Properties

Label 144.4.l.a.35.1
Level $144$
Weight $4$
Character 144.35
Analytic conductor $8.496$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,4,Mod(35,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.35"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 144.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.49627504083\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 35.1
Character \(\chi\) \(=\) 144.35
Dual form 144.4.l.a.107.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.81788 - 0.244009i) q^{2} +(7.88092 + 1.37518i) q^{4} +(15.2065 + 15.2065i) q^{5} +24.4971 q^{7} +(-21.8719 - 5.79811i) q^{8} +(-39.1395 - 46.5605i) q^{10} +(-20.1941 + 20.1941i) q^{11} +(-26.7706 - 26.7706i) q^{13} +(-69.0301 - 5.97753i) q^{14} +(60.2178 + 21.6753i) q^{16} +85.9084i q^{17} +(53.2541 - 53.2541i) q^{19} +(98.9292 + 140.752i) q^{20} +(61.8322 - 51.9771i) q^{22} -119.986i q^{23} +337.472i q^{25} +(68.9040 + 81.9686i) q^{26} +(193.060 + 33.6879i) q^{28} +(78.5071 - 78.5071i) q^{29} +200.984i q^{31} +(-164.398 - 75.7722i) q^{32} +(20.9624 - 242.080i) q^{34} +(372.515 + 372.515i) q^{35} +(-76.9819 + 76.9819i) q^{37} +(-163.058 + 137.069i) q^{38} +(-244.426 - 420.763i) q^{40} -279.001 q^{41} +(15.7637 + 15.7637i) q^{43} +(-186.919 + 131.378i) q^{44} +(-29.2778 + 338.108i) q^{46} +470.913 q^{47} +257.110 q^{49} +(82.3464 - 950.957i) q^{50} +(-174.162 - 247.791i) q^{52} +(-112.686 - 112.686i) q^{53} -614.162 q^{55} +(-535.800 - 142.037i) q^{56} +(-240.380 + 202.067i) q^{58} +(241.182 - 241.182i) q^{59} +(6.00098 + 6.00098i) q^{61} +(49.0420 - 566.349i) q^{62} +(444.764 + 253.632i) q^{64} -814.171i q^{65} +(273.801 - 273.801i) q^{67} +(-118.139 + 677.037i) q^{68} +(-958.805 - 1140.60i) q^{70} +448.812i q^{71} +54.7653i q^{73} +(235.710 - 198.142i) q^{74} +(492.925 - 346.457i) q^{76} +(-494.698 + 494.698i) q^{77} -29.1159i q^{79} +(586.094 + 1245.30i) q^{80} +(786.193 + 68.0789i) q^{82} +(-893.890 - 893.890i) q^{83} +(-1306.36 + 1306.36i) q^{85} +(-40.5738 - 48.2668i) q^{86} +(558.773 - 324.597i) q^{88} -281.264 q^{89} +(-655.802 - 655.802i) q^{91} +(165.003 - 945.604i) q^{92} +(-1326.98 - 114.907i) q^{94} +1619.61 q^{95} +188.720 q^{97} +(-724.506 - 62.7373i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 120 q^{10} - 144 q^{16} - 48 q^{19} + 72 q^{22} + 72 q^{28} - 984 q^{34} - 1272 q^{40} + 864 q^{43} - 1416 q^{46} + 2352 q^{49} - 648 q^{52} - 576 q^{55} + 1128 q^{58} + 1824 q^{61} + 3024 q^{64}+ \cdots - 11304 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.81788 0.244009i −0.996272 0.0862703i
\(3\) 0 0
\(4\) 7.88092 + 1.37518i 0.985115 + 0.171897i
\(5\) 15.2065 + 15.2065i 1.36011 + 1.36011i 0.873774 + 0.486333i \(0.161666\pi\)
0.486333 + 0.873774i \(0.338334\pi\)
\(6\) 0 0
\(7\) 24.4971 1.32272 0.661361 0.750068i \(-0.269979\pi\)
0.661361 + 0.750068i \(0.269979\pi\)
\(8\) −21.8719 5.79811i −0.966613 0.256243i
\(9\) 0 0
\(10\) −39.1395 46.5605i −1.23770 1.47237i
\(11\) −20.1941 + 20.1941i −0.553524 + 0.553524i −0.927456 0.373932i \(-0.878009\pi\)
0.373932 + 0.927456i \(0.378009\pi\)
\(12\) 0 0
\(13\) −26.7706 26.7706i −0.571140 0.571140i 0.361307 0.932447i \(-0.382331\pi\)
−0.932447 + 0.361307i \(0.882331\pi\)
\(14\) −69.0301 5.97753i −1.31779 0.114112i
\(15\) 0 0
\(16\) 60.2178 + 21.6753i 0.940903 + 0.338677i
\(17\) 85.9084i 1.22564i 0.790223 + 0.612819i \(0.209965\pi\)
−0.790223 + 0.612819i \(0.790035\pi\)
\(18\) 0 0
\(19\) 53.2541 53.2541i 0.643017 0.643017i −0.308279 0.951296i \(-0.599753\pi\)
0.951296 + 0.308279i \(0.0997530\pi\)
\(20\) 98.9292 + 140.752i 1.10606 + 1.57366i
\(21\) 0 0
\(22\) 61.8322 51.9771i 0.599212 0.503707i
\(23\) 119.986i 1.08778i −0.839157 0.543889i \(-0.816951\pi\)
0.839157 0.543889i \(-0.183049\pi\)
\(24\) 0 0
\(25\) 337.472i 2.69978i
\(26\) 68.9040 + 81.9686i 0.519738 + 0.618283i
\(27\) 0 0
\(28\) 193.060 + 33.6879i 1.30303 + 0.227372i
\(29\) 78.5071 78.5071i 0.502703 0.502703i −0.409574 0.912277i \(-0.634323\pi\)
0.912277 + 0.409574i \(0.134323\pi\)
\(30\) 0 0
\(31\) 200.984i 1.16445i 0.813029 + 0.582223i \(0.197817\pi\)
−0.813029 + 0.582223i \(0.802183\pi\)
\(32\) −164.398 75.7722i −0.908177 0.418586i
\(33\) 0 0
\(34\) 20.9624 242.080i 0.105736 1.22107i
\(35\) 372.515 + 372.515i 1.79904 + 1.79904i
\(36\) 0 0
\(37\) −76.9819 + 76.9819i −0.342047 + 0.342047i −0.857137 0.515089i \(-0.827759\pi\)
0.515089 + 0.857137i \(0.327759\pi\)
\(38\) −163.058 + 137.069i −0.696093 + 0.585146i
\(39\) 0 0
\(40\) −244.426 420.763i −0.966179 1.66321i
\(41\) −279.001 −1.06275 −0.531374 0.847137i \(-0.678324\pi\)
−0.531374 + 0.847137i \(0.678324\pi\)
\(42\) 0 0
\(43\) 15.7637 + 15.7637i 0.0559057 + 0.0559057i 0.734507 0.678601i \(-0.237414\pi\)
−0.678601 + 0.734507i \(0.737414\pi\)
\(44\) −186.919 + 131.378i −0.640433 + 0.450135i
\(45\) 0 0
\(46\) −29.2778 + 338.108i −0.0938430 + 1.08372i
\(47\) 470.913 1.46148 0.730742 0.682654i \(-0.239174\pi\)
0.730742 + 0.682654i \(0.239174\pi\)
\(48\) 0 0
\(49\) 257.110 0.749592
\(50\) 82.3464 950.957i 0.232911 2.68971i
\(51\) 0 0
\(52\) −174.162 247.791i −0.464461 0.660816i
\(53\) −112.686 112.686i −0.292050 0.292050i 0.545840 0.837889i \(-0.316211\pi\)
−0.837889 + 0.545840i \(0.816211\pi\)
\(54\) 0 0
\(55\) −614.162 −1.50570
\(56\) −535.800 142.037i −1.27856 0.338938i
\(57\) 0 0
\(58\) −240.380 + 202.067i −0.544197 + 0.457461i
\(59\) 241.182 241.182i 0.532190 0.532190i −0.389033 0.921224i \(-0.627191\pi\)
0.921224 + 0.389033i \(0.127191\pi\)
\(60\) 0 0
\(61\) 6.00098 + 6.00098i 0.0125958 + 0.0125958i 0.713377 0.700781i \(-0.247165\pi\)
−0.700781 + 0.713377i \(0.747165\pi\)
\(62\) 49.0420 566.349i 0.100457 1.16010i
\(63\) 0 0
\(64\) 444.764 + 253.632i 0.868679 + 0.495375i
\(65\) 814.171i 1.55362i
\(66\) 0 0
\(67\) 273.801 273.801i 0.499255 0.499255i −0.411951 0.911206i \(-0.635153\pi\)
0.911206 + 0.411951i \(0.135153\pi\)
\(68\) −118.139 + 677.037i −0.210684 + 1.20739i
\(69\) 0 0
\(70\) −958.805 1140.60i −1.63713 1.94754i
\(71\) 448.812i 0.750201i 0.926984 + 0.375100i \(0.122392\pi\)
