Properties

Label 1152.4.l.b.287.1
Level $1152$
Weight $4$
Character 1152.287
Analytic conductor $67.970$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1152,4,Mod(287,1152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1152.287"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1152, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.9702003266\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 287.1
Character \(\chi\) \(=\) 1152.287
Dual form 1152.4.l.b.863.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-15.2065 + 15.2065i) q^{5} +24.4971 q^{7} +(20.1941 + 20.1941i) q^{11} +(26.7706 - 26.7706i) q^{13} -85.9084i q^{17} +(-53.2541 - 53.2541i) q^{19} +119.986i q^{23} -337.472i q^{25} +(-78.5071 - 78.5071i) q^{29} -200.984i q^{31} +(-372.515 + 372.515i) q^{35} +(76.9819 + 76.9819i) q^{37} -279.001 q^{41} +(-15.7637 + 15.7637i) q^{43} +470.913 q^{47} +257.110 q^{49} +(112.686 - 112.686i) q^{53} -614.162 q^{55} +(-241.182 - 241.182i) q^{59} +(-6.00098 + 6.00098i) q^{61} +814.171i q^{65} +(-273.801 - 273.801i) q^{67} -448.812i q^{71} -54.7653i q^{73} +(494.698 + 494.698i) q^{77} +29.1159i q^{79} +(893.890 - 893.890i) q^{83} +(1306.36 + 1306.36i) q^{85} -281.264 q^{89} +(655.802 - 655.802i) q^{91} +1619.61 q^{95} +188.720 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{19} - 864 q^{43} + 2352 q^{49} - 576 q^{55} - 1824 q^{61} - 816 q^{67} + 480 q^{85} + 3600 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −15.2065 + 15.2065i −1.36011 + 1.36011i −0.486333 + 0.873774i \(0.661666\pi\)
−0.873774 + 0.486333i \(0.838334\pi\)
\(6\) 0 0
\(7\) 24.4971 1.32272 0.661361 0.750068i \(-0.269979\pi\)
0.661361 + 0.750068i \(0.269979\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 20.1941 + 20.1941i 0.553524 + 0.553524i 0.927456 0.373932i \(-0.121991\pi\)
−0.373932 + 0.927456i \(0.621991\pi\)
\(12\) 0 0
\(13\) 26.7706 26.7706i 0.571140 0.571140i −0.361307 0.932447i \(-0.617669\pi\)
0.932447 + 0.361307i \(0.117669\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 85.9084i 1.22564i −0.790223 0.612819i \(-0.790035\pi\)
0.790223 0.612819i \(-0.209965\pi\)
\(18\) 0 0
\(19\) −53.2541 53.2541i −0.643017 0.643017i 0.308279 0.951296i \(-0.400247\pi\)
−0.951296 + 0.308279i \(0.900247\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 119.986i 1.08778i 0.839157 + 0.543889i \(0.183049\pi\)
−0.839157 + 0.543889i \(0.816951\pi\)
\(24\) 0 0
\(25\) 337.472i 2.69978i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −78.5071 78.5071i −0.502703 0.502703i 0.409574 0.912277i \(-0.365677\pi\)
−0.912277 + 0.409574i \(0.865677\pi\)
\(30\) 0 0
\(31\) 200.984i 1.16445i −0.813029 0.582223i \(-0.802183\pi\)
0.813029 0.582223i \(-0.197817\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −372.515 + 372.515i −1.79904 + 1.79904i
\(36\) 0 0
\(37\) 76.9819 + 76.9819i 0.342047 + 0.342047i 0.857137 0.515089i \(-0.172241\pi\)
−0.515089 + 0.857137i \(0.672241\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −279.001 −1.06275 −0.531374 0.847137i \(-0.678324\pi\)
−0.531374 + 0.847137i \(0.678324\pi\)
\(42\) 0 0
\(43\) −15.7637 + 15.7637i −0.0559057 + 0.0559057i −0.734507 0.678601i \(-0.762586\pi\)
0.678601 + 0.734507i \(0.262586\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 470.913 1.46148 0.730742 0.682654i \(-0.239174\pi\)
0.730742 + 0.682654i \(0.239174\pi\)
\(48\) 0 0
\(49\) 257.110 0.749592
