150.15i −0.153966 0.153966i
\(900\) 0 0
\(901\) −143.935 + 143.935i −0.00532204 + 0.00532204i
\(902\) −52583.1 + 5502.64i −1.94105 + 0.203124i
\(903\) 0 0
\(904\) −27787.8 14206.2i −1.02235 0.522666i
\(905\) −9470.40 −0.347853
\(906\) 0 0
\(907\) −2440.45 2440.45i −0.0893426 0.0893426i 0.661023 0.750366i \(-0.270123\pi\)
−0.750366 + 0.661023i \(0.770123\pi\)
\(908\) 21562.1 33137.0i 0.788066 1.21111i
\(909\) 0 0
\(910\) −18337.5 + 22624.0i −0.668003 + 0.824152i
\(911\) 41215.3 1.49893 0.749463 0.662046i \(-0.230312\pi\)
0.749463 + 0.662046i \(0.230312\pi\)
\(912\) 0 0
\(913\) 5690.92 0.206289
\(914\) −31043.3 + 38299.8i −1.12344 + 1.38605i
\(915\) 0 0
\(916\) −21347.5 13890.7i −0.770024 0.501051i
\(917\) −34251.5 34251.5i −1.23346 1.23346i
\(918\) 0 0
\(919\) 4600.68 0.165139 0.0825694 0.996585i \(-0.473687\pi\)
0.0825694 + 0.996585i \(0.473687\pi\)
\(920\) 2990.85 + 9247.60i 0.107180 + 0.331396i
\(921\) 0 0
\(922\) −11187.9 + 1170.77i −0.399623 + 0.0418192i
\(923\) −45077.0 + 45077.0i −1.60751 + 1.60751i
\(924\) 0 0
\(925\) 738.512 + 738.512i 0.0262509 + 0.0262509i
\(926\) 15281.5 18853.6i 0.542312 0.669080i
\(927\) 0 0
\(928\) 19919.3 11440.4i 0.704616 0.404687i
\(929\) 22590.7i 0.797821i 0.916990 + 0.398911i \(0.130612\pi\)
−0.916990 + 0.398911i \(0.869388\pi\)
\(930\) 0 0
\(931\) 78919.1 78919.1i 2.77816 2.77816i
\(932\) −5142.30 24300.8i −0.180731 0.854076i
\(933\) 0 0
\(934\) −1677.16 16026.9i −0.0587563 0.561474i
\(935\) 5646.19i 0.197487i
\(936\) 0 0
\(937\) 37208.7i 1.29728i −0.761094 0.648642i \(-0.775337\pi\)
0.761094 0.648642i \(-0.224663\pi\)
\(938\) 14793.0 1548.04i 0.514935 0.0538862i
\(939\) 0 0
\(940\) −6265.65 + 9629.15i −0.217407 + 0.334115i
\(941\) 29322.0 29322.0i 1.01580 1.01580i 0.0159300 0.999873i \(-0.494929\pi\)
0.999873 0.0159300i \(-0.00507091\pi\)
\(942\) 0 0
\(943\) 25083.3i 0.866198i
\(944\) 6298.88 16320.8i 0.217173 0.562707i
\(945\) 0 0
\(946\) 10936.7 + 8864.59i 0.375881 + 0.304664i
\(947\) 24343.1 + 24343.1i 0.835315 + 0.835315i 0.988238 0.152923i \(-0.0488688\pi\)
−0.152923 + 0.988238i \(0.548869\pi\)
\(948\) 0 0
\(949\) −42781.4 + 42781.4i −1.46338 + 1.46338i
\(950\) −4080.02 38988.5i −0.139340 1.33153i
\(951\) 0 0
\(952\) 11989.1 + 6129.29i 0.408162 + 0.208668i
\(953\) 12372.3 0.420542 0.210271 0.977643i \(-0.432565\pi\)
0.210271 + 0.977643i \(0.432565\pi\)
\(954\) 0 0
\(955\) −7039.32 7039.32i −0.238520 0.238520i
\(956\) 9278.53 + 43847.2i 0.313901 + 1.48339i
\(957\) 0 0
\(958\) −15542.9 12598.0i −0.524184 0.424869i
\(959\) −63270.7 −2.13046
\(960\) 0 0
\(961\) 27651.8 0.928193
\(962\) −1384.23 1121.97i −0.0463923 0.0376026i
\(963\) 0 0
\(964\) −460.857 2177.86i −0.0153975 0.0727635i