−0.926984 + 0.375100i \(0.877608\pi\)
\(72\) 0 0
\(73\) 54.7653i 0.0878053i 0.999036 + 0.0439027i \(0.0139791\pi\)
−0.999036 + 0.0439027i \(0.986021\pi\)
\(74\) 235.710 198.142i 0.370281 0.311264i
\(75\) 0 0
\(76\) 492.925 346.457i 0.743978 0.522913i
\(77\) −494.698 + 494.698i −0.732157 + 0.732157i
\(78\) 0 0
\(79\) 29.1159i 0.0414658i −0.999785 0.0207329i \(-0.993400\pi\)
0.999785 0.0207329i \(-0.00659996\pi\)
\(80\) 586.094 + 1245.30i 0.819091 + 1.74036i
\(81\) 0 0
\(82\) 786.193 + 68.0789i 1.05879 + 0.0916836i
\(83\) −893.890 893.890i −1.18213 1.18213i −0.979190 0.202945i \(-0.934949\pi\)
−0.202945 0.979190i \(-0.565051\pi\)
\(84\) 0 0
\(85\) −1306.36 + 1306.36i −1.66700 + 1.66700i
\(86\) −40.5738 48.2668i −0.0508743 0.0605203i
\(87\) 0 0
\(88\) 558.773 324.597i 0.676879 0.393206i
\(89\) −281.264 −0.334988 −0.167494 0.985873i \(-0.553567\pi\)
−0.167494 + 0.985873i \(0.553567\pi\)
\(90\) 0 0
\(91\) −655.802 655.802i −0.755459 0.755459i
\(92\) 165.003 945.604i 0.186986 1.07159i
\(93\) 0 0
\(94\) −1326.98 114.907i −1.45603 0.126083i
\(95\) 1619.61 1.74914
\(96\) 0 0
\(97\) 188.720 0.197542 0.0987709 0.995110i \(-0.468509\pi\)
0.0987709 + 0.995110i \(0.468509\pi\)
\(98\) −724.506 62.7373i −0.746798 0.0646675i
\(99\) 0 0
\(100\) −464.085 + 2659.59i −0.464085 + 2.65959i
\(101\) −218.904 218.904i −0.215661 0.215661i 0.591006 0.806667i \(-0.298731\pi\)
−0.806667 + 0.591006i \(0.798731\pi\)
\(102\) 0 0
\(103\) 1897.36 1.81507 0.907536 0.419973i \(-0.137961\pi\)
0.907536 + 0.419973i \(0.137961\pi\)
\(104\) 430.306 + 740.743i 0.405721 + 0.698421i
\(105\) 0 0
\(106\) 290.040 + 345.033i 0.265766 + 0.316156i
\(107\) 400.476 400.476i 0.361827 0.361827i −0.502658 0.864485i \(-0.667645\pi\)
0.864485 + 0.502658i \(0.167645\pi\)
\(108\) 0 0
\(109\) −206.240 206.240i −0.181231 0.181231i 0.610661 0.791892i \(-0.290904\pi\)
−0.791892 + 0.610661i \(0.790904\pi\)
\(110\) 1730.64 + 149.861i 1.50009 + 0.129897i
\(111\) 0 0
\(112\) 1475.16 + 530.984i 1.24455 + 0.447976i
\(113\) 385.068i 0.320568i −0.987071 0.160284i \(-0.948759\pi\)
0.987071 0.160284i \(-0.0512410\pi\)
\(114\) 0 0
\(115\) 1824.57 1824.57i 1.47949 1.47949i
\(116\) 726.669 510.747i 0.581634 0.408807i
\(117\) 0 0
\(118\) −738.473 + 620.772i −0.576119 + 0.484294i
\(119\) 2104.51i 1.62118i
\(120\) 0 0
\(121\) 515.394i 0.387223i
\(122\) −15.4458 18.3743i −0.0114622 0.0136355i
\(123\) 0 0
\(124\) −276.389 + 1583.94i −0.200165 + 1.14711i
\(125\) −3230.95 + 3230.95i −2.31188 + 2.31188i
\(126\) 0 0
\(127\) 1420.04i 0.992189i −0.868268 0.496095i \(-0.834767\pi\)
0.868268 0.496095i \(-0.165233\pi\)
\(128\) −1191.40 823.231i −0.822705 0.568469i
\(129\) 0 0
\(130\) −198.665 + 2294.24i −0.134031 + 1.54783i
\(131\) −202.131 202.131i −0.134811 0.134811i 0.636481 0.771292i \(-0.280389\pi\)
−0.771292 + 0.636481i \(0.780389\pi\)
\(132\) 0 0
\(133\) 1304.57 1304.57i 0.850532 0.850532i
\(134\) −838.348 + 704.728i −0.540464 + 0.454323i
\(135\) 0 0
\(136\) 498.106 1878.98i 0.314061 1.18472i
\(137\) 985.515 0.614586 0.307293 0.951615i \(-0.400577\pi\)
0.307293 + 0.951615i \(0.400577\pi\)
\(138\) 0 0
\(139\) −1199.58 1199.58i −0.731992 0.731992i 0.239022 0.971014i \(-0.423173\pi\)
−0.971014 + 0.239022i \(0.923173\pi\)
\(140\) 2423.48 + 3448.03i 1.46301 + 2.08151i
\(141\) 0 0
\(142\) 109.514 1264.70i 0.0647200 0.747404i
\(143\) 1081.22 0.632279
\(144\) 0 0
\(145\) 2387.63 1.36746
\(146\) 13.3632 154.322i 0.00757499 0.0874780i
\(147\) 0 0
\(148\) −712.552 + 500.824i −0.395753 + 0.278159i
\(149\) −1257.05 1257.05i −0.691150 0.691150i 0.271335 0.962485i \(-0.412535\pi\)
−0.962485 + 0.271335i \(0.912535\pi\)
\(150\) 0 0
\(151\) −1832.83 −0.987770 −0.493885 0.869527i \(-0.664424\pi\)
−0.493885 + 0.869527i \(0.664424\pi\)
\(152\) −1473.54 + 855.997i −0.786317 + 0.456780i
\(153\) 0 0
\(154\) 1514.71 1273.29i 0.792591 0.666264i
\(155\) −3056.25 + 3056.25i −1.58377 + 1.58377i
\(156\) 0 0
\(157\) −2101.87 2101.87i −1.06845 1.06845i −0.997478 0.0709767i \(-0.977388\pi\)
−0.0709767 0.997478i \(-0.522612\pi\)
\(158\) −7.10455 + 82.0452i −0.00357727 + 0.0413112i
\(159\) 0 0
\(160\) −1347.68 3652.13i −0.665895 1.80454i
\(161\) 2939.33i 1.43883i
\(162\) 0 0
\(163\) −154.434 + 154.434i −0.0742099 + 0.0742099i −0.743238 0.669028i \(-0.766711\pi\)
0.669028 + 0.743238i \(0.266711\pi\)
\(164\) −2198.79 383.676i −1.04693 0.182684i
\(165\) 0 0
\(166\) 2300.76 + 2736.99i 1.07574 + 1.27971i
\(167\) 3482.63i 1.61374i −0.590730 0.806869i \(-0.701160\pi\)
0.590730 0.806869i \(-0.298840\pi\)
\(168\) 0 0
\(169\) 763.674i 0.347598i
\(170\) 3999.94 3362.41i 1.80460 1.51697i
\(171\) 0 0
\(172\) 102.555 + 145.911i 0.0454635 + 0.0646836i
\(173\) 2563.59 2563.59i 1.12663 1.12663i 0.135903 0.990722i \(-0.456606\pi\)
0.990722 0.135903i \(-0.0433936\pi\)
\(174\) 0 0
\(175\) 8267.11i 3.57106i
\(176\) −1653.76 + 778.331i −0.708278 + 0.333346i
\(177\) 0 0
\(178\) 792.568 + 68.6310i 0.333739 + 0.0288995i
\(179\) −580.106 580.106i −0.242230 0.242230i 0.575542 0.817772i \(-0.304791\pi\)
−0.817772 + 0.575542i \(0.804791\pi\)
\(180\) 0 0
\(181\) 18.6302 18.6302i 0.00765067 0.00765067i −0.703271 0.710922i \(-0.748278\pi\)
0.710922 + 0.703271i \(0.248278\pi\)
\(182\) 1687.95 + 2008.00i 0.687469 + 0.817816i
\(183\) 0 0
\(184\) −695.695 + 2624.34i −0.278735 + 1.05146i
\(185\) −2341.24 −0.930441
\(186\) 0 0
\(187\) −1734.85 1734.85i −0.678420 0.678420i
\(188\) 3711.23 + 647.589i 1.43973 + 0.251225i
\(189\) 0 0
\(190\) −4563.87 395.200i −1.74262 0.150899i
\(191\) −1727.83 −0.654561 −0.327281 0.944927i \(-0.606132\pi\)
−0.327281 + 0.944927i \(0.606132\pi\)
\(192\) 0 0
\(193\) 4097.40 1.52817 0.764087 0.645113i \(-0.223190\pi\)
0.764087 + 0.645113i \(0.223190\pi\)
\(194\) −531.789 46.0493i −0.196805 0.0170420i
\(195\) 0 0
\(196\) 2026.26 + 353.572i 0.738435 + 0.128853i
\(197\) 3889.19 + 3889.19i 1.40656 + 1.40656i 0.776729 + 0.629835i \(0.216877\pi\)
0.629835 + 0.776729i \(0.283123\pi\)
\(198\) 0 0
\(199\) −3332.92 −1.18726 −0.593629 0.804739i \(-0.702305\pi\)