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 112.686 112.686i 0.292050 0.292050i −0.545840 0.837889i \(-0.683789\pi\)
0.837889 + 0.545840i \(0.183789\pi\)
\(54\) 0 0
\(55\) −614.162 −1.50570
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −241.182 241.182i −0.532190 0.532190i 0.389033 0.921224i \(-0.372809\pi\)
−0.921224 + 0.389033i \(0.872809\pi\)
\(60\) 0 0
\(61\) −6.00098 + 6.00098i −0.0125958 + 0.0125958i −0.713377 0.700781i \(-0.752835\pi\)
0.700781 + 0.713377i \(0.252835\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 814.171i 1.55362i
\(66\) 0 0
\(67\) −273.801 273.801i −0.499255 0.499255i 0.411951 0.911206i \(-0.364847\pi\)
−0.911206 + 0.411951i \(0.864847\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 448.812i 0.750201i −0.926984 0.375100i \(-0.877608\pi\)
0.926984 0.375100i \(-0.122392\pi\)
\(72\) 0 0
\(73\) 54.7653i 0.0878053i −0.999036 0.0439027i \(-0.986021\pi\)
0.999036 0.0439027i \(-0.0139791\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 494.698 + 494.698i 0.732157 + 0.732157i
\(78\) 0 0
\(79\) 29.1159i 0.0414658i 0.999785 + 0.0207329i \(0.00659996\pi\)
−0.999785 + 0.0207329i \(0.993400\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 893.890 893.890i 1.18213 1.18213i 0.202945 0.979190i \(-0.434949\pi\)
0.979190 0.202945i \(-0.0650512\pi\)
\(84\) 0 0
\(85\) 1306.36 + 1306.36i 1.66700 + 1.66700i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −281.264 −0.334988 −0.167494 0.985873i \(-0.553567\pi\)
−0.167494 + 0.985873i \(0.553567\pi\)
\(90\) 0 0
\(91\) 655.802 655.802i 0.755459 0.755459i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1619.61 1.74914
\(96\) 0 0
\(97\) 188.720 0.197542 0.0987709 0.995110i \(-0.468509\pi\)
0.0987709 + 0.995110i \(0.468509\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 218.904 218.904i 0.215661 0.215661i −0.591006 0.806667i \(-0.701269\pi\)
0.806667 + 0.591006i \(0.201269\pi\)
\(102\) 0 0
\(103\) 1897.36 1.81507 0.907536 0.419973i \(-0.137961\pi\)
0.907536 + 0.419973i \(0.137961\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −400.476 400.476i −0.361827 0.361827i 0.502658 0.864485i \(-0.332355\pi\)
−0.864485 + 0.502658i \(0.832355\pi\)
\(108\) 0 0
\(109\) 206.240 206.240i 0.181231 0.181231i −0.610661 0.791892i \(-0.709096\pi\)
0.791892 + 0.610661i \(0.209096\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 385.068i 0.320568i 0.987071 + 0.160284i \(0.0512410\pi\)
−0.987071 + 0.160284i \(0.948759\pi\)
\(114\) 0 0
\(115\) −1824.57 1824.57i −1.47949 1.47949i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2104.51i 1.62118i
\(120\) 0 0
\(121\) 515.394i 0.387223i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3230.95 + 3230.95i 2.31188 + 2.31188i
\(126\) 0 0
\(127\) 1420.04i 0.992189i 0.868268 + 0.496095i \(0.165233\pi\)
−0.868268 + 0.496095i \(0.834767\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 202.131 202.131i 0.134811 0.134811i −0.636481 0.771292i \(-0.719611\pi\)
0.771292 + 0.636481i \(0.219611\pi\)
\(132\) 0 0
\(133\) −1304.57 1304.57i −0.850532 0.850532i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 985.515 0.614586 0.307293 0.951615i \(-0.400577\pi\)
0.307293 + 0.951615i \(0.400577\pi\)
\(138\) 0 0
\(139\) 1199.58 1199.58i 0.731992 0.731992i −0.239022 0.971014i \(-0.576827\pi\)
0.971014 + 0.239022i \(0.0768268\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1081.22 0.632279
