Properties

Label 1152.4.l.b.863.9
Level $1152$
Weight $4$
Character 1152.863
Analytic conductor $67.970$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1152,4,Mod(287,1152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1152.287"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1152, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.9702003266\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 863.9
Character \(\chi\) \(=\) 1152.863
Dual form 1152.4.l.b.287.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.62348 - 3.62348i) q^{5} -33.7361 q^{7} +(-44.1694 + 44.1694i) q^{11} +(-42.1143 - 42.1143i) q^{13} -17.6392i q^{17} +(-99.2533 + 99.2533i) q^{19} -83.8215i q^{23} -98.7408i q^{25} +(-89.7300 + 89.7300i) q^{29} +46.2516i q^{31} +(122.242 + 122.242i) q^{35} +(7.47930 - 7.47930i) q^{37} -299.247 q^{41} +(56.3439 + 56.3439i) q^{43} +280.235 q^{47} +795.127 q^{49} +(8.15996 + 8.15996i) q^{53} +320.094 q^{55} +(-193.284 + 193.284i) q^{59} +(-127.057 - 127.057i) q^{61} +305.201i q^{65} +(110.221 - 110.221i) q^{67} -1070.35i q^{71} +1015.84i q^{73} +(1490.11 - 1490.11i) q^{77} +161.531i q^{79} +(-64.4215 - 64.4215i) q^{83} +(-63.9151 + 63.9151i) q^{85} +177.502 q^{89} +(1420.77 + 1420.77i) q^{91} +719.285 q^{95} +559.412 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{19} - 864 q^{43} + 2352 q^{49} - 576 q^{55} - 1824 q^{61} - 816 q^{67} + 480 q^{85} + 3600 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.62348 3.62348i −0.324094 0.324094i 0.526241 0.850335i \(-0.323601\pi\)
−0.850335 + 0.526241i \(0.823601\pi\)
\(6\) 0 0
\(7\) −33.7361 −1.82158 −0.910790 0.412869i \(-0.864527\pi\)
−0.910790 + 0.412869i \(0.864527\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −44.1694 + 44.1694i −1.21069 + 1.21069i −0.239889 + 0.970800i \(0.577111\pi\)
−0.970800 + 0.239889i \(0.922889\pi\)
\(12\) 0 0
\(13\) −42.1143 42.1143i −0.898493 0.898493i 0.0968099 0.995303i \(-0.469136\pi\)
−0.995303 + 0.0968099i \(0.969136\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 17.6392i 0.251654i −0.992052 0.125827i \(-0.959842\pi\)
0.992052 0.125827i \(-0.0401585\pi\)
\(18\) 0 0
\(19\) −99.2533 + 99.2533i −1.19844 + 1.19844i −0.223801 + 0.974635i \(0.571847\pi\)
−0.974635 + 0.223801i \(0.928153\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 83.8215i 0.759913i −0.925004 0.379956i \(-0.875939\pi\)
0.925004 0.379956i \(-0.124061\pi\)
\(24\) 0 0
\(25\) 98.7408i 0.789926i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −89.7300 + 89.7300i −0.574567 + 0.574567i −0.933401 0.358834i \(-0.883174\pi\)
0.358834 + 0.933401i \(0.383174\pi\)
\(30\) 0 0
\(31\) 46.2516i 0.267969i 0.990983 + 0.133984i \(0.0427772\pi\)
−0.990983 + 0.133984i \(0.957223\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 122.242 + 122.242i 0.590363 + 0.590363i
\(36\) 0 0
\(37\) 7.47930 7.47930i 0.0332321 0.0332321i −0.690295 0.723528i \(-0.742519\pi\)
0.723528 + 0.690295i \(0.242519\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −299.247 −1.13986 −0.569932 0.821692i \(-0.693031\pi\)
−0.569932 + 0.821692i \(0.693031\pi\)
\(42\) 0 0
\(43\) 56.3439 + 56.3439i 0.199823 + 0.199823i 0.799924 0.600101i \(-0.204873\pi\)
−0.600101 + 0.799924i \(0.704873\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 280.235 0.869711 0.434855 0.900500i \(-0.356799\pi\)
0.434855 + 0.900500i \(0.356799\pi\)
\(48\) 0 0
\(49\) 795.127 2.31816
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.15996 + 8.15996i 0.0211482 + 0.0211482i 0.717602 0.696454i \(-0.245240\pi\)
−0.696454 + 0.717602i \(0.745240\pi\)
\(54\) 0 0
\(55\) 320.094 0.784754
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −193.284 + 193.284i −0.426499 + 0.426499i −0.887434 0.460935i \(-0.847514\pi\)
0.460935 + 0.887434i \(0.347514\pi\)
\(60\) 0 0
\(61\) −127.057 127.057i −0.266688 0.266688i 0.561076 0.827764i \(-0.310388\pi\)
−0.827764 + 0.561076i \(0.810388\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 305.201i 0.582392i
\(66\) 0 0
\(67\) 110.221 110.221i 0.200980 0.200980i −0.599440 0.800420i \(-0.704610\pi\)
0.800420 + 0.599440i \(0.204610\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1070.35i 1.78911i −0.446955 0.894556i \(-0.647492\pi\)
0.446955 0.894556i \(-0.352508\pi\)
\(72\) 0 0
\(73\) 1015.84i 1.62870i 0.580373 + 0.814351i \(0.302907\pi\)
−0.580373 + 0.814351i \(0.697093\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1490.11 1490.11i 2.20537 2.20537i
\(78\) 0 0
\(79\) 161.531i 0.230047i 0.993363 + 0.115023i \(0.0366943\pi\)