−0.593629 + 0.804739i \(0.702305\pi\)
\(200\) 1956.70 7381.18i 0.691798 2.60964i
\(201\) 0 0
\(202\) 563.430 + 670.259i 0.196251 + 0.233462i
\(203\) 1923.20 1923.20i 0.664936 0.664936i
\(204\) 0 0
\(205\) −4242.62 4242.62i −1.44545 1.44545i
\(206\) −5346.54 462.974i −1.80831 0.156587i
\(207\) 0 0
\(208\) −1031.80 2192.32i −0.343955 0.730819i
\(209\) 2150.84i 0.711850i
\(210\) 0 0
\(211\) 3673.14 3673.14i 1.19843 1.19843i 0.223796 0.974636i \(-0.428155\pi\)
0.974636 0.223796i \(-0.0718448\pi\)
\(212\) −733.107 1043.03i −0.237500 0.337905i
\(213\) 0 0
\(214\) −1226.21 + 1030.77i −0.391693 + 0.329263i
\(215\) 479.421i 0.152075i
\(216\) 0 0
\(217\) 4923.54i 1.54024i
\(218\) 530.834 + 631.483i 0.164920 + 0.196190i
\(219\) 0 0
\(220\) −4840.16 844.582i −1.48329 0.258826i
\(221\) 2299.82 2299.82i 0.700011 0.700011i
\(222\) 0 0
\(223\) 867.243i 0.260426i −0.991486 0.130213i \(-0.958434\pi\)
0.991486 0.130213i \(-0.0415660\pi\)
\(224\) −4027.27 1856.20i −1.20127 0.553673i
\(225\) 0 0
\(226\) −93.9602 + 1085.08i −0.0276555 + 0.319373i
\(227\) −331.276 331.276i −0.0968614 0.0968614i 0.657016 0.753877i \(-0.271819\pi\)
−0.753877 + 0.657016i \(0.771819\pi\)
\(228\) 0 0
\(229\) −4331.27 + 4331.27i −1.24986 + 1.24986i −0.294080 + 0.955781i \(0.595013\pi\)
−0.955781 + 0.294080i \(0.904987\pi\)
\(230\) −5586.63 + 4696.21i −1.60162 + 1.34634i
\(231\) 0 0
\(232\) −2172.29 + 1261.91i −0.614733 + 0.357105i
\(233\) 3952.98 1.11145 0.555726 0.831365i \(-0.312440\pi\)
0.555726 + 0.831365i \(0.312440\pi\)
\(234\) 0 0
\(235\) 7160.91 + 7160.91i 1.98777 + 1.98777i
\(236\) 2232.41 1569.07i 0.615751 0.432787i
\(237\) 0 0
\(238\) 513.520 5930.26i 0.139860 1.61513i
\(239\) 2530.55 0.684887 0.342443 0.939538i \(-0.388745\pi\)
0.342443 + 0.939538i \(0.388745\pi\)
\(240\) 0 0
\(241\) −315.543 −0.0843398 −0.0421699 0.999110i \(-0.513427\pi\)
−0.0421699 + 0.999110i \(0.513427\pi\)
\(242\) 125.761 1452.32i 0.0334059 0.385780i
\(243\) 0 0
\(244\) 39.0408 + 55.5456i 0.0102432 + 0.0145735i
\(245\) 3909.73 + 3909.73i 1.01953 + 1.01953i
\(246\) 0 0
\(247\) −2851.28 −0.734505
\(248\) 1165.33 4395.91i 0.298380 1.12557i
\(249\) 0 0
\(250\) 9892.82 8316.06i 2.50271 2.10381i
\(251\) −871.154 + 871.154i −0.219071 + 0.219071i −0.808107 0.589036i \(-0.799508\pi\)
0.589036 + 0.808107i \(0.299508\pi\)
\(252\) 0 0
\(253\) 2423.02 + 2423.02i 0.602111 + 0.602111i
\(254\) −346.503 + 4001.50i −0.0855965 + 0.988490i
\(255\) 0 0
\(256\) 3156.36 + 2610.48i 0.770596 + 0.637325i
\(257\) 1822.51i 0.442353i −0.975234 0.221177i \(-0.929010\pi\)
0.975234 0.221177i \(-0.0709898\pi\)
\(258\) 0 0
\(259\) −1885.84 + 1885.84i −0.452433 + 0.452433i
\(260\) 1119.63 6416.41i 0.267063 1.53050i
\(261\) 0 0
\(262\) 520.259 + 618.902i 0.122678 + 0.145939i
\(263\) 1120.24i 0.262651i −0.991339 0.131325i \(-0.958077\pi\)
0.991339 0.131325i \(-0.0419233\pi\)
\(264\) 0 0
\(265\) 3427.11i 0.794437i
\(266\) −3994.46 + 3357.80i −0.920737 + 0.773986i
\(267\) 0 0
\(268\) 2534.33 1781.28i 0.577644 0.406003i
\(269\) −1477.67 + 1477.67i −0.334926 + 0.334926i −0.854454 0.519527i \(-0.826108\pi\)
0.519527 + 0.854454i \(0.326108\pi\)
\(270\) 0 0
\(271\) 5865.36i 1.31474i 0.753566 + 0.657372i \(0.228332\pi\)
−0.753566 + 0.657372i \(0.771668\pi\)
\(272\) −1862.09 + 5173.21i −0.415096 + 1.15321i
\(273\) 0 0
\(274\) −2777.07 240.475i −0.612294 0.0530205i
\(275\) −6814.96 6814.96i −1.49439 1.49439i
\(276\) 0 0
\(277\) 197.049 197.049i 0.0427420 0.0427420i −0.685413 0.728155i \(-0.740378\pi\)
0.728155 + 0.685413i \(0.240378\pi\)
\(278\) 3087.56 + 3672.98i 0.666114 + 0.792412i
\(279\) 0 0
\(280\) −5987.74 10307.5i −1.27799 2.19997i
\(281\) 4436.82 0.941917 0.470958 0.882155i \(-0.343908\pi\)
0.470958 + 0.882155i \(0.343908\pi\)
\(282\) 0 0
\(283\) −6047.06 6047.06i −1.27018 1.27018i −0.945994 0.324186i \(-0.894910\pi\)
−0.324186 0.945994i \(-0.605090\pi\)
\(284\) −617.197 + 3537.05i −0.128957 + 0.739034i
\(285\) 0 0
\(286\) −3046.74 263.827i −0.629921 0.0545469i
\(287\) −6834.73 −1.40572
\(288\) 0 0
\(289\) −2467.25 −0.502189
\(290\) −6728.05 582.603i −1.36236 0.117971i
\(291\) 0 0
\(292\) −75.3120 + 431.601i −0.0150935 + 0.0864984i
\(293\) 365.261 + 365.261i 0.0728287 + 0.0728287i 0.742583 0.669754i \(-0.233601\pi\)
−0.669754 + 0.742583i \(0.733601\pi\)
\(294\) 0 0
\(295\) 7335.05 1.44767
\(296\) 2130.09 1237.39i 0.418274 0.242980i
\(297\) 0 0
\(298\) 3235.48 + 3848.94i 0.628948 + 0.748199i
\(299\) −3212.11 + 3212.11i −0.621274 + 0.621274i
\(300\) 0 0
\(301\) 386.166 + 386.166i 0.0739477 + 0.0739477i
\(302\) 5164.69 + 447.226i 0.984087 + 0.0852152i
\(303\) 0 0
\(304\) 4361.14 2052.54i 0.822792 0.387241i
\(305\) 182.507i 0.0342634i
\(306\) 0 0
\(307\) −4339.31 + 4339.31i −0.806701 + 0.806701i −0.984133 0.177432i \(-0.943221\pi\)
0.177432 + 0.984133i \(0.443221\pi\)
\(308\) −4578.98 + 3218.38i −0.847115 + 0.595403i
\(309\) 0 0
\(310\) 9357.92 7866.41i 1.71450 1.44123i
\(311\) 8077.43i 1.47276i 0.676567 + 0.736382i \(0.263467\pi\)
−0.676567 + 0.736382i \(0.736533\pi\)
\(312\) 0 0
\(313\) 6259.69i 1.13041i −0.824950 0.565206i \(-0.808797\pi\)
0.824950 0.565206i \(-0.191203\pi\)
\(314\) 5409.94 + 6435.69i 0.972295 + 1.15665i
\(315\) 0 0
\(316\) 40.0396 229.460i 0.00712786 0.0408486i
\(317\) −4411.87 + 4411.87i −0.781689 + 0.781689i −0.980116 0.198427i \(-0.936417\pi\)
0.198427 + 0.980116i \(0.436417\pi\)
\(318\) 0 0
\(319\) 3170.76i 0.556516i
\(320\) 2906.44 + 10620.1i 0.507734 + 1.85526i
\(321\) 0 0
\(322\) −717.223 + 8282.67i −0.124128 + 1.43346i
\(323\) 4574.97 + 4574.97i 0.788106 + 0.788106i
\(324\) 0 0
\(325\) 9034.32 9034.32i 1.54195 1.54195i
\(326\) 472.860 397.494i 0.0803353 0.0675311i
\(327\) 0 0
\(328\) 6102.30 + 1617.68i 1.02727 + 0.272321i
\(329\) 11536.0 1.93314
\(330\) 0 0
\(331\) 5055.03 + 5055.03i 0.839424 + 0.839424i 0.988783 0.149359i \(-0.0477210\pi\)
−0.149359 + 0.988783i \(0.547721\pi\)
\(332\) −5815.42 8273.94i −0.961333 1.36774i
\(333\) 0 0
\(334\) −849.795 + 9813.65i −0.139218 + 1.60772i
\(335\) 8327.07 1.35808
\(336\) 0 0