\(144\) 0 0
\(145\) 2387.63 1.36746
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1257.05 1257.05i 0.691150 0.691150i −0.271335 0.962485i \(-0.587465\pi\)
0.962485 + 0.271335i \(0.0874651\pi\)
\(150\) 0 0
\(151\) −1832.83 −0.987770 −0.493885 0.869527i \(-0.664424\pi\)
−0.493885 + 0.869527i \(0.664424\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3056.25 + 3056.25i 1.58377 + 1.58377i
\(156\) 0 0
\(157\) 2101.87 2101.87i 1.06845 1.06845i 0.0709767 0.997478i \(-0.477388\pi\)
0.997478 0.0709767i \(-0.0226116\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2939.33i 1.43883i
\(162\) 0 0
\(163\) 154.434 + 154.434i 0.0742099 + 0.0742099i 0.743238 0.669028i \(-0.233289\pi\)
−0.669028 + 0.743238i \(0.733289\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3482.63i 1.61374i 0.590730 + 0.806869i \(0.298840\pi\)
−0.590730 + 0.806869i \(0.701160\pi\)
\(168\) 0 0
\(169\) 763.674i 0.347598i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2563.59 2563.59i −1.12663 1.12663i −0.990722 0.135903i \(-0.956606\pi\)
−0.135903 0.990722i \(-0.543394\pi\)
\(174\) 0 0
\(175\) 8267.11i 3.57106i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 580.106 580.106i 0.242230 0.242230i −0.575542 0.817772i \(-0.695209\pi\)
0.817772 + 0.575542i \(0.195209\pi\)
\(180\) 0 0
\(181\) −18.6302 18.6302i −0.00765067 0.00765067i 0.703271 0.710922i \(-0.251722\pi\)
−0.710922 + 0.703271i \(0.751722\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2341.24 −0.930441
\(186\) 0 0
\(187\) 1734.85 1734.85i 0.678420 0.678420i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1727.83 −0.654561 −0.327281 0.944927i \(-0.606132\pi\)
−0.327281 + 0.944927i \(0.606132\pi\)
\(192\) 0 0
\(193\) 4097.40 1.52817 0.764087 0.645113i \(-0.223190\pi\)
0.764087 + 0.645113i \(0.223190\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3889.19 + 3889.19i −1.40656 + 1.40656i −0.629835 + 0.776729i \(0.716877\pi\)
−0.776729 + 0.629835i \(0.783123\pi\)
\(198\) 0 0
\(199\) −3332.92 −1.18726 −0.593629 0.804739i \(-0.702305\pi\)
−0.593629 + 0.804739i \(0.702305\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1923.20 1923.20i −0.664936 0.664936i
\(204\) 0 0
\(205\) 4242.62 4242.62i 1.44545 1.44545i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2150.84i 0.711850i
\(210\) 0 0
\(211\) −3673.14 3673.14i −1.19843 1.19843i −0.974636 0.223796i \(-0.928155\pi\)
−0.223796 0.974636i \(-0.571845\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 479.421i 0.152075i
\(216\) 0 0
\(217\) 4923.54i 1.54024i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2299.82 2299.82i −0.700011 0.700011i
\(222\) 0 0
\(223\) 867.243i 0.260426i 0.991486 + 0.130213i \(0.0415660\pi\)
−0.991486 + 0.130213i \(0.958434\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 331.276 331.276i 0.0968614 0.0968614i −0.657016 0.753877i \(-0.728181\pi\)
0.753877 + 0.657016i \(0.228181\pi\)
\(228\) 0 0
\(229\) 4331.27 + 4331.27i 1.24986 + 1.24986i 0.955781 + 0.294080i \(0.0950132\pi\)
0.294080 + 0.955781i \(0.404987\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3952.98 1.11145 0.555726 0.831365i \(-0.312440\pi\)
0.555726 + 0.831365i \(0.312440\pi\)
\(234\) 0 0
\(235\) −7160.91 + 7160.91i −1.98777 + 1.98777i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2530.55 0.684887 0.342443 0.939538i \(-0.388745\pi\)
0.342443 + 0.939538i \(0.388745\pi\)
\(240\) 0 0