\(965\) −15022.2 15022.2i −0.501122 0.501122i
\(966\) 0 0
\(967\) −18615.7 −0.619069 −0.309534 0.950888i \(-0.600173\pi\)
−0.309534 + 0.950888i \(0.600173\pi\)
\(968\) 51796.0 + 26480.0i 1.71982 + 0.879236i
\(969\) 0 0
\(970\) −843.874 8064.03i −0.0279331 0.266928i
\(971\) 23920.0 23920.0i 0.790555 0.790555i −0.191029 0.981584i \(-0.561183\pi\)
0.981584 + 0.191029i \(0.0611825\pi\)
\(972\) 0 0
\(973\) 35384.9 + 35384.9i 1.16587 + 1.16587i
\(974\) −35303.1 28614.4i −1.16138 0.941339i
\(975\) 0 0
\(976\) −10728.6 4140.62i −0.351858 0.135797i
\(977\) 3892.45i 0.127462i −0.997967 0.0637311i \(-0.979700\pi\)
0.997967 0.0637311i \(-0.0203000\pi\)
\(978\) 0 0
\(979\) 7840.14 7840.14i 0.255947 0.255947i
\(980\) 17777.9 27321.4i 0.579485 0.890562i
\(981\) 0 0
\(982\) −19682.2 + 2059.67i −0.639596 + 0.0669316i
\(983\) 1771.35i 0.0574742i −0.999587 0.0287371i \(-0.990851\pi\)
0.999587 0.0287371i \(-0.00914857\pi\)
\(984\) 0 0
\(985\) 13963.7i 0.451696i
\(986\) −658.925 6296.66i −0.0212824 0.203374i
\(987\) 0 0
\(988\) 13845.9 + 65430.9i 0.445846 + 2.10692i
\(989\) 4722.84 4722.84i 0.151848 0.151848i
\(990\) 0 0
\(991\) 2828.01i 0.0906504i 0.998972 + 0.0453252i \(0.0144324\pi\)
−0.998972 + 0.0453252i \(0.985568\pi\)
\(992\) 2185.24 8082.22i 0.0699410 0.258680i
\(993\) 0 0
\(994\) 64310.2 79343.1i 2.05211 2.53180i
\(995\) −13785.5 13785.5i −0.439226 0.439226i
\(996\) 0 0
\(997\) −14851.0 + 14851.0i −0.471750 + 0.471750i −0.902480 0.430731i \(-0.858256\pi\)
0.430731 + 0.902480i \(0.358256\pi\)
\(998\) −40697.0 + 4258.80i −1.29082 + 0.135080i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.4.l.a.35.20 yes 48
3.2 odd 2 inner 144.4.l.a.35.5 48
4.3 odd 2 576.4.l.a.431.9 48
8.3 odd 2 1152.4.l.a.863.16 48
8.5 even 2 1152.4.l.b.863.16 48
12.11 even 2 576.4.l.a.431.16 48
16.3 odd 4 1152.4.l.b.287.9 48
16.5 even 4 576.4.l.a.143.16 48
16.11 odd 4 inner 144.4.l.a.107.5 yes 48
16.13 even 4 1152.4.l.a.287.9 48
24.5 odd 2 1152.4.l.b.863.9 48
24.11 even 2 1152.4.l.a.863.9 48
48.5 odd 4 576.4.l.a.143.9 48
48.11 even 4 inner 144.4.l.a.107.20 yes 48
48.29 odd 4 1152.4.l.a.287.16 48
48.35 even 4 1152.4.l.b.287.16 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.l.a.35.5 48 3.2 odd 2 inner
144.4.l.a.35.20 yes 48 1.1 even 1 trivial
144.4.l.a.107.5 yes 48 16.11 odd 4 inner
144.4.l.a.107.20 yes 48 48.11 even 4 inner
576.4.l.a.143.9 48 48.5 odd 4
576.4.l.a.143.16 48 16.5 even 4
576.4.l.a.431.9 48 4.3 odd 2
576.4.l.a.431.16 48 12.11 even 2
1152.4.l.a.287.9 48 16.13 even 4
1152.4.l.a.287.16 48 48.29 odd 4
1152.4.l.a.863.9 48 24.11 even 2
1152.4.l.a.863.16 48 8.3 odd 2
1152.4.l.b.287.9 48 16.3 odd 4
1152.4.l.b.287.16 48 48.35 even 4
1152.4.l.b.863.9 48 24.5 odd 2
1152.4.l.b.863.16 48 8.5 even 2