\(337\) 9698.71 1.56772 0.783861 0.620936i \(-0.213247\pi\)
0.783861 + 0.620936i \(0.213247\pi\)
\(338\) −186.343 + 2151.94i −0.0299874 + 0.346302i
\(339\) 0 0
\(340\) −12091.8 + 8498.85i −1.92874 + 1.35563i
\(341\) −4058.70 4058.70i −0.644548 0.644548i
\(342\) 0 0
\(343\) −2104.06 −0.331220
\(344\) −253.384 436.183i −0.0397137 0.0683646i
\(345\) 0 0
\(346\) −7849.44 + 6598.36i −1.21962 + 1.02523i
\(347\) 1095.25 1095.25i 0.169441 0.169441i −0.617293 0.786734i \(-0.711771\pi\)
0.786734 + 0.617293i \(0.211771\pi\)
\(348\) 0 0
\(349\) 2265.51 + 2265.51i 0.347478 + 0.347478i 0.859169 0.511691i \(-0.170981\pi\)
−0.511691 + 0.859169i \(0.670981\pi\)
\(350\) 2017.25 23295.7i 0.308076 3.55774i
\(351\) 0 0
\(352\) 4850.02 1789.71i 0.734395 0.271000i
\(353\) 1670.69i 0.251904i 0.992036 + 0.125952i \(0.0401985\pi\)
−0.992036 + 0.125952i \(0.959801\pi\)
\(354\) 0 0
\(355\) −6824.85 + 6824.85i −1.02035 + 1.02035i
\(356\) −2216.62 386.788i −0.330001 0.0575835i
\(357\) 0 0
\(358\) 1493.12 + 1776.22i 0.220430 + 0.262224i
\(359\) 753.959i 0.110842i −0.998463 0.0554212i \(-0.982350\pi\)
0.998463 0.0554212i \(-0.0176502\pi\)
\(360\) 0 0
\(361\) 1187.01i 0.173058i
\(362\) −57.0436 + 47.9517i −0.00828217 + 0.00696212i
\(363\) 0 0
\(364\) −4266.48 6070.17i −0.614353 0.874075i
\(365\) −832.785 + 832.785i −0.119425 + 0.119425i
\(366\) 0 0
\(367\) 5281.79i 0.751246i −0.926773 0.375623i \(-0.877429\pi\)
0.926773 0.375623i \(-0.122571\pi\)
\(368\) 2600.75 7225.32i 0.368406 1.02349i
\(369\) 0 0
\(370\) 6597.35 + 571.285i 0.926972 + 0.0802694i
\(371\) −2760.49 2760.49i −0.386300 0.386300i
\(372\) 0 0
\(373\) −1795.08 + 1795.08i −0.249184 + 0.249184i −0.820636 0.571452i \(-0.806380\pi\)
0.571452 + 0.820636i \(0.306380\pi\)
\(374\) 4465.27 + 5311.91i 0.617363 + 0.734418i
\(375\) 0 0
\(376\) −10299.8 2730.40i −1.41269 0.374494i
\(377\) −4203.36 −0.574228
\(378\) 0 0
\(379\) −9113.85 9113.85i −1.23522 1.23522i −0.961934 0.273283i \(-0.911890\pi\)
−0.273283 0.961934i \(-0.588110\pi\)
\(380\) 12764.0 + 2227.25i 1.72311 + 0.300673i
\(381\) 0 0
\(382\) 4868.81 + 421.606i 0.652121 + 0.0564692i
\(383\) −2975.11 −0.396922 −0.198461 0.980109i \(-0.563594\pi\)
−0.198461 + 0.980109i \(0.563594\pi\)
\(384\) 0 0
\(385\) −15045.2 −1.99162
\(386\) −11546.0 999.804i −1.52248 0.131836i
\(387\) 0 0
\(388\) 1487.28 + 259.523i 0.194601 + 0.0339569i
\(389\) −4056.95 4056.95i −0.528780 0.528780i 0.391429 0.920209i \(-0.371981\pi\)
−0.920209 + 0.391429i \(0.871981\pi\)
\(390\) 0 0
\(391\) 10307.8 1.33322
\(392\) −5623.50 1490.75i −0.724565 0.192077i
\(393\) 0 0
\(394\) −10010.3 11908.3i −1.27998 1.52266i
\(395\) 442.750 442.750i 0.0563979 0.0563979i
\(396\) 0 0
\(397\) 2409.95 + 2409.95i 0.304665 + 0.304665i 0.842836 0.538171i \(-0.180885\pi\)
−0.538171 + 0.842836i \(0.680885\pi\)
\(398\) 9391.78 + 813.263i 1.18283 + 0.102425i
\(399\) 0 0
\(400\) −7314.83 + 20321.8i −0.914353 + 2.54023i
\(401\) 7830.00i 0.975091i −0.873098 0.487545i \(-0.837892\pi\)
0.873098 0.487545i \(-0.162108\pi\)
\(402\) 0 0
\(403\) 5380.46 5380.46i 0.665061 0.665061i
\(404\) −1424.13 2026.19i −0.175379 0.249522i
\(405\) 0 0
\(406\) −5888.63 + 4950.07i −0.719822 + 0.605093i
\(407\) 3109.17i 0.378662i
\(408\) 0 0
\(409\) 4518.97i 0.546329i −0.961967 0.273164i \(-0.911930\pi\)
0.961967 0.273164i \(-0.0880703\pi\)
\(410\) 10920.0 + 12990.4i 1.31536 + 1.56476i
\(411\) 0 0
\(412\) 14952.9 + 2609.21i 1.78806 + 0.312006i
\(413\) 5908.27 5908.27i 0.703940 0.703940i
\(414\) 0 0
\(415\) 27185.8i 3.21566i
\(416\) 2372.55 + 6429.48i 0.279625 + 0.757768i
\(417\) 0 0
\(418\) 524.825 6060.81i 0.0614115 0.709196i
\(419\) −427.092 427.092i −0.0497967 0.0497967i 0.681770 0.731567i \(-0.261211\pi\)
−0.731567 + 0.681770i \(0.761211\pi\)
\(420\) 0 0
\(421\) −3815.11 + 3815.11i −0.441656 + 0.441656i −0.892568 0.450913i \(-0.851099\pi\)
0.450913 + 0.892568i \(0.351099\pi\)
\(422\) −11246.7 + 9454.18i −1.29735 + 1.09057i
\(423\) 0 0
\(424\) 1811.30 + 3118.03i 0.207463 + 0.357134i
\(425\) −28991.7 −3.30895
\(426\) 0 0
\(427\) 147.007 + 147.007i 0.0166608 + 0.0166608i
\(428\) 3706.84 2605.39i 0.418638 0.294244i
\(429\) 0 0
\(430\) 116.983 1350.95i 0.0131196 0.151508i
\(431\) −12742.0 −1.42404 −0.712022 0.702157i \(-0.752220\pi\)
−0.712022 + 0.702157i \(0.752220\pi\)
\(432\) 0 0
\(433\) −14363.7 −1.59417 −0.797085 0.603867i \(-0.793626\pi\)
−0.797085 + 0.603867i \(0.793626\pi\)
\(434\) 1201.39 13873.9i 0.132877 1.53449i
\(435\) 0 0
\(436\) −1341.74 1908.97i −0.147380 0.209686i
\(437\) −6389.77 6389.77i −0.699460 0.699460i
\(438\) 0 0
\(439\) −3156.53 −0.343173 −0.171586 0.985169i \(-0.554889\pi\)
−0.171586 + 0.985169i \(0.554889\pi\)
\(440\) 13432.9 + 3560.98i 1.45543 + 0.385825i
\(441\) 0 0
\(442\) −7041.79 + 5919.44i −0.757791 + 0.637011i
\(443\) 8113.23 8113.23i 0.870139 0.870139i −0.122349 0.992487i \(-0.539043\pi\)
0.992487 + 0.122349i \(0.0390426\pi\)
\(444\) 0 0
\(445\) −4277.03 4277.03i −0.455619 0.455619i
\(446\) −211.615 + 2443.79i −0.0224670 + 0.259455i
\(447\) 0 0
\(448\) 10895.4 + 6213.25i 1.14902 + 0.655243i
\(449\) 18120.9i 1.90463i 0.305112 + 0.952316i \(0.401306\pi\)
−0.305112 + 0.952316i \(0.598694\pi\)
\(450\) 0 0
\(451\) 5634.19 5634.19i 0.588256 0.588256i
\(452\) 529.537 3034.69i 0.0551047 0.315796i
\(453\) 0 0
\(454\) 852.662 + 1014.33i 0.0881441 + 0.104857i
\(455\) 19944.9i 2.05501i
\(456\) 0 0
\(457\) 11253.4i 1.15189i 0.817490 + 0.575943i \(0.195365\pi\)
−0.817490 + 0.575943i \(0.804635\pi\)
\(458\) 13261.9 11148.1i 1.35303 1.13738i
\(459\) 0 0
\(460\) 16888.4 11870.2i 1.71179 1.20315i
\(461\) 1886.34 1886.34i 0.190576 0.190576i −0.605369 0.795945i \(-0.706975\pi\)
0.795945 + 0.605369i \(0.206975\pi\)
\(462\) 0 0
\(463\) 4690.87i 0.470849i −0.971893 0.235424i \(-0.924352\pi\)
0.971893 0.235424i \(-0.0756480\pi\)
\(464\) 6429.19 3025.85i 0.643249 0.302741i
\(465\) 0 0
\(466\) −11139.0 964.564i −1.10731 0.0958853i
\(467\) 7780.38 + 7780.38i 0.770948 + 0.770948i 0.978272 0.207324i \(-0.0664754\pi\)
−0.207324 + 0.978272i \(0.566475\pi\)