\(241\) −315.543 −0.0843398 −0.0421699 0.999110i \(-0.513427\pi\)
−0.0421699 + 0.999110i \(0.513427\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3909.73 + 3909.73i −1.01953 + 1.01953i
\(246\) 0 0
\(247\) −2851.28 −0.734505
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 871.154 + 871.154i 0.219071 + 0.219071i 0.808107 0.589036i \(-0.200492\pi\)
−0.589036 + 0.808107i \(0.700492\pi\)
\(252\) 0 0
\(253\) −2423.02 + 2423.02i −0.602111 + 0.602111i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1822.51i 0.442353i 0.975234 + 0.221177i \(0.0709898\pi\)
−0.975234 + 0.221177i \(0.929010\pi\)
\(258\) 0 0
\(259\) 1885.84 + 1885.84i 0.452433 + 0.452433i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1120.24i 0.262651i 0.991339 + 0.131325i \(0.0419233\pi\)
−0.991339 + 0.131325i \(0.958077\pi\)
\(264\) 0 0
\(265\) 3427.11i 0.794437i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1477.67 + 1477.67i 0.334926 + 0.334926i 0.854454 0.519527i \(-0.173892\pi\)
−0.519527 + 0.854454i \(0.673892\pi\)
\(270\) 0 0
\(271\) 5865.36i 1.31474i −0.753566 0.657372i \(-0.771668\pi\)
0.753566 0.657372i \(-0.228332\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6814.96 6814.96i 1.49439 1.49439i
\(276\) 0 0
\(277\) −197.049 197.049i −0.0427420 0.0427420i 0.685413 0.728155i \(-0.259622\pi\)
−0.728155 + 0.685413i \(0.759622\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4436.82 0.941917 0.470958 0.882155i \(-0.343908\pi\)
0.470958 + 0.882155i \(0.343908\pi\)
\(282\) 0 0
\(283\) 6047.06 6047.06i 1.27018 1.27018i 0.324186 0.945994i \(-0.394910\pi\)
0.945994 0.324186i \(-0.105090\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6834.73 −1.40572
\(288\) 0 0
\(289\) −2467.25 −0.502189
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −365.261 + 365.261i −0.0728287 + 0.0728287i −0.742583 0.669754i \(-0.766399\pi\)
0.669754 + 0.742583i \(0.266399\pi\)
\(294\) 0 0
\(295\) 7335.05 1.44767
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3212.11 + 3212.11i 0.621274 + 0.621274i
\(300\) 0 0
\(301\) −386.166 + 386.166i −0.0739477 + 0.0739477i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 182.507i 0.0342634i
\(306\) 0 0
\(307\) 4339.31 + 4339.31i 0.806701 + 0.806701i 0.984133 0.177432i \(-0.0567789\pi\)
−0.177432 + 0.984133i \(0.556779\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8077.43i 1.47276i −0.676567 0.736382i \(-0.736533\pi\)
0.676567 0.736382i \(-0.263467\pi\)
\(312\) 0 0
\(313\) 6259.69i 1.13041i 0.824950 + 0.565206i \(0.191203\pi\)
−0.824950 + 0.565206i \(0.808797\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4411.87 + 4411.87i 0.781689 + 0.781689i 0.980116 0.198427i \(-0.0635832\pi\)
−0.198427 + 0.980116i \(0.563583\pi\)
\(318\) 0 0
\(319\) 3170.76i 0.556516i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4574.97 + 4574.97i −0.788106 + 0.788106i
\(324\) 0 0
\(325\) −9034.32 9034.32i −1.54195 1.54195i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 11536.0 1.93314
\(330\) 0 0
\(331\) −5055.03 + 5055.03i −0.839424 + 0.839424i −0.988783 0.149359i \(-0.952279\pi\)
0.149359 + 0.988783i \(0.452279\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8327.07 1.35808
\(336\) 0 0
\(337\) 9698.71 1.56772 0.783861 0.620936i \(-0.213247\pi\)
0.783861 + 0.620936i \(0.213247\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4058.70 4058.70i 0.644548 0.644548i
\(342\) 0 0
\(343\) −2104.06 −0.331220