−0.993363 + 0.115023i \(0.963306\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −64.4215 64.4215i −0.0851950 0.0851950i 0.663225 0.748420i \(-0.269187\pi\)
−0.748420 + 0.663225i \(0.769187\pi\)
\(84\) 0 0
\(85\) −63.9151 + 63.9151i −0.0815596 + 0.0815596i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 177.502 0.211406 0.105703 0.994398i \(-0.466291\pi\)
0.105703 + 0.994398i \(0.466291\pi\)
\(90\) 0 0
\(91\) 1420.77 + 1420.77i 1.63668 + 1.63668i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 719.285 0.776811
\(96\) 0 0
\(97\) 559.412 0.585564 0.292782 0.956179i \(-0.405419\pi\)
0.292782 + 0.956179i \(0.405419\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −850.608 850.608i −0.838006 0.838006i 0.150590 0.988596i \(-0.451883\pi\)
−0.988596 + 0.150590i \(0.951883\pi\)
\(102\) 0 0
\(103\) −757.707 −0.724845 −0.362423 0.932014i \(-0.618050\pi\)
−0.362423 + 0.932014i \(0.618050\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 364.469 364.469i 0.329295 0.329295i −0.523024 0.852318i \(-0.675196\pi\)
0.852318 + 0.523024i \(0.175196\pi\)
\(108\) 0 0
\(109\) 206.900 + 206.900i 0.181812 + 0.181812i 0.792145 0.610333i \(-0.208964\pi\)
−0.610333 + 0.792145i \(0.708964\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1379.24i 1.14821i −0.818781 0.574105i \(-0.805350\pi\)
0.818781 0.574105i \(-0.194650\pi\)
\(114\) 0 0
\(115\) −303.726 + 303.726i −0.246283 + 0.246283i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 595.077i 0.458409i
\(120\) 0 0
\(121\) 2570.88i 1.93154i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −810.720 + 810.720i −0.580104 + 0.580104i
\(126\) 0 0
\(127\) 1260.84i 0.880958i 0.897763 + 0.440479i \(0.145191\pi\)
−0.897763 + 0.440479i \(0.854809\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1015.28 + 1015.28i 0.677138 + 0.677138i 0.959352 0.282214i \(-0.0910687\pi\)
−0.282214 + 0.959352i \(0.591069\pi\)
\(132\) 0 0
\(133\) 3348.43 3348.43i 2.18305 2.18305i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1875.46 −1.16957 −0.584785 0.811189i \(-0.698821\pi\)
−0.584785 + 0.811189i \(0.698821\pi\)
\(138\) 0 0
\(139\) 1048.87 + 1048.87i 0.640031 + 0.640031i 0.950563 0.310532i \(-0.100507\pi\)
−0.310532 + 0.950563i \(0.600507\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3720.33 2.17559
\(144\) 0 0
\(145\) 650.270 0.372427
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1943.41 1943.41i −1.06852 1.06852i −0.997473 0.0710521i \(-0.977364\pi\)
−0.0710521 0.997473i \(-0.522636\pi\)
\(150\) 0 0
\(151\) −1790.47 −0.964945 −0.482472 0.875911i \(-0.660261\pi\)
−0.482472 + 0.875911i \(0.660261\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 167.592 167.592i 0.0868470 0.0868470i
\(156\) 0 0
\(157\) 872.163 + 872.163i 0.443351 + 0.443351i 0.893137 0.449785i \(-0.148500\pi\)
−0.449785 + 0.893137i \(0.648500\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2827.82i 1.38424i
\(162\) 0 0
\(163\) −541.663 + 541.663i −0.260284 + 0.260284i −0.825169 0.564885i \(-0.808920\pi\)
0.564885 + 0.825169i \(0.308920\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 271.228i 0.125678i 0.998024 + 0.0628390i \(0.0200155\pi\)
−0.998024 + 0.0628390i \(0.979985\pi\)
\(168\) 0 0
\(169\) 1350.23i 0.614579i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1396.64 1396.64i 0.613783 0.613783i −0.330147 0.943930i \(-0.607098\pi\)
0.943930 + 0.330147i \(0.107098\pi\)
\(174\) 0 0
\(175\) 3331.13i 1.43891i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 675.124 + 675.124i 0.281906 + 0.281906i 0.833869 0.551963i \(-0.186121\pi\)
−0.551963 + 0.833869i \(0.686121\pi\)
\(180\) 0 0
\(181\) −1306.81 + 1306.81i −0.536655 + 0.536655i −0.922545 0.385890i \(-0.873894\pi\)
0.385890 + 0.922545i \(0.373894\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −54.2021 −0.0215407
\(186\) 0 0
\(187\) 779.111 + 779.111i 0.304675 + 0.304675i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1942.70 −0.735961 −0.367980 0.929834i \(-0.619951\pi\)
−0.367980 + 0.929834i \(0.619951\pi\)
\(192\) 0 0
\(193\) 4145.80 1.54623 0.773113 0.634269i \(-0.218699\pi\)
0.773113 + 0.634269i \(0.218699\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1926.84 + 1926.84i 0.696860 + 0.696860i 0.963732 0.266872i \(-0.0859902\pi\)
−0.266872 + 0.963732i \(0.585990\pi\)
\(198\) 0 0
\(199\) 3804.49 1.35524 0.677622 0.735411i \(-0.263011\pi\)
0.677622 + 0.735411i \(0.263011\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3027.15 3027.15i 1.04662 1.04662i
\(204\) 0 0
\(205\) 1084.31 + 1084.31i 0.369423 + 0.369423i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8767.93i 2.90187i