\(468\) 0 0
\(469\) 6707.34 6707.34i 0.660375 0.660375i
\(470\) −18431.3 21925.9i −1.80888 2.15185i
\(471\) 0 0
\(472\) −6673.52 + 3876.72i −0.650792 + 0.378052i
\(473\) −636.669 −0.0618902
\(474\) 0 0
\(475\) 17971.8 + 17971.8i 1.73600 + 1.73600i
\(476\) −2894.08 + 16585.5i −0.278676 + 1.59705i
\(477\) 0 0
\(478\) −7130.80 617.479i −0.682333 0.0590854i
\(479\) 1769.08 0.168750 0.0843749 0.996434i \(-0.473111\pi\)
0.0843749 + 0.996434i \(0.473111\pi\)
\(480\) 0 0
\(481\) 4121.70 0.390714
\(482\) 889.162 + 76.9953i 0.0840253 + 0.00727602i
\(483\) 0 0
\(484\) −708.759 + 4061.78i −0.0665627 + 0.381460i
\(485\) 2869.75 + 2869.75i 0.268678 + 0.268678i
\(486\) 0 0
\(487\) −18479.1 −1.71944 −0.859721 0.510765i \(-0.829362\pi\)
−0.859721 + 0.510765i \(0.829362\pi\)
\(488\) −96.4587 166.047i −0.00894771 0.0154029i
\(489\) 0 0
\(490\) −10063.2 11971.2i −0.927769 1.10368i
\(491\) 3394.93 3394.93i 0.312039 0.312039i −0.533660 0.845699i \(-0.679184\pi\)
0.845699 + 0.533660i \(0.179184\pi\)
\(492\) 0 0
\(493\) 6744.42 + 6744.42i 0.616132 + 0.616132i
\(494\) 8034.58 + 695.739i 0.731767 + 0.0633660i
\(495\) 0 0
\(496\) −4356.40 + 12102.8i −0.394371 + 1.09563i
\(497\) 10994.6i 0.992307i
\(498\) 0 0
\(499\) 7006.50 7006.50i 0.628565 0.628565i −0.319142 0.947707i \(-0.603395\pi\)
0.947707 + 0.319142i \(0.103395\pi\)
\(500\) −29906.0 + 21019.7i −2.67487 + 1.88006i
\(501\) 0 0
\(502\) 2667.38 2242.24i 0.237153 0.199355i
\(503\) 15005.5i 1.33014i 0.746781 + 0.665070i \(0.231598\pi\)
−0.746781 + 0.665070i \(0.768402\pi\)
\(504\) 0 0
\(505\) 6657.49i 0.586643i
\(506\) −6236.55 7419.03i −0.547922 0.651811i
\(507\) 0 0
\(508\) 1952.81 11191.2i 0.170555 0.977421i
\(509\) 15473.1 15473.1i 1.34742 1.34742i 0.458958 0.888458i \(-0.348223\pi\)
0.888458 0.458958i \(-0.151777\pi\)
\(510\) 0 0
\(511\) 1341.59i 0.116142i
\(512\) −8257.27 8126.21i −0.712740 0.701428i
\(513\) 0 0
\(514\) −444.708 + 5135.61i −0.0381620 + 0.440704i
\(515\) 28852.1 + 28852.1i 2.46869 + 2.46869i
\(516\) 0 0
\(517\) −9509.68 + 9509.68i −0.808965 + 0.808965i
\(518\) 5774.23 4853.91i 0.489778 0.411715i
\(519\) 0 0
\(520\) −4720.65 + 17807.5i −0.398104 + 1.50175i
\(521\) −8687.96 −0.730569 −0.365284 0.930896i \(-0.619028\pi\)
−0.365284 + 0.930896i \(0.619028\pi\)
\(522\) 0 0
\(523\) −6047.61 6047.61i −0.505628 0.505628i 0.407553 0.913182i \(-0.366382\pi\)
−0.913182 + 0.407553i \(0.866382\pi\)
\(524\) −1315.01 1870.94i −0.109631 0.155978i
\(525\) 0 0
\(526\) −273.350 + 3156.71i −0.0226590 + 0.261672i
\(527\) −17266.2 −1.42719
\(528\) 0 0
\(529\) −2229.75 −0.183262
\(530\) −836.247 + 9657.20i −0.0685363 + 0.791475i
\(531\) 0 0
\(532\) 12075.3 8487.21i 0.984076 0.691668i
\(533\) 7469.02 + 7469.02i 0.606978 + 0.606978i
\(534\) 0 0
\(535\) 12179.6 0.984246
\(536\) −7576.08 + 4401.03i −0.610516 + 0.354656i
\(537\) 0 0
\(538\) 4524.47 3803.34i 0.362572 0.304783i
\(539\) −5192.12 + 5192.12i −0.414917 + 0.414917i
\(540\) 0 0
\(541\) 16062.4 + 16062.4i 1.27648 + 1.27648i 0.942625 + 0.333854i \(0.108349\pi\)
0.333854 + 0.942625i \(0.391651\pi\)
\(542\) 1431.20 16527.9i 0.113423 1.30984i
\(543\) 0 0
\(544\) 6509.47 14123.1i 0.513036 1.11310i
\(545\) 6272.34i 0.492987i
\(546\) 0 0
\(547\) −10435.4 + 10435.4i −0.815697 + 0.815697i −0.985481 0.169784i \(-0.945693\pi\)
0.169784 + 0.985481i \(0.445693\pi\)
\(548\) 7766.77 + 1355.26i 0.605438 + 0.105646i
\(549\) 0 0
\(550\) 17540.8 + 20866.7i 1.35990 + 1.61774i
\(551\) 8361.64i 0.646493i
\(552\) 0 0
\(553\) 713.257i 0.0548477i
\(554\) −603.343 + 507.180i −0.0462700 + 0.0388953i
\(555\) 0 0
\(556\) −7804.15 11103.4i −0.595269 0.846924i
\(557\) −6335.69 + 6335.69i −0.481960 + 0.481960i −0.905757 0.423797i \(-0.860697\pi\)
0.423797 + 0.905757i \(0.360697\pi\)
\(558\) 0 0
\(559\) 844.008i 0.0638600i
\(560\) 14357.6 + 30506.4i 1.08343 + 2.30202i
\(561\) 0 0
\(562\) −12502.4 1082.63i −0.938405 0.0812594i
\(563\) 9187.42 + 9187.42i 0.687750 + 0.687750i 0.961734 0.273984i \(-0.0883415\pi\)
−0.273984 + 0.961734i \(0.588342\pi\)
\(564\) 0 0
\(565\) 5855.52 5855.52i 0.436006 0.436006i
\(566\) 15564.4 + 18515.5i 1.15586 + 1.37502i
\(567\) 0 0
\(568\) 2602.26 9816.40i 0.192233 0.725153i
\(569\) −11816.3 −0.870588 −0.435294 0.900288i \(-0.643356\pi\)
−0.435294 + 0.900288i \(0.643356\pi\)
\(570\) 0 0
\(571\) 2344.11 + 2344.11i 0.171800 + 0.171800i 0.787770 0.615970i \(-0.211236\pi\)
−0.615970 + 0.787770i \(0.711236\pi\)
\(572\) 8520.98 + 1486.87i 0.622867 + 0.108687i
\(573\) 0 0
\(574\) 19259.5 + 1667.74i 1.40048 + 0.121272i
\(575\) 40492.1 2.93676
\(576\) 0 0
\(577\) 16615.2 1.19878 0.599392 0.800456i \(-0.295409\pi\)
0.599392 + 0.800456i \(0.295409\pi\)
\(578\) 6952.43 + 602.033i 0.500317 + 0.0433240i
\(579\) 0 0
\(580\) 18816.7 + 3283.41i 1.34711 + 0.235063i
\(581\) −21897.8 21897.8i −1.56364 1.56364i
\(582\) 0 0
\(583\) 4551.20 0.323313
\(584\) 317.535 1197.82i 0.0224995 0.0848737i
\(585\) 0 0
\(586\) −940.136 1118.39i −0.0662742 0.0788401i
\(587\) 1186.35 1186.35i 0.0834173 0.0834173i −0.664167 0.747584i \(-0.731214\pi\)
0.747584 + 0.664167i \(0.231214\pi\)
\(588\) 0 0
\(589\) 10703.2 + 10703.2i 0.748758 + 0.748758i
\(590\) −20669.3 1789.82i −1.44227 0.124891i
\(591\) 0 0
\(592\) −6304.29 + 2967.07i −0.437677 + 0.205990i
\(593\) 1478.23i 0.102367i 0.998689 + 0.0511833i \(0.0162993\pi\)
−0.998689 + 0.0511833i \(0.983701\pi\)
\(594\) 0 0
\(595\) −32002.1 + 32002.1i −2.20497 + 2.20497i
\(596\) −8178.03 11635.4i −0.562055 0.799669i
\(597\) 0 0
\(598\) 9835.12 8267.55i 0.672555 0.565360i
\(599\) 10548.3i 0.719522i 0.933044 + 0.359761i \(0.117142\pi\)
−0.933044 + 0.359761i \(0.882858\pi\)
\(600\) 0 0
\(601\) 21596.7i 1.46580i 0.680335 + 0.732901i \(0.261834\pi\)
−0.680335 + 0.732901i \(0.738166\pi\)
\(602\) −993.943 1182.40i −0.0672925 0.0800515i
\(603\) 0 0
\(604\) −14444.3 2520.46i −0.973067 0.169795i
\(605\) −7837.32 + 7837.32i −0.526665 + 0.526665i
\(606\) 0 0
\(607\) 12331.9i 0.824604i −0.911047 0.412302i \(-0.864725\pi\)
0.911047 0.412302i \(-0.135275\pi\)