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1095.25 1095.25i −0.169441 0.169441i 0.617293 0.786734i \(-0.288229\pi\)
−0.786734 + 0.617293i \(0.788229\pi\)
\(348\) 0 0
\(349\) −2265.51 + 2265.51i −0.347478 + 0.347478i −0.859169 0.511691i \(-0.829019\pi\)
0.511691 + 0.859169i \(0.329019\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1670.69i 0.251904i −0.992036 0.125952i \(-0.959801\pi\)
0.992036 0.125952i \(-0.0401985\pi\)
\(354\) 0 0
\(355\) 6824.85 + 6824.85i 1.02035 + 1.02035i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 753.959i 0.110842i 0.998463 + 0.0554212i \(0.0176502\pi\)
−0.998463 + 0.0554212i \(0.982350\pi\)
\(360\) 0 0
\(361\) 1187.01i 0.173058i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 832.785 + 832.785i 0.119425 + 0.119425i
\(366\) 0 0
\(367\) 5281.79i 0.751246i 0.926773 + 0.375623i \(0.122571\pi\)
−0.926773 + 0.375623i \(0.877429\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2760.49 2760.49i 0.386300 0.386300i
\(372\) 0 0
\(373\) 1795.08 + 1795.08i 0.249184 + 0.249184i 0.820636 0.571452i \(-0.193620\pi\)
−0.571452 + 0.820636i \(0.693620\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4203.36 −0.574228
\(378\) 0 0
\(379\) 9113.85 9113.85i 1.23522 1.23522i 0.273283 0.961934i \(-0.411890\pi\)
0.961934 0.273283i \(-0.0881096\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2975.11 −0.396922 −0.198461 0.980109i \(-0.563594\pi\)
−0.198461 + 0.980109i \(0.563594\pi\)
\(384\) 0 0
\(385\) −15045.2 −1.99162
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4056.95 4056.95i 0.528780 0.528780i −0.391429 0.920209i \(-0.628019\pi\)
0.920209 + 0.391429i \(0.128019\pi\)
\(390\) 0 0
\(391\) 10307.8 1.33322
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −442.750 442.750i −0.0563979 0.0563979i
\(396\) 0 0
\(397\) −2409.95 + 2409.95i −0.304665 + 0.304665i −0.842836 0.538171i \(-0.819115\pi\)
0.538171 + 0.842836i \(0.319115\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7830.00i 0.975091i 0.873098 + 0.487545i \(0.162108\pi\)
−0.873098 + 0.487545i \(0.837892\pi\)
\(402\) 0 0
\(403\) −5380.46 5380.46i −0.665061 0.665061i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3109.17i 0.378662i
\(408\) 0 0
\(409\) 4518.97i 0.546329i 0.961967 + 0.273164i \(0.0880703\pi\)
−0.961967 + 0.273164i \(0.911930\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −5908.27 5908.27i −0.703940 0.703940i
\(414\) 0 0
\(415\) 27185.8i 3.21566i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 427.092 427.092i 0.0497967 0.0497967i −0.681770 0.731567i \(-0.738789\pi\)
0.731567 + 0.681770i \(0.238789\pi\)
\(420\) 0 0
\(421\) 3815.11 + 3815.11i 0.441656 + 0.441656i 0.892568 0.450913i \(-0.148901\pi\)
−0.450913 + 0.892568i \(0.648901\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −28991.7 −3.30895
\(426\) 0 0
\(427\) −147.007 + 147.007i −0.0166608 + 0.0166608i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12742.0 −1.42404 −0.712022 0.702157i \(-0.752220\pi\)
−0.712022 + 0.702157i \(0.752220\pi\)
\(432\) 0 0
\(433\) −14363.7 −1.59417 −0.797085 0.603867i \(-0.793626\pi\)
−0.797085 + 0.603867i \(0.793626\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6389.77 6389.77i 0.699460 0.699460i
\(438\) 0 0
\(439\) −3156.53 −0.343173 −0.171586 0.985169i \(-0.554889\pi\)
−0.171586 + 0.985169i \(0.554889\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −8113.23 8113.23i −0.870139 0.870139i 0.122349 0.992487i \(-0.460957\pi\)