\(210\) 0 0
\(211\) −2274.25 + 2274.25i −0.742019 + 0.742019i −0.972966 0.230947i \(-0.925818\pi\)
0.230947 + 0.972966i \(0.425818\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 408.322i 0.129523i
\(216\) 0 0
\(217\) 1560.35i 0.488126i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −742.861 + 742.861i −0.226110 + 0.226110i
\(222\) 0 0
\(223\) 2370.49i 0.711836i 0.934517 + 0.355918i \(0.115832\pi\)
−0.934517 + 0.355918i \(0.884168\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3494.40 3494.40i −1.02172 1.02172i −0.999759 0.0219659i \(-0.993007\pi\)
−0.0219659 0.999759i \(-0.506993\pi\)
\(228\) 0 0
\(229\) 2251.16 2251.16i 0.649611 0.649611i −0.303288 0.952899i \(-0.598084\pi\)
0.952899 + 0.303288i \(0.0980844\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3104.86 0.872989 0.436494 0.899707i \(-0.356220\pi\)
0.436494 + 0.899707i \(0.356220\pi\)
\(234\) 0 0
\(235\) −1015.42 1015.42i −0.281868 0.281868i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −5602.27 −1.51624 −0.758119 0.652117i \(-0.773881\pi\)
−0.758119 + 0.652117i \(0.773881\pi\)
\(240\) 0 0
\(241\) −278.260 −0.0743748 −0.0371874 0.999308i \(-0.511840\pi\)
−0.0371874 + 0.999308i \(0.511840\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2881.13 2881.13i −0.751300 0.751300i
\(246\) 0 0
\(247\) 8359.97 2.15357
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4432.83 4432.83i 1.11473 1.11473i 0.122231 0.992502i \(-0.460995\pi\)
0.992502 0.122231i \(-0.0390048\pi\)
\(252\) 0 0
\(253\) 3702.35 + 3702.35i 0.920019 + 0.920019i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3828.87i 0.929332i −0.885486 0.464666i \(-0.846174\pi\)
0.885486 0.464666i \(-0.153826\pi\)
\(258\) 0 0
\(259\) −252.323 + 252.323i −0.0605350 + 0.0605350i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2299.83i 0.539216i −0.962970 0.269608i \(-0.913106\pi\)
0.962970 0.269608i \(-0.0868941\pi\)
\(264\) 0 0
\(265\) 59.1349i 0.0137080i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3350.78 + 3350.78i −0.759481 + 0.759481i −0.976228 0.216747i \(-0.930455\pi\)
0.216747 + 0.976228i \(0.430455\pi\)
\(270\) 0 0
\(271\) 3778.66i 0.847000i 0.905896 + 0.423500i \(0.139199\pi\)
−0.905896 + 0.423500i \(0.860801\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4361.32 + 4361.32i 0.956356 + 0.956356i
\(276\) 0 0
\(277\) 161.818 161.818i 0.0351000 0.0351000i −0.689339 0.724439i \(-0.742099\pi\)
0.724439 + 0.689339i \(0.242099\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4259.63 0.904299 0.452149 0.891942i \(-0.350657\pi\)
0.452149 + 0.891942i \(0.350657\pi\)
\(282\) 0 0
\(283\) 769.856 + 769.856i 0.161707 + 0.161707i 0.783323 0.621615i \(-0.213523\pi\)
−0.621615 + 0.783323i \(0.713523\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10095.4 2.07636
\(288\) 0 0
\(289\) 4601.86 0.936670
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4375.88 + 4375.88i 0.872497 + 0.872497i 0.992744 0.120247i \(-0.0383685\pi\)
−0.120247 + 0.992744i \(0.538369\pi\)
\(294\) 0 0
\(295\) 1400.72 0.276451
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3530.09 + 3530.09i −0.682776 + 0.682776i
\(300\) 0 0
\(301\) −1900.83 1900.83i −0.363993 0.363993i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 920.776i 0.172864i
\(306\) 0 0
\(307\) 1892.89 1892.89i 0.351899 0.351899i −0.508917 0.860816i \(-0.669954\pi\)
0.860816 + 0.508917i \(0.169954\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4969.36i 0.906067i 0.891494 + 0.453033i \(0.149658\pi\)
−0.891494 + 0.453033i \(0.850342\pi\)
\(312\) 0 0
\(313\) 431.319i 0.0778901i −0.999241 0.0389450i \(-0.987600\pi\)
0.999241 0.0389450i \(-0.0123997\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4151.14 + 4151.14i −0.735493 + 0.735493i −0.971702 0.236209i \(-0.924095\pi\)
0.236209 + 0.971702i \(0.424095\pi\)
\(318\) 0 0
\(319\) 7926.65i 1.39125i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1750.74 + 1750.74i 0.301591 + 0.301591i
\(324\) 0 0
\(325\) −4158.40 + 4158.40i −0.709743 + 0.709743i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9454.03 −1.58425
\(330\) 0 0
\(331\) −3350.31 3350.31i −0.556343 0.556343i 0.371921 0.928264i \(-0.378699\pi\)
−0.928264 + 0.371921i \(0.878699\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −798.770 −0.130273
\(336\) 0 0
\(337\) −9901.48 −1.60050 −0.800249 0.599668i \(-0.795299\pi\)
−0.800249 + 0.599668i \(0.795299\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2042.90 2042.90i −0.324427 0.324427i
\(342\) 0 0
\(343\) −15253.0 −2.40113