\(608\) −12790.0 + 4719.66i −0.853131 + 0.314815i
\(609\) 0 0
\(610\) 44.5334 514.284i 0.00295591 0.0341356i
\(611\) −12606.6 12606.6i −0.834711 0.834711i
\(612\) 0 0
\(613\) 6110.69 6110.69i 0.402624 0.402624i −0.476533 0.879157i \(-0.658107\pi\)
0.879157 + 0.476533i \(0.158107\pi\)
\(614\) 13286.5 11168.8i 0.873288 0.734099i
\(615\) 0 0
\(616\) 13688.3 7951.70i 0.895323 0.520103i
\(617\) 9428.72 0.615212 0.307606 0.951514i \(-0.400472\pi\)
0.307606 + 0.951514i \(0.400472\pi\)
\(618\) 0 0
\(619\) −209.732 209.732i −0.0136185 0.0136185i 0.700265 0.713883i \(-0.253065\pi\)
−0.713883 + 0.700265i \(0.753065\pi\)
\(620\) −28289.0 + 19883.2i −1.83244 + 1.28795i
\(621\) 0 0
\(622\) 1970.97 22761.3i 0.127056 1.46727i
\(623\) −6890.16 −0.443096
\(624\) 0 0
\(625\) −56078.5 −3.58903
\(626\) −1527.42 + 17639.1i −0.0975209 + 1.12620i
\(627\) 0 0
\(628\) −13674.2 19455.1i −0.868886 1.23622i
\(629\) −6613.39 6613.39i −0.419226 0.419226i
\(630\) 0 0
\(631\) 17914.3 1.13020 0.565101 0.825022i \(-0.308837\pi\)
0.565101 + 0.825022i \(0.308837\pi\)
\(632\) −168.817 + 636.822i −0.0106253 + 0.0400813i
\(633\) 0 0
\(634\) 13508.7 11355.6i 0.846211 0.711338i
\(635\) 21593.7 21593.7i 1.34948 1.34948i
\(636\) 0 0
\(637\) −6882.98 6882.98i −0.428122 0.428122i
\(638\) 773.696 8934.84i 0.0480108 0.554441i
\(639\) 0 0
\(640\) −5598.60 30635.4i −0.345788 1.89214i
\(641\) 3322.93i 0.204755i 0.994746 + 0.102377i \(0.0326450\pi\)
−0.994746 + 0.102377i \(0.967355\pi\)
\(642\) 0 0
\(643\) 11199.4 11199.4i 0.686878 0.686878i −0.274663 0.961541i \(-0.588566\pi\)
0.961541 + 0.274663i \(0.0885662\pi\)
\(644\) 4042.10 23164.6i 0.247331 1.41741i
\(645\) 0 0
\(646\) −11775.4 14008.1i −0.717178 0.853158i
\(647\) 21868.3i 1.32879i 0.747380 + 0.664397i \(0.231312\pi\)
−0.747380 + 0.664397i \(0.768688\pi\)
\(648\) 0 0
\(649\) 9740.93i 0.589160i
\(650\) −27662.1 + 23253.2i −1.66923 + 1.40318i
\(651\) 0 0
\(652\) −1429.46 + 1004.71i −0.0858617 + 0.0603488i
\(653\) −2170.27 + 2170.27i −0.130060 + 0.130060i −0.769140 0.639080i \(-0.779315\pi\)
0.639080 + 0.769140i \(0.279315\pi\)
\(654\) 0 0
\(655\) 6147.38i 0.366715i
\(656\) −16800.8 6047.45i −0.999942 0.359929i
\(657\) 0 0
\(658\) −32507.2 2814.90i −1.92593 0.166772i
\(659\) −9827.52 9827.52i −0.580919 0.580919i 0.354237 0.935156i \(-0.384741\pi\)
−0.935156 + 0.354237i \(0.884741\pi\)
\(660\) 0 0
\(661\) 6022.78 6022.78i 0.354401 0.354401i −0.507343 0.861744i \(-0.669372\pi\)
0.861744 + 0.507343i \(0.169372\pi\)
\(662\) −13011.0 15477.9i −0.763877 0.908712i
\(663\) 0 0
\(664\) 14368.2 + 24734.0i 0.839753 + 1.44558i
\(665\) 39675.8 2.31363
\(666\) 0 0
\(667\) −9419.79 9419.79i −0.546830 0.546830i
\(668\) 4789.24 27446.4i 0.277397 1.58972i
\(669\) 0 0
\(670\) −23464.7 2031.88i −1.35302 0.117162i
\(671\) −242.369 −0.0139442
\(672\) 0 0
\(673\) −15216.4 −0.871543 −0.435771 0.900057i \(-0.643524\pi\)
−0.435771 + 0.900057i \(0.643524\pi\)
\(674\) −27329.8 2366.57i −1.56188 0.135248i
\(675\) 0 0
\(676\) 1050.19 6018.45i 0.0597512 0.342424i
\(677\) 5754.92 + 5754.92i 0.326705 + 0.326705i 0.851332 0.524627i \(-0.175795\pi\)
−0.524627 + 0.851332i \(0.675795\pi\)
\(678\) 0 0
\(679\) 4623.09 0.261293
\(680\) 36147.1 20998.2i 2.03850 1.18419i
\(681\) 0 0
\(682\) 10446.6 + 12427.3i 0.586539 + 0.697750i
\(683\) −10651.0 + 10651.0i −0.596705 + 0.596705i −0.939434 0.342729i \(-0.888649\pi\)
0.342729 + 0.939434i \(0.388649\pi\)
\(684\) 0 0
\(685\) 14986.2 + 14986.2i 0.835902 + 0.835902i
\(686\) 5928.98 + 513.409i 0.329985 + 0.0285744i
\(687\) 0 0
\(688\) 607.572 + 1290.94i 0.0336678 + 0.0715358i
\(689\) 6033.34i 0.333602i
\(690\) 0 0
\(691\) −16585.3 + 16585.3i −0.913073 + 0.913073i −0.996513 0.0834401i \(-0.973409\pi\)
0.0834401 + 0.996513i \(0.473409\pi\)
\(692\) 23728.8 16678.1i 1.30352 0.916191i
\(693\) 0 0
\(694\) −3353.53 + 2819.03i −0.183427 + 0.154191i
\(695\) 36482.7i 1.99117i
\(696\) 0 0
\(697\) 23968.6i 1.30254i
\(698\) −5831.12 6936.73i −0.316205 0.376159i
\(699\) 0 0
\(700\) −11368.8 + 65152.4i −0.613855 + 3.51790i
\(701\) 6023.16 6023.16i 0.324524 0.324524i −0.525975 0.850500i \(-0.676300\pi\)
0.850500 + 0.525975i \(0.176300\pi\)
\(702\) 0 0
\(703\) 8199.20i 0.439884i
\(704\) −14103.5 + 3859.75i −0.755036 + 0.206633i
\(705\) 0 0
\(706\) 407.665 4707.82i 0.0217318 0.250965i
\(707\) −5362.51 5362.51i −0.285259 0.285259i
\(708\) 0 0
\(709\) −21886.4 + 21886.4i −1.15932 + 1.15932i −0.174701 + 0.984621i \(0.555896\pi\)
−0.984621 + 0.174701i \(0.944104\pi\)
\(710\) 20896.9 17566.3i 1.10457 0.928522i
\(711\) 0 0
\(712\) 6151.79 + 1630.80i 0.323803 + 0.0858381i
\(713\) 24115.4 1.26666
\(714\) 0 0
\(715\) 16441.5 + 16441.5i 0.859966 + 0.859966i
\(716\) −3774.02 5369.52i −0.196986 0.280263i
\(717\) 0 0
\(718\) −183.973 + 2124.57i −0.00956241 + 0.110429i
\(719\) −24967.9 −1.29506 −0.647528 0.762041i \(-0.724197\pi\)
−0.647528 + 0.762041i \(0.724197\pi\)
\(720\) 0 0
\(721\) 46479.9 2.40084
\(722\) 289.641 3344.85i 0.0149298 0.172413i
\(723\) 0 0
\(724\) 172.443 121.203i 0.00885192 0.00622166i
\(725\) 26494.0 + 26494.0i 1.35719 + 1.35719i
\(726\) 0 0
\(727\) 31570.1 1.61055 0.805276 0.592900i \(-0.202017\pi\)
0.805276 + 0.592900i \(0.202017\pi\)
\(728\) 10541.3 + 18146.1i 0.536655 + 0.923817i
\(729\) 0 0
\(730\) 2549.90 2143.48i 0.129282 0.108677i
\(731\) −1354.24 + 1354.24i −0.0685202 + 0.0685202i
\(732\) 0 0
\(733\) −14686.6 14686.6i −0.740055 0.740055i 0.232533 0.972588i \(-0.425299\pi\)
−0.972588 + 0.232533i \(0.925299\pi\)
\(734\) −1288.81 + 14883.5i −0.0648102 + 0.748445i
\(735\) 0 0
\(736\) −9091.64 + 19725.5i −0.455329 + 0.987896i
\(737\) 11058.3i 0.552699i
\(738\) 0 0
\(739\) 16900.6 16900.6i 0.841271 0.841271i −0.147753 0.989024i \(-0.547204\pi\)
0.989024 + 0.147753i \(0.0472041\pi\)
\(740\) −18451.2 3219.63i −0.916592 0.159940i
\(741\) 0 0
\(742\) 7105.14 + 8452.31i 0.351534 + 0.418186i
\(743\) 13888.3i 0.685750i 0.939381 + 0.342875i \(0.111401\pi\)
−0.939381 + 0.342875i \(0.888599\pi\)
\(744\) 0 0
\(745\) 38230.5i 1.88008i
\(746\) 5496.34 4620.31i 0.269752 0.226758i