−0.992487 + 0.122349i \(0.960957\pi\)
\(444\) 0 0
\(445\) 4277.03 4277.03i 0.455619 0.455619i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18120.9i 1.90463i −0.305112 0.952316i \(-0.598694\pi\)
0.305112 0.952316i \(-0.401306\pi\)
\(450\) 0 0
\(451\) −5634.19 5634.19i −0.588256 0.588256i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 19944.9i 2.05501i
\(456\) 0 0
\(457\) 11253.4i 1.15189i −0.817490 0.575943i \(-0.804635\pi\)
0.817490 0.575943i \(-0.195365\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1886.34 1886.34i −0.190576 0.190576i 0.605369 0.795945i \(-0.293025\pi\)
−0.795945 + 0.605369i \(0.793025\pi\)
\(462\) 0 0
\(463\) 4690.87i 0.470849i 0.971893 + 0.235424i \(0.0756480\pi\)
−0.971893 + 0.235424i \(0.924352\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −7780.38 + 7780.38i −0.770948 + 0.770948i −0.978272 0.207324i \(-0.933525\pi\)
0.207324 + 0.978272i \(0.433525\pi\)
\(468\) 0 0
\(469\) −6707.34 6707.34i −0.660375 0.660375i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −636.669 −0.0618902
\(474\) 0 0
\(475\) −17971.8 + 17971.8i −1.73600 + 1.73600i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1769.08 0.168750 0.0843749 0.996434i \(-0.473111\pi\)
0.0843749 + 0.996434i \(0.473111\pi\)
\(480\) 0 0
\(481\) 4121.70 0.390714
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2869.75 + 2869.75i −0.268678 + 0.268678i
\(486\) 0 0
\(487\) −18479.1 −1.71944 −0.859721 0.510765i \(-0.829362\pi\)
−0.859721 + 0.510765i \(0.829362\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3394.93 3394.93i −0.312039 0.312039i 0.533660 0.845699i \(-0.320816\pi\)
−0.845699 + 0.533660i \(0.820816\pi\)
\(492\) 0 0
\(493\) −6744.42 + 6744.42i −0.616132 + 0.616132i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10994.6i 0.992307i
\(498\) 0 0
\(499\) −7006.50 7006.50i −0.628565 0.628565i 0.319142 0.947707i \(-0.396605\pi\)
−0.947707 + 0.319142i \(0.896605\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15005.5i 1.33014i −0.746781 0.665070i \(-0.768402\pi\)
0.746781 0.665070i \(-0.231598\pi\)
\(504\) 0 0
\(505\) 6657.49i 0.586643i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −15473.1 15473.1i −1.34742 1.34742i −0.888458 0.458958i \(-0.848223\pi\)
−0.458958 0.888458i \(-0.651777\pi\)
\(510\) 0 0
\(511\) 1341.59i 0.116142i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −28852.1 + 28852.1i −2.46869 + 2.46869i
\(516\) 0 0
\(517\) 9509.68 + 9509.68i 0.808965 + 0.808965i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −8687.96 −0.730569 −0.365284 0.930896i \(-0.619028\pi\)
−0.365284 + 0.930896i \(0.619028\pi\)
\(522\) 0 0
\(523\) 6047.61 6047.61i 0.505628 0.505628i −0.407553 0.913182i \(-0.633618\pi\)
0.913182 + 0.407553i \(0.133618\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −17266.2 −1.42719
\(528\) 0 0
\(529\) −2229.75 −0.183262
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7469.02 + 7469.02i −0.606978 + 0.606978i
\(534\) 0 0
\(535\) 12179.6 0.984246
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5192.12 + 5192.12i 0.414917 + 0.414917i
\(540\) 0 0
\(541\) −16062.4 + 16062.4i −1.27648 + 1.27648i −0.333854 + 0.942625i \(0.608349\pi\)
−0.942625 + 0.333854i \(0.891651\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 6272.34i 0.492987i
\(546\) 0 0