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1244.90 + 1244.90i −0.192593 + 0.192593i −0.796816 0.604222i \(-0.793484\pi\)
0.604222 + 0.796816i \(0.293484\pi\)
\(348\) 0 0
\(349\) −84.2939 84.2939i −0.0129288 0.0129288i 0.700613 0.713542i \(-0.252910\pi\)
−0.713542 + 0.700613i \(0.752910\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 366.806i 0.0553063i 0.999618 + 0.0276531i \(0.00880339\pi\)
−0.999618 + 0.0276531i \(0.991197\pi\)
\(354\) 0 0
\(355\) −3878.39 + 3878.39i −0.579840 + 0.579840i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6841.31i 1.00577i 0.864354 + 0.502884i \(0.167728\pi\)
−0.864354 + 0.502884i \(0.832272\pi\)
\(360\) 0 0
\(361\) 12843.5i 1.87250i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3680.88 3680.88i 0.527852 0.527852i
\(366\) 0 0
\(367\) 1916.32i 0.272564i 0.990670 + 0.136282i \(0.0435153\pi\)
−0.990670 + 0.136282i \(0.956485\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −275.286 275.286i −0.0385232 0.0385232i
\(372\) 0 0
\(373\) 7158.65 7158.65i 0.993728 0.993728i −0.00625218 0.999980i \(-0.501990\pi\)
0.999980 + 0.00625218i \(0.00199014\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7557.84 1.03249
\(378\) 0 0
\(379\) −5108.00 5108.00i −0.692297 0.692297i 0.270440 0.962737i \(-0.412831\pi\)
−0.962737 + 0.270440i \(0.912831\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −10334.0 −1.37870 −0.689349 0.724429i \(-0.742103\pi\)
−0.689349 + 0.724429i \(0.742103\pi\)
\(384\) 0 0
\(385\) −10798.7 −1.42949
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4119.25 4119.25i −0.536900 0.536900i 0.385717 0.922617i \(-0.373954\pi\)
−0.922617 + 0.385717i \(0.873954\pi\)
\(390\) 0 0
\(391\) −1478.54 −0.191235
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 585.306 585.306i 0.0745568 0.0745568i
\(396\) 0 0
\(397\) −6024.12 6024.12i −0.761566 0.761566i 0.215039 0.976605i \(-0.431012\pi\)
−0.976605 + 0.215039i \(0.931012\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 11848.6i 1.47554i 0.675050 + 0.737772i \(0.264122\pi\)
−0.675050 + 0.737772i \(0.735878\pi\)
\(402\) 0 0
\(403\) 1947.85 1947.85i 0.240768 0.240768i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 660.713i 0.0804676i
\(408\) 0 0
\(409\) 12692.3i 1.53446i 0.641374 + 0.767228i \(0.278365\pi\)
−0.641374 + 0.767228i \(0.721635\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6520.66 6520.66i 0.776903 0.776903i
\(414\) 0 0
\(415\) 466.860i 0.0552223i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −9974.97 9974.97i −1.16303 1.16303i −0.983809 0.179220i \(-0.942643\pi\)
−0.179220 0.983809i \(-0.557357\pi\)
\(420\) 0 0
\(421\) −6979.64 + 6979.64i −0.807997 + 0.807997i −0.984331 0.176333i \(-0.943576\pi\)
0.176333 + 0.984331i \(0.443576\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1741.70 −0.198788
\(426\) 0 0
\(427\) 4286.41 + 4286.41i 0.485794 + 0.485794i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6433.80 −0.719038 −0.359519 0.933138i \(-0.617059\pi\)
−0.359519 + 0.933138i \(0.617059\pi\)
\(432\) 0 0
\(433\) 2276.81 0.252694 0.126347 0.991986i \(-0.459675\pi\)
0.126347 + 0.991986i \(0.459675\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8319.57 + 8319.57i 0.910707 + 0.910707i
\(438\) 0 0
\(439\) 8874.90 0.964866 0.482433 0.875933i \(-0.339753\pi\)
0.482433 + 0.875933i \(0.339753\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −801.170 + 801.170i −0.0859249 + 0.0859249i −0.748763 0.662838i \(-0.769352\pi\)
0.662838 + 0.748763i \(0.269352\pi\)
\(444\) 0 0
\(445\) −643.173 643.173i −0.0685154 0.0685154i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 453.819i 0.0476995i −0.999716 0.0238497i \(-0.992408\pi\)
0.999716 0.0238497i \(-0.00759232\pi\)
\(450\) 0 0
\(451\) 13217.6 13217.6i 1.38002 1.38002i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 10296.3i 1.06087i
\(456\) 0 0
\(457\) 17430.4i 1.78416i 0.451876 + 0.892081i \(0.350755\pi\)
−0.451876 + 0.892081i \(0.649245\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2812.24 + 2812.24i −0.284119 + 0.284119i −0.834749 0.550630i \(-0.814387\pi\)
0.550630 + 0.834749i \(0.314387\pi\)
\(462\) 0 0
\(463\) 8580.37i 0.861260i −0.902528 0.430630i \(-0.858291\pi\)
0.902528 0.430630i \(-0.141709\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4028.61 4028.61i −0.399190 0.399190i 0.478757 0.877947i \(-0.341087\pi\)
−0.877947 + 0.478757i \(0.841087\pi\)
\(468\) 0 0
\(469\) −3718.45 + 3718.45i −0.366102 + 0.366102i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4977.36 −0.483846
\(474\) 0 0