\(747\) 0 0
\(748\) −11286.5 16057.9i −0.551703 0.784940i
\(749\) 9810.52 9810.52i 0.478596 0.478596i
\(750\) 0 0
\(751\) 8334.75i 0.404979i −0.979284 0.202490i \(-0.935097\pi\)
0.979284 0.202490i \(-0.0649032\pi\)
\(752\) 28357.3 + 10207.2i 1.37511 + 0.494971i
\(753\) 0 0
\(754\) 11844.6 + 1025.66i 0.572087 + 0.0495388i
\(755\) −27870.8 27870.8i −1.34347 1.34347i
\(756\) 0 0
\(757\) −14800.7 + 14800.7i −0.710620 + 0.710620i −0.966665 0.256045i \(-0.917580\pi\)
0.256045 + 0.966665i \(0.417580\pi\)
\(758\) 23457.9 + 27905.6i 1.12405 + 1.33717i
\(759\) 0 0
\(760\) −35424.0 9390.68i −1.69074 0.448205i
\(761\) −5724.34 −0.272677 −0.136339 0.990662i \(-0.543533\pi\)
−0.136339 + 0.990662i \(0.543533\pi\)
\(762\) 0 0
\(763\) −5052.28 5052.28i −0.239718 0.239718i
\(764\) −13616.9 2376.07i −0.644818 0.112517i
\(765\) 0 0
\(766\) 8383.51 + 725.955i 0.395442 + 0.0342426i
\(767\) −12913.2 −0.607910
\(768\) 0 0
\(769\) −16257.1 −0.762348 −0.381174 0.924503i \(-0.624480\pi\)
−0.381174 + 0.924503i \(0.624480\pi\)
\(770\) 42395.6 + 3671.17i 1.98420 + 0.171818i
\(771\) 0 0
\(772\) 32291.3 + 5634.66i 1.50543 + 0.262689i
\(773\) −9339.94 9339.94i −0.434585 0.434585i 0.455600 0.890185i \(-0.349425\pi\)
−0.890185 + 0.455600i \(0.849425\pi\)
\(774\) 0 0
\(775\) −67826.6 −3.14374
\(776\) −4127.66 1094.22i −0.190946 0.0506186i
\(777\) 0 0
\(778\) 10442.1 + 12421.9i 0.481191 + 0.572427i
\(779\) −14858.0 + 14858.0i −0.683365 + 0.683365i
\(780\) 0 0
\(781\) −9063.38 9063.38i −0.415254 0.415254i
\(782\) −29046.3 2515.21i −1.32825 0.115018i
\(783\) 0 0
\(784\) 15482.6 + 5572.95i 0.705293 + 0.253870i
\(785\) 63923.9i 2.90642i
\(786\) 0 0
\(787\) −21944.5 + 21944.5i −0.993950 + 0.993950i −0.999982 0.00603172i \(-0.998080\pi\)
0.00603172 + 0.999982i \(0.498080\pi\)
\(788\) 25302.0 + 35998.7i 1.14384 + 1.62741i
\(789\) 0 0
\(790\) −1355.65 + 1139.58i −0.0610531 + 0.0513221i
\(791\) 9433.07i 0.424022i
\(792\) 0 0
\(793\) 321.299i 0.0143880i
\(794\) −6202.90 7379.00i −0.277245 0.329812i
\(795\) 0 0
\(796\) −26266.5 4583.36i −1.16959 0.204087i
\(797\) −21112.7 + 21112.7i −0.938331 + 0.938331i −0.998206 0.0598747i \(-0.980930\pi\)
0.0598747 + 0.998206i \(0.480930\pi\)
\(798\) 0 0
\(799\) 40455.4i 1.79125i
\(800\) 25571.0 55479.6i 1.13009 2.45188i
\(801\) 0 0
\(802\) −1910.59 + 22064.0i −0.0841214 + 0.971455i
\(803\) −1105.94 1105.94i −0.0486023 0.0486023i
\(804\) 0 0
\(805\) 44696.7 44696.7i 1.95696 1.95696i
\(806\) −16474.4 + 13848.6i −0.719957 + 0.605207i
\(807\) 0 0
\(808\) 3518.62 + 6057.07i 0.153199 + 0.263722i
\(809\) −39210.9 −1.70406 −0.852028 0.523496i \(-0.824628\pi\)
−0.852028 + 0.523496i \(0.824628\pi\)
\(810\) 0 0
\(811\) −7512.78 7512.78i −0.325289 0.325289i 0.525503 0.850792i \(-0.323877\pi\)
−0.850792 + 0.525503i \(0.823877\pi\)
\(812\) 17801.3 12511.8i 0.769340 0.540738i
\(813\) 0 0
\(814\) −758.665 + 8761.26i −0.0326673 + 0.377251i
\(815\) −4696.79 −0.201867
\(816\) 0 0
\(817\) 1678.97 0.0718966
\(818\) −1102.67 + 12733.9i −0.0471320 + 0.544292i
\(819\) 0 0
\(820\) −27601.4 39270.1i −1.17547 1.67240i
\(821\) 12626.1 + 12626.1i 0.536727 + 0.536727i 0.922566 0.385839i \(-0.126088\pi\)
−0.385839 + 0.922566i \(0.626088\pi\)
\(822\) 0 0
\(823\) −15641.0 −0.662468 −0.331234 0.943549i \(-0.607465\pi\)
−0.331234 + 0.943549i \(0.607465\pi\)
\(824\) −41499.0 11001.1i −1.75447 0.465099i
\(825\) 0 0
\(826\) −18090.5 + 15207.1i −0.762044 + 0.640586i
\(827\) 26716.0 26716.0i 1.12334 1.12334i 0.132109 0.991235i \(-0.457825\pi\)
0.991235 0.132109i \(-0.0421750\pi\)
\(828\) 0 0
\(829\) −3654.34 3654.34i −0.153101 0.153101i 0.626401 0.779501i \(-0.284527\pi\)
−0.779501 + 0.626401i \(0.784527\pi\)
\(830\) −6633.59 + 76606.4i −0.277416 + 3.20367i
\(831\) 0 0
\(832\) −5116.71 18696.4i −0.213209 0.779066i
\(833\) 22087.9i 0.918729i
\(834\) 0 0
\(835\) 52958.5 52958.5i 2.19486 2.19486i
\(836\) −2957.79 + 16950.6i −0.122365 + 0.701254i
\(837\) 0 0
\(838\) 1099.28 + 1307.71i 0.0453150 + 0.0539070i
\(839\) 7316.14i 0.301050i 0.988606 + 0.150525i \(0.0480965\pi\)
−0.988606 + 0.150525i \(0.951904\pi\)
\(840\) 0 0
\(841\) 12062.3i 0.494579i
\(842\) 11681.4 9819.60i 0.478111 0.401907i
\(843\) 0 0
\(844\) 33998.9 23896.5i 1.38660 0.974586i
\(845\) 11612.8 11612.8i 0.472771 0.472771i
\(846\) 0 0
\(847\) 12625.7i 0.512189i
\(848\) −4343.20 9228.22i −0.175880 0.373701i
\(849\) 0 0
\(850\) 81695.2 + 7074.25i 3.29662 + 0.285464i
\(851\) 9236.79 + 9236.79i 0.372072 + 0.372072i
\(852\) 0 0
\(853\) 4362.84 4362.84i 0.175124 0.175124i −0.614102 0.789226i \(-0.710482\pi\)
0.789226 + 0.614102i \(0.210482\pi\)
\(854\) −378.377 450.119i −0.0151613 0.0180360i
\(855\) 0 0
\(856\) −11081.2 + 6437.19i −0.442462 + 0.257031i
\(857\) −10598.4 −0.422442 −0.211221 0.977438i \(-0.567744\pi\)
−0.211221 + 0.977438i \(0.567744\pi\)
\(858\) 0 0
\(859\) 25041.9 + 25041.9i 0.994668 + 0.994668i 0.999986 0.00531813i \(-0.00169282\pi\)
−0.00531813 + 0.999986i \(0.501693\pi\)
\(860\) −659.289 + 3778.28i −0.0261414 + 0.149812i
\(861\) 0 0
\(862\) 35905.6 + 3109.18i 1.41873 + 0.122853i
\(863\) 11567.3 0.456265 0.228133 0.973630i \(-0.426738\pi\)
0.228133 + 0.973630i \(0.426738\pi\)
\(864\) 0 0
\(865\) 77966.2 3.06466
\(866\) 40475.2 + 3504.88i 1.58823 + 0.137530i
\(867\) 0 0
\(868\) −6770.74 + 38802.0i −0.264763 + 1.51731i
\(869\) 587.971 + 587.971i 0.0229523 + 0.0229523i
\(870\) 0 0
\(871\) −14659.6 −0.570289
\(872\) 3315.06 + 5706.66i 0.128741 + 0.221619i
\(873\) 0 0
\(874\) 16446.5 + 19564.8i 0.636510 + 0.757195i
\(875\) −79149.1 + 79149.1i −3.05797 + 3.05797i
\(876\) 0 0
\(877\) −29456.6 29456.6i −1.13418 1.13418i −0.989474 0.144710i \(-0.953775\pi\)
−0.144710 0.989474i \(-0.546225\pi\)
\(878\) 8894.72 + 770.221i 0.341893 + 0.0296056i
\(879\) 0 0
\(880\) −36983.5 13312.2i −1.41672 0.509947i
\(881\) 42700.5i 1.63294i 0.577390 + 0.816468i \(0.304071\pi\)
−0.577390 + 0.816468i \(0.695929\pi\)
\(882\) 0 0
\(883\) 135.261 135.261i 0.00515504 0.00515504i −0.704525 0.709680i \(-0.748840\pi\)
0.709680 + 0.704525i \(0.248840\pi\)