\(547\) 10435.4 + 10435.4i 0.815697 + 0.815697i 0.985481 0.169784i \(-0.0543070\pi\)
−0.169784 + 0.985481i \(0.554307\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8361.64i 0.646493i
\(552\) 0 0
\(553\) 713.257i 0.0548477i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6335.69 + 6335.69i 0.481960 + 0.481960i 0.905757 0.423797i \(-0.139303\pi\)
−0.423797 + 0.905757i \(0.639303\pi\)
\(558\) 0 0
\(559\) 844.008i 0.0638600i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9187.42 + 9187.42i −0.687750 + 0.687750i −0.961734 0.273984i \(-0.911658\pi\)
0.273984 + 0.961734i \(0.411658\pi\)
\(564\) 0 0
\(565\) −5855.52 5855.52i −0.436006 0.436006i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −11816.3 −0.870588 −0.435294 0.900288i \(-0.643356\pi\)
−0.435294 + 0.900288i \(0.643356\pi\)
\(570\) 0 0
\(571\) −2344.11 + 2344.11i −0.171800 + 0.171800i −0.787770 0.615970i \(-0.788764\pi\)
0.615970 + 0.787770i \(0.288764\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 40492.1 2.93676
\(576\) 0 0
\(577\) 16615.2 1.19878 0.599392 0.800456i \(-0.295409\pi\)
0.599392 + 0.800456i \(0.295409\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 21897.8 21897.8i 1.56364 1.56364i
\(582\) 0 0
\(583\) 4551.20 0.323313
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1186.35 1186.35i −0.0834173 0.0834173i 0.664167 0.747584i \(-0.268786\pi\)
−0.747584 + 0.664167i \(0.768786\pi\)
\(588\) 0 0
\(589\) −10703.2 + 10703.2i −0.748758 + 0.748758i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1478.23i 0.102367i −0.998689 0.0511833i \(-0.983701\pi\)
0.998689 0.0511833i \(-0.0162993\pi\)
\(594\) 0 0
\(595\) 32002.1 + 32002.1i 2.20497 + 2.20497i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10548.3i 0.719522i −0.933044 0.359761i \(-0.882858\pi\)
0.933044 0.359761i \(-0.117142\pi\)
\(600\) 0 0
\(601\) 21596.7i 1.46580i −0.680335 0.732901i \(-0.738166\pi\)
0.680335 0.732901i \(-0.261834\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7837.32 + 7837.32i 0.526665 + 0.526665i
\(606\) 0 0
\(607\) 12331.9i 0.824604i 0.911047 + 0.412302i \(0.135275\pi\)
−0.911047 + 0.412302i \(0.864725\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12606.6 12606.6i 0.834711 0.834711i
\(612\) 0 0
\(613\) −6110.69 6110.69i −0.402624 0.402624i 0.476533 0.879157i \(-0.341893\pi\)
−0.879157 + 0.476533i \(0.841893\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9428.72 0.615212 0.307606 0.951514i \(-0.400472\pi\)
0.307606 + 0.951514i \(0.400472\pi\)
\(618\) 0 0
\(619\) 209.732 209.732i 0.0136185 0.0136185i −0.700265 0.713883i \(-0.746935\pi\)
0.713883 + 0.700265i \(0.246935\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6890.16 −0.443096
\(624\) 0 0
\(625\) −56078.5 −3.58903
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6613.39 6613.39i 0.419226 0.419226i
\(630\) 0 0
\(631\) 17914.3 1.13020 0.565101 0.825022i \(-0.308837\pi\)
0.565101 + 0.825022i \(0.308837\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −21593.7 21593.7i −1.34948 1.34948i
\(636\) 0 0
\(637\) 6882.98 6882.98i 0.428122 0.428122i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3322.93i 0.204755i −0.994746 0.102377i \(-0.967355\pi\)
0.994746 0.102377i \(-0.0326450\pi\)
\(642\) 0 0
\(643\) −11199.4 11199.4i −0.686878 0.686878i 0.274663 0.961541i \(-0.411434\pi\)
−0.961541 + 0.274663i \(0.911434\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 21868.3i 1.32879i −0.747380 0.664397i \(-0.768688\pi\)