\(475\) 9800.35 + 9800.35i 0.946676 + 0.946676i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7073.65 0.674746 0.337373 0.941371i \(-0.390462\pi\)
0.337373 + 0.941371i \(0.390462\pi\)
\(480\) 0 0
\(481\) −629.971 −0.0597177
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2027.02 2027.02i −0.189778 0.189778i
\(486\) 0 0
\(487\) −16066.6 −1.49497 −0.747483 0.664281i \(-0.768738\pi\)
−0.747483 + 0.664281i \(0.768738\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4947.42 + 4947.42i −0.454733 + 0.454733i −0.896922 0.442189i \(-0.854202\pi\)
0.442189 + 0.896922i \(0.354202\pi\)
\(492\) 0 0
\(493\) 1582.76 + 1582.76i 0.144592 + 0.144592i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 36109.4i 3.25901i
\(498\) 0 0
\(499\) 10229.8 10229.8i 0.917733 0.917733i −0.0791313 0.996864i \(-0.525215\pi\)
0.996864 + 0.0791313i \(0.0252146\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6091.42i 0.539966i −0.962865 0.269983i \(-0.912982\pi\)
0.962865 0.269983i \(-0.0870181\pi\)
\(504\) 0 0
\(505\) 6164.32i 0.543185i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10933.5 10933.5i 0.952097 0.952097i −0.0468068 0.998904i \(-0.514904\pi\)
0.998904 + 0.0468068i \(0.0149045\pi\)
\(510\) 0 0
\(511\) 34270.6i 2.96681i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2745.53 + 2745.53i 0.234918 + 0.234918i
\(516\) 0 0
\(517\) −12377.8 + 12377.8i −1.05295 + 1.05295i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8966.41 0.753984 0.376992 0.926217i \(-0.376958\pi\)
0.376992 + 0.926217i \(0.376958\pi\)
\(522\) 0 0
\(523\) −14085.5 14085.5i −1.17766 1.17766i −0.980340 0.197318i \(-0.936777\pi\)
−0.197318 0.980340i \(-0.563223\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 815.838 0.0674354
\(528\) 0 0
\(529\) 5140.95 0.422532
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12602.6 + 12602.6i 1.02416 + 1.02416i
\(534\) 0 0
\(535\) −2641.29 −0.213445
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −35120.3 + 35120.3i −2.80657 + 2.80657i
\(540\) 0 0
\(541\) −3398.59 3398.59i −0.270087 0.270087i 0.559048 0.829135i \(-0.311167\pi\)
−0.829135 + 0.559048i \(0.811167\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1499.40i 0.117848i
\(546\) 0 0
\(547\) −15912.7 + 15912.7i −1.24383 + 1.24383i −0.285438 + 0.958397i \(0.592139\pi\)
−0.958397 + 0.285438i \(0.907861\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 17812.0i 1.37716i
\(552\) 0 0
\(553\) 5449.45i 0.419049i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −12309.2 + 12309.2i −0.936371 + 0.936371i −0.998093 0.0617225i \(-0.980341\pi\)
0.0617225 + 0.998093i \(0.480341\pi\)
\(558\) 0 0
\(559\) 4745.77i 0.359078i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13010.7 + 13010.7i 0.973955 + 0.973955i 0.999669 0.0257144i \(-0.00818604\pi\)
−0.0257144 + 0.999669i \(0.508186\pi\)
\(564\) 0 0
\(565\) −4997.64 + 4997.64i −0.372128 + 0.372128i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20663.0 −1.52238 −0.761192 0.648527i \(-0.775385\pi\)
−0.761192 + 0.648527i \(0.775385\pi\)
\(570\) 0 0
\(571\) −6847.53 6847.53i −0.501857 0.501857i 0.410158 0.912015i \(-0.365474\pi\)
−0.912015 + 0.410158i \(0.865474\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −8276.60 −0.600275
\(576\) 0 0
\(577\) −12587.4 −0.908178 −0.454089 0.890956i \(-0.650035\pi\)
−0.454089 + 0.890956i \(0.650035\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2173.33 + 2173.33i 0.155189 + 0.155189i
\(582\) 0 0
\(583\) −720.841 −0.0512079
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10285.9 10285.9i 0.723241 0.723241i −0.246023 0.969264i \(-0.579124\pi\)
0.969264 + 0.246023i \(0.0791238\pi\)
\(588\) 0 0
\(589\) −4590.62 4590.62i −0.321143 0.321143i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 19189.3i 1.32886i −0.747353 0.664428i \(-0.768675\pi\)
0.747353 0.664428i \(-0.231325\pi\)
\(594\) 0 0
\(595\) 2156.25 2156.25i 0.148567 0.148567i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 25709.1i 1.75366i 0.480796 + 0.876832i \(0.340348\pi\)
−0.480796 + 0.876832i \(0.659652\pi\)
\(600\) 0 0
\(601\) 6062.56i 0.411476i −0.978607 0.205738i \(-0.934041\pi\)
0.978607 0.205738i \(-0.0659595\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9315.52 + 9315.52i −0.625999 + 0.625999i
\(606\) 0 0
\(607\) 21062.9i 1.40843i 0.709989 + 0.704213i \(0.248700\pi\)
−0.709989 + 0.704213i \(0.751300\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −11801.9 11801.9i −0.781429 0.781429i
\(612\) 0 0
\(613\) −5955.84 + 5955.84i −0.392421 + 0.392421i −0.875550 0.483128i \(-0.839500\pi\)