\(884\) 21287.3 14962.0i 0.809921 0.569261i
\(885\) 0 0
\(886\) −24841.8 + 20882.4i −0.941962 + 0.791827i
\(887\) 27302.4i 1.03351i 0.856132 + 0.516757i \(0.172861\pi\)
−0.856132 + 0.516757i \(0.827139\pi\)
\(888\) 0 0
\(889\) 34786.9i 1.31239i
\(890\) 11008.5 + 13095.8i 0.414614 + 0.493227i
\(891\) 0 0
\(892\) 1192.61 6834.67i 0.0447665 0.256549i
\(893\) 25078.0 25078.0i 0.939758 0.939758i
\(894\) 0 0
\(895\) 17642.7i 0.658917i
\(896\) −29186.0 20166.8i −1.08821 0.751926i
\(897\) 0 0
\(898\) 4421.68 51062.7i 0.164313 1.89753i
\(899\) 15778.7 + 15778.7i 0.585370 + 0.585370i
\(900\) 0 0
\(901\) 9680.68 9680.68i 0.357947 0.357947i
\(902\) −17251.3 + 14501.7i −0.636812 + 0.535314i
\(903\) 0 0
\(904\) −2232.67 + 8422.19i −0.0821431 + 0.309865i
\(905\) 566.598 0.0208114
\(906\) 0 0
\(907\) −22150.8 22150.8i −0.810921 0.810921i 0.173851 0.984772i \(-0.444379\pi\)
−0.984772 + 0.173851i \(0.944379\pi\)
\(908\) −2155.19 3066.32i −0.0787694 0.112070i
\(909\) 0 0
\(910\) −4866.73 + 56202.3i −0.177286 + 2.04735i
\(911\) −40596.8 −1.47643 −0.738217 0.674564i \(-0.764332\pi\)
−0.738217 + 0.674564i \(0.764332\pi\)
\(912\) 0 0
\(913\) 36102.7 1.30868
\(914\) 2745.93 31710.8i 0.0993736 1.14759i
\(915\) 0 0
\(916\) −40090.6 + 28178.1i −1.44610 + 1.01641i
\(917\) −4951.63 4951.63i −0.178317 0.178317i
\(918\) 0 0
\(919\) 33460.1 1.20103 0.600515 0.799613i \(-0.294962\pi\)
0.600515 + 0.799613i \(0.294962\pi\)
\(920\) −50485.9 + 29327.8i −1.80921 + 1.05099i
\(921\) 0 0
\(922\) −5775.75 + 4855.19i −0.206306 + 0.173424i
\(923\) 12015.0 12015.0i 0.428470 0.428470i
\(924\) 0 0
\(925\) −25979.3 25979.3i −0.923452 0.923452i
\(926\) −1144.61 + 13218.3i −0.0406203 + 0.469093i
\(927\) 0 0
\(928\) −18855.0 + 6957.71i −0.666968 + 0.246119i
\(929\) 22691.6i 0.801387i −0.916212 0.400693i \(-0.868769\pi\)
0.916212 0.400693i \(-0.131231\pi\)
\(930\) 0 0
\(931\) 13692.2 13692.2i 0.482001 0.482001i
\(932\) 31153.1 + 5436.05i 1.09491 + 0.191056i
\(933\) 0 0
\(934\) −20025.7 23822.7i −0.701564 0.834584i
\(935\) 52761.7i 1.84545i
\(936\) 0 0
\(937\) 5447.73i 0.189936i −0.995480 0.0949678i \(-0.969725\pi\)
0.995480 0.0949678i \(-0.0302748\pi\)
\(938\) −20537.1 + 17263.8i −0.714884 + 0.600942i
\(939\) 0 0
\(940\) 46587.1 + 66282.1i 1.61649 + 2.29988i
\(941\) −20191.7 + 20191.7i −0.699501 + 0.699501i −0.964303 0.264802i \(-0.914693\pi\)
0.264802 + 0.964303i \(0.414693\pi\)
\(942\) 0 0
\(943\) 33476.4i 1.15603i
\(944\) 19751.2 9295.74i 0.680980 0.320499i
\(945\) 0 0
\(946\) 1794.06 + 155.353i 0.0616595 + 0.00533929i
\(947\) 2444.37 + 2444.37i 0.0838768 + 0.0838768i 0.747800 0.663924i \(-0.231110\pi\)
−0.663924 + 0.747800i \(0.731110\pi\)
\(948\) 0 0
\(949\) 1466.10 1466.10i 0.0501491 0.0501491i
\(950\) −46257.1 55027.6i −1.57977 1.87930i
\(951\) 0 0
\(952\) 12202.2 46029.7i 0.415415 1.56705i
\(953\) 9299.20 0.316087 0.158043 0.987432i \(-0.449481\pi\)
0.158043 + 0.987432i \(0.449481\pi\)
\(954\) 0 0
\(955\) −26274.1 26274.1i −0.890273 0.890273i
\(956\) 19943.1 + 3479.96i 0.674692 + 0.117730i
\(957\) 0 0
\(958\) −4985.05 431.671i −0.168121 0.0145581i
\(959\) 24142.3 0.812926
\(960\) 0 0
\(961\) −10603.6 −0.355933
\(962\) −11614.5 1005.73i −0.389257 0.0337070i
\(963\) 0 0
\(964\) −2486.77 433.927i −0.0830843 0.0144978i
\(965\) 62307.0 + 62307.0i 2.07848 + 2.07848i
\(966\) 0 0
\(967\) −39928.8 −1.32784 −0.663922 0.747802i \(-0.731109\pi\)
−0.663922 + 0.747802i \(0.731109\pi\)
\(968\) 2988.31 11272.7i 0.0992231 0.374295i
\(969\) 0 0
\(970\) −7386.38 8786.88i −0.244497 0.290855i
\(971\) 18987.0 18987.0i 0.627521 0.627521i −0.319923 0.947444i \(-0.603657\pi\)
0.947444 + 0.319923i \(0.103657\pi\)
\(972\) 0 0
\(973\) −29386.2 29386.2i −0.968222 0.968222i
\(974\) 52071.9 + 4509.07i 1.71303 + 0.148337i
\(975\) 0 0
\(976\) 231.292 + 491.439i 0.00758554 + 0.0161174i
\(977\) 26451.4i 0.866176i 0.901352 + 0.433088i \(0.142576\pi\)
−0.901352 + 0.433088i \(0.857424\pi\)
\(978\) 0 0
\(979\) 5679.88 5679.88i 0.185424 0.185424i
\(980\) 25435.7 + 36188.9i 0.829096 + 1.17960i
\(981\) 0 0
\(982\) −10394.9 + 8738.12i −0.337795 + 0.283956i
\(983\) 3516.98i 0.114114i 0.998371 + 0.0570571i \(0.0181717\pi\)
−0.998371 + 0.0570571i \(0.981828\pi\)
\(984\) 0 0
\(985\) 118281.i 3.82615i
\(986\) −17359.3 20650.7i −0.560681 0.666989i
\(987\) 0 0
\(988\) −22470.7 3921.02i −0.723572 0.126259i
\(989\) 1891.43 1891.43i 0.0608130 0.0608130i
\(990\) 0 0
\(991\) 55027.6i 1.76388i 0.471359 + 0.881942i \(0.343764\pi\)
−0.471359 + 0.881942i \(0.656236\pi\)
\(992\) 15229.0 33041.3i 0.487421 1.05752i
\(993\) 0 0
\(994\) 2682.79 30981.6i 0.0856066 0.988607i
\(995\) −50681.9 50681.9i −1.61480 1.61480i
\(996\) 0 0
\(997\) −28913.9 + 28913.9i −0.918466 + 0.918466i −0.996918 0.0784515i \(-0.975002\pi\)
0.0784515 + 0.996918i \(0.475002\pi\)
\(998\) −21453.2 + 18033.8i −0.680448 + 0.571995i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.4.l.a.35.1 48
3.2 odd 2 inner 144.4.l.a.35.24 yes 48
4.3 odd 2 576.4.l.a.431.24 48
8.3 odd 2 1152.4.l.a.863.1 48
8.5 even 2 1152.4.l.b.863.1 48
12.11 even 2 576.4.l.a.431.1 48
16.3 odd 4 1152.4.l.b.287.24 48
16.5 even 4 576.4.l.a.143.1 48
16.11 odd 4 inner 144.4.l.a.107.24 yes 48
16.13 even 4 1152.4.l.a.287.24 48
24.5 odd 2 1152.4.l.b.863.24 48
24.11 even 2 1152.4.l.a.863.24 48
48.5 odd 4 576.4.l.a.143.24 48
48.11 even 4 inner 144.4.l.a.107.1 yes 48
48.29 odd 4 1152.4.l.a.287.1 48
48.35 even 4 1152.4.l.b.287.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.l.a.35.1 48 1.1 even 1 trivial
144.4.l.a.35.24 yes 48 3.2 odd 2 inner
144.4.l.a.107.1 yes 48 48.11 even 4 inner
144.4.l.a.107.24 yes 48 16.11 odd 4 inner
576.4.l.a.143.1 48 16.5 even 4
576.4.l.a.143.24 48 48.5 odd 4
576.4.l.a.431.1 48 12.11 even 2
576.4.l.a.431.24 48 4.3 odd 2
1152.4.l.a.287.1 48 48.29 odd 4
1152.4.l.a.287.24 48 16.13 even 4
1152.4.l.a.863.1 48 8.3 odd 2
1152.4.l.a.863.24 48 24.11 even 2
1152.4.l.b.287.1 48 48.35 even 4
1152.4.l.b.287.24 48 16.3 odd 4
1152.4.l.b.863.1 48 8.5 even 2
1152.4.l.b.863.24 48 24.5 odd 2