0.483128 + 0.875550i \(0.339500\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 28289.5 1.84586 0.922929 0.384970i \(-0.125788\pi\)
0.922929 + 0.384970i \(0.125788\pi\)
\(618\) 0 0
\(619\) −9943.57 9943.57i −0.645664 0.645664i 0.306278 0.951942i \(-0.400916\pi\)
−0.951942 + 0.306278i \(0.900916\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −5988.22 −0.385093
\(624\) 0 0
\(625\) −6467.35 −0.413910
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −131.928 131.928i −0.00836301 0.00836301i
\(630\) 0 0
\(631\) 9728.67 0.613775 0.306888 0.951746i \(-0.400712\pi\)
0.306888 + 0.951746i \(0.400712\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4568.64 4568.64i 0.285513 0.285513i
\(636\) 0 0
\(637\) −33486.2 33486.2i −2.08285 2.08285i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 445.753i 0.0274667i 0.999906 + 0.0137334i \(0.00437160\pi\)
−0.999906 + 0.0137334i \(0.995628\pi\)
\(642\) 0 0
\(643\) −879.050 + 879.050i −0.0539134 + 0.0539134i −0.733549 0.679636i \(-0.762138\pi\)
0.679636 + 0.733549i \(0.262138\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4067.41i 0.247150i −0.992335 0.123575i \(-0.960564\pi\)
0.992335 0.123575i \(-0.0394360\pi\)
\(648\) 0 0
\(649\) 17074.5i 1.03272i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 595.450 595.450i 0.0356842 0.0356842i −0.689040 0.724724i \(-0.741967\pi\)
0.724724 + 0.689040i \(0.241967\pi\)
\(654\) 0 0
\(655\) 7357.66i 0.438912i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −9075.08 9075.08i −0.536441 0.536441i 0.386041 0.922482i \(-0.373842\pi\)
−0.922482 + 0.386041i \(0.873842\pi\)
\(660\) 0 0
\(661\) −1351.64 + 1351.64i −0.0795353 + 0.0795353i −0.745755 0.666220i \(-0.767911\pi\)
0.666220 + 0.745755i \(0.267911\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −24265.9 −1.41502
\(666\) 0 0
\(667\) 7521.31 + 7521.31i 0.436621 + 0.436621i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11224.1 0.645753
\(672\) 0 0
\(673\) −10501.3 −0.601482 −0.300741 0.953706i \(-0.597234\pi\)
−0.300741 + 0.953706i \(0.597234\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10590.4 10590.4i −0.601215 0.601215i 0.339420 0.940635i \(-0.389769\pi\)
−0.940635 + 0.339420i \(0.889769\pi\)
\(678\) 0 0
\(679\) −18872.4 −1.06665
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −2888.12 + 2888.12i −0.161802 + 0.161802i −0.783365 0.621563i \(-0.786498\pi\)
0.621563 + 0.783365i \(0.286498\pi\)
\(684\) 0 0
\(685\) 6795.68 + 6795.68i 0.379050 + 0.379050i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 687.302i 0.0380031i
\(690\) 0 0
\(691\) −12657.6 + 12657.6i −0.696844 + 0.696844i −0.963728 0.266885i \(-0.914006\pi\)
0.266885 + 0.963728i \(0.414006\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7601.14i 0.414860i
\(696\) 0 0
\(697\) 5278.46i 0.286852i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18873.8 18873.8i 1.01691 1.01691i 0.0170555 0.999855i \(-0.494571\pi\)
0.999855 0.0170555i \(-0.00542920\pi\)
\(702\) 0 0
\(703\) 1484.69i 0.0796531i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 28696.2 + 28696.2i 1.52650 + 1.52650i
\(708\) 0 0
\(709\) 21572.6 21572.6i 1.14270 1.14270i 0.154747 0.987954i \(-0.450544\pi\)
0.987954 0.154747i \(-0.0494561\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3876.88 0.203633
\(714\) 0 0
\(715\) −13480.5 13480.5i −0.705096 0.705096i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −29101.6 −1.50947 −0.754733 0.656032i \(-0.772234\pi\)
−0.754733 + 0.656032i \(0.772234\pi\)
\(720\) 0 0
\(721\) 25562.1 1.32036
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8860.02 + 8860.02i 0.453866 + 0.453866i
\(726\) 0 0
\(727\) 23683.7 1.20822 0.604112 0.796899i \(-0.293528\pi\)
0.604112 + 0.796899i \(0.293528\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 993.859 993.859i 0.0502862 0.0502862i
\(732\) 0 0
\(733\) 1650.17 + 1650.17i 0.0831521 + 0.0831521i 0.747460 0.664307i \(-0.231273\pi\)
−0.664307 + 0.747460i \(0.731273\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9736.83i 0.486650i
\(738\) 0 0
\(739\) 9966.72 9966.72i 0.496119 0.496119i −0.414109 0.910227i \(-0.635907\pi\)
0.910227 + 0.414109i \(0.135907\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 13180.6i 0.650806i 0.945576 + 0.325403i \(0.105500\pi\)
−0.945576 + 0.325403i \(0.894500\pi\)
\(744\) 0 0
\(745\) 14083.8i 0.692605i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −12295.8 + 12295.8i −0.599837 + 0.599837i
\(750\) 0 0
\(751\) 18926.8i 0.919641i −0.888012 0.459821i \(-0.847914\pi\)
0.888012 0.459821i \(-0.152086\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 6487.74 + 6487.74i 0.312733 + 0.312733i
\(756\) 0 0
\(757\) −23156.4 + 23156.4i −1.11180 + 1.11180i −0.118896 + 0.992907i \(0.537935\pi\)
−0.992907 + 0.118896i \(0.962065\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6699.86 0.319146 0.159573 0.987186i \(-0.448988\pi\)
0.159573 + 0.987186i \(0.448988\pi\)
\(762\) 0 0
\(763\) −6980.02 6980.02i −0.331184 0.331184i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 16280.1 0.766413
\(768\) 0 0
\(769\) −13009.6 −0.610064 −0.305032 0.952342i \(-0.598667\pi\)
−0.305032 + 0.952342i \(0.598667\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −991.579 991.579i −0.0461379 0.0461379i 0.683661 0.729799i \(-0.260387\pi\)
−0.729799 + 0.683661i \(0.760387\pi\)
\(774\) 0 0
\(775\) 4566.92 0.211675
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 29701.2 29701.2i 1.36605 1.36605i
\(780\) 0 0
\(781\) 47276.7 + 47276.7i 2.16606 + 2.16606i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6320.53i 0.287375i
\(786\) 0 0
\(787\) 19796.5 19796.5i 0.896659 0.896659i −0.0984801 0.995139i \(-0.531398\pi\)
0.995139 + 0.0984801i \(0.0313981\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 46530.2i 2.09156i
\(792\) 0 0
\(793\) 10701.8i 0.479235i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13170.1 + 13170.1i −0.585331 + 0.585331i −0.936363 0.351032i \(-0.885831\pi\)
0.351032 + 0.936363i \(0.385831\pi\)
\(798\) 0 0
\(799\) 4943.10i 0.218866i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −44869.1 44869.1i −1.97185 1.97185i
\(804\) 0 0
\(805\) 10246.5 10246.5i 0.448624 0.448624i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 19658.9 0.854352 0.427176 0.904169i \(-0.359509\pi\)
0.427176 + 0.904169i \(0.359509\pi\)
\(810\) 0 0
\(811\) 26123.4 + 26123.4i 1.13109 + 1.13109i 0.989996 + 0.141099i \(0.0450636\pi\)
0.141099 + 0.989996i \(0.454936\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3925.41 0.168713
\(816\) 0 0
\(817\) −11184.6 −0.478949
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8922.97 + 8922.97i 0.379310 + 0.379310i 0.870853 0.491543i \(-0.163567\pi\)
−0.491543 + 0.870853i \(0.663567\pi\)
\(822\) 0 0
\(823\) 19943.0 0.844677 0.422339 0.906438i \(-0.361209\pi\)
0.422339 + 0.906438i \(0.361209\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18332.6 18332.6i 0.770843 0.770843i −0.207411 0.978254i \(-0.566504\pi\)
0.978254 + 0.207411i \(0.0665037\pi\)
\(828\) 0 0
\(829\) 26778.5 + 26778.5i 1.12190 + 1.12190i 0.991455 + 0.130446i \(0.0416408\pi\)
0.130446 + 0.991455i \(0.458359\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 14025.4i 0.583374i
\(834\) 0 0
\(835\) 982.788 982.788i 0.0407315 0.0407315i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 28064.1i 1.15480i −0.816461 0.577401i \(-0.804067\pi\)
0.816461 0.577401i \(-0.195933\pi\)
\(840\) 0 0
\(841\) 8286.04i 0.339745i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4892.53 4892.53i 0.199181 0.199181i
\(846\) 0 0
\(847\) 86731.5i 3.51845i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −626.926 626.926i −0.0252535 0.0252535i
\(852\) 0 0
\(853\) 25918.5 25918.5i 1.04037 1.04037i 0.0412172 0.999150i \(-0.486876\pi\)
0.999150 0.0412172i \(-0.0131236\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 23507.5 0.936992 0.468496 0.883466i \(-0.344796\pi\)
0.468496 + 0.883466i \(0.344796\pi\)
\(858\) 0 0
\(859\) 11981.1 + 11981.1i 0.475890 + 0.475890i 0.903814 0.427925i \(-0.140755\pi\)
−0.427925 + 0.903814i \(0.640755\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 8191.53 0.323109 0.161554 0.986864i \(-0.448349\pi\)
0.161554 + 0.986864i \(0.448349\pi\)
\(864\) 0 0
\(865\) −10121.4 −0.397846
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −7134.75 7134.75i −0.278515 0.278515i
\(870\) 0 0
\(871\) −9283.80 −0.361159
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 27350.6 27350.6i 1.05671 1.05671i
\(876\) 0 0
\(877\) 7896.06 + 7896.06i 0.304026 + 0.304026i 0.842587 0.538561i \(-0.181032\pi\)
−0.538561 + 0.842587i \(0.681032\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 43097.6i 1.64812i −0.566501 0.824061i \(-0.691703\pi\)
0.566501 0.824061i \(-0.308297\pi\)
\(882\) 0 0
\(883\) 21106.8 21106.8i 0.804418 0.804418i −0.179364 0.983783i \(-0.557404\pi\)
0.983783 + 0.179364i \(0.0574041\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 5713.71i 0.216288i −0.994135 0.108144i \(-0.965509\pi\)
0.994135 0.108144i \(-0.0344908\pi\)
\(888\) 0 0
\(889\) 42536.0i 1.60474i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −27814.2 + 27814.2i −1.04229 + 1.04229i
\(894\) 0 0
\(895\) 4892.59i 0.182728i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4150.15 4150.15i −0.153966 0.153966i
\(900\) 0 0
\(901\) 143.935 143.935i 0.00532204 0.00532204i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 9470.40 0.347853
\(906\) 0 0
\(907\) 2440.45 + 2440.45i 0.0893426 + 0.0893426i 0.750366 0.661023i \(-0.229877\pi\)
−0.661023 + 0.750366i \(0.729877\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −41215.3 −1.49893 −0.749463 0.662046i \(-0.769688\pi\)
−0.749463 + 0.662046i \(0.769688\pi\)
\(912\) 0 0
\(913\) 5690.92 0.206289
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −34251.5 34251.5i −1.23346 1.23346i
\(918\) 0 0
\(919\) 4600.68 0.165139 0.0825694 0.996585i \(-0.473687\pi\)
0.0825694 + 0.996585i \(0.473687\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −45077.0 + 45077.0i −1.60751 + 1.60751i
\(924\) 0 0
\(925\) −738.512 738.512i −0.0262509 0.0262509i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 22590.7i 0.797821i −0.916990 0.398911i \(-0.869388\pi\)
0.916990 0.398911i \(-0.130612\pi\)
\(930\) 0 0
\(931\) −78919.1 + 78919.1i −2.77816 + 2.77816i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5646.19i 0.197487i
\(936\) 0 0
\(937\) 37208.7i 1.29728i −0.761094 0.648642i \(-0.775337\pi\)
0.761094 0.648642i \(-0.224663\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 29322.0 29322.0i 1.01580 1.01580i 0.0159300 0.999873i \(-0.494929\pi\)
0.999873 0.0159300i \(-0.00507091\pi\)
\(942\) 0 0
\(943\) 25083.3i 0.866198i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 24343.1 + 24343.1i 0.835315 + 0.835315i 0.988238 0.152923i \(-0.0488688\pi\)
−0.152923 + 0.988238i \(0.548869\pi\)
\(948\) 0 0
\(949\) 42781.4 42781.4i 1.46338 1.46338i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −12372.3 −0.420542 −0.210271 0.977643i \(-0.567435\pi\)
−0.210271 + 0.977643i \(0.567435\pi\)
\(954\) 0 0
\(955\) 7039.32 + 7039.32i 0.238520 + 0.238520i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 63270.7 2.13046
\(960\) 0 0
\(961\) 27651.8 0.928193
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −15022.2 15022.2i −0.501122 0.501122i
\(966\) 0 0
\(967\) −18615.7 −0.619069 −0.309534 0.950888i \(-0.600173\pi\)
−0.309534 + 0.950888i \(0.600173\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 23920.0 23920.0i 0.790555 0.790555i −0.191029 0.981584i \(-0.561183\pi\)
0.981584 + 0.191029i \(0.0611825\pi\)
\(972\) 0 0
\(973\) −35384.9 35384.9i −1.16587 1.16587i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3892.45i 0.127462i 0.997967 + 0.0637311i \(0.0203000\pi\)
−0.997967 + 0.0637311i \(0.979700\pi\)
\(978\) 0 0
\(979\) −7840.14 + 7840.14i −0.255947 + 0.255947i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1771.35i 0.0574742i 0.999587 + 0.0287371i \(0.00914857\pi\)
−0.999587 + 0.0287371i \(0.990851\pi\)
\(984\) 0 0
\(985\) 13963.7i 0.451696i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4722.84 4722.84i 0.151848 0.151848i
\(990\) 0 0
\(991\) 2828.01i 0.0906504i 0.998972 + 0.0453252i \(0.0144324\pi\)
−0.998972 + 0.0453252i \(0.985568\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −13785.5 13785.5i −0.439226 0.439226i
\(996\) 0 0
\(997\) 14851.0 14851.0i 0.471750 0.471750i −0.430731 0.902480i \(-0.641744\pi\)
0.902480 + 0.430731i \(0.141744\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.4.l.b.863.9 48
3.2 odd 2 inner 1152.4.l.b.863.16 48
4.3 odd 2 1152.4.l.a.863.9 48
8.3 odd 2 576.4.l.a.431.16 48
8.5 even 2 144.4.l.a.35.5 48
12.11 even 2 1152.4.l.a.863.16 48
16.3 odd 4 144.4.l.a.107.20 yes 48
16.5 even 4 1152.4.l.a.287.16 48
16.11 odd 4 inner 1152.4.l.b.287.16 48
16.13 even 4 576.4.l.a.143.9 48
24.5 odd 2 144.4.l.a.35.20 yes 48
24.11 even 2 576.4.l.a.431.9 48
48.5 odd 4 1152.4.l.a.287.9 48
48.11 even 4 inner 1152.4.l.b.287.9 48
48.29 odd 4 576.4.l.a.143.16 48
48.35 even 4 144.4.l.a.107.5 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.l.a.35.5 48 8.5 even 2
144.4.l.a.35.20 yes 48 24.5 odd 2
144.4.l.a.107.5 yes 48 48.35 even 4
144.4.l.a.107.20 yes 48 16.3 odd 4
576.4.l.a.143.9 48 16.13 even 4
576.4.l.a.143.16 48 48.29 odd 4
576.4.l.a.431.9 48 24.11 even 2
576.4.l.a.431.16 48 8.3 odd 2
1152.4.l.a.287.9 48 48.5 odd 4
1152.4.l.a.287.16 48 16.5 even 4
1152.4.l.a.863.9 48 4.3 odd 2
1152.4.l.a.863.16 48 12.11 even 2
1152.4.l.b.287.9 48 48.11 even 4 inner
1152.4.l.b.287.16 48 16.11 odd 4 inner
1152.4.l.b.863.9 48 1.1 even 1 trivial
1152.4.l.b.863.16 48 3.2 odd 2 inner