0.747380 0.664397i \(-0.231312\pi\)
\(648\) 0 0
\(649\) 9740.93i 0.589160i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2170.27 + 2170.27i 0.130060 + 0.130060i 0.769140 0.639080i \(-0.220685\pi\)
−0.639080 + 0.769140i \(0.720685\pi\)
\(654\) 0 0
\(655\) 6147.38i 0.366715i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9827.52 9827.52i 0.580919 0.580919i −0.354237 0.935156i \(-0.615259\pi\)
0.935156 + 0.354237i \(0.115259\pi\)
\(660\) 0 0
\(661\) −6022.78 6022.78i −0.354401 0.354401i 0.507343 0.861744i \(-0.330628\pi\)
−0.861744 + 0.507343i \(0.830628\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 39675.8 2.31363
\(666\) 0 0
\(667\) 9419.79 9419.79i 0.546830 0.546830i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −242.369 −0.0139442
\(672\) 0 0
\(673\) −15216.4 −0.871543 −0.435771 0.900057i \(-0.643524\pi\)
−0.435771 + 0.900057i \(0.643524\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5754.92 + 5754.92i −0.326705 + 0.326705i −0.851332 0.524627i \(-0.824205\pi\)
0.524627 + 0.851332i \(0.324205\pi\)
\(678\) 0 0
\(679\) 4623.09 0.261293
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 10651.0 + 10651.0i 0.596705 + 0.596705i 0.939434 0.342729i \(-0.111351\pi\)
−0.342729 + 0.939434i \(0.611351\pi\)
\(684\) 0 0
\(685\) −14986.2 + 14986.2i −0.835902 + 0.835902i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6033.34i 0.333602i
\(690\) 0 0
\(691\) 16585.3 + 16585.3i 0.913073 + 0.913073i 0.996513 0.0834401i \(-0.0265907\pi\)
−0.0834401 + 0.996513i \(0.526591\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 36482.7i 1.99117i
\(696\) 0 0
\(697\) 23968.6i 1.30254i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6023.16 6023.16i −0.324524 0.324524i 0.525975 0.850500i \(-0.323700\pi\)
−0.850500 + 0.525975i \(0.823700\pi\)
\(702\) 0 0
\(703\) 8199.20i 0.439884i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5362.51 5362.51i 0.285259 0.285259i
\(708\) 0 0
\(709\) 21886.4 + 21886.4i 1.15932 + 1.15932i 0.984621 + 0.174701i \(0.0558960\pi\)
0.174701 + 0.984621i \(0.444104\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 24115.4 1.26666
\(714\) 0 0
\(715\) −16441.5 + 16441.5i −0.859966 + 0.859966i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24967.9 −1.29506 −0.647528 0.762041i \(-0.724197\pi\)
−0.647528 + 0.762041i \(0.724197\pi\)
\(720\) 0 0
\(721\) 46479.9 2.40084
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −26494.0 + 26494.0i −1.35719 + 1.35719i
\(726\) 0 0
\(727\) 31570.1 1.61055 0.805276 0.592900i \(-0.202017\pi\)
0.805276 + 0.592900i \(0.202017\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1354.24 + 1354.24i 0.0685202 + 0.0685202i
\(732\) 0 0
\(733\) 14686.6 14686.6i 0.740055 0.740055i −0.232533 0.972588i \(-0.574701\pi\)
0.972588 + 0.232533i \(0.0747015\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11058.3i 0.552699i
\(738\) 0 0
\(739\) −16900.6 16900.6i −0.841271 0.841271i 0.147753 0.989024i \(-0.452796\pi\)
−0.989024 + 0.147753i \(0.952796\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 13888.3i 0.685750i −0.939381 0.342875i \(-0.888599\pi\)
0.939381 0.342875i \(-0.111401\pi\)
\(744\) 0 0
\(745\) 38230.5i 1.88008i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −9810.52 9810.52i −0.478596 0.478596i
\(750\) 0 0
\(751\) 8334.75i 0.404979i 0.979284 + 0.202490i \(0.0649032\pi\)
−0.979284 + 0.202490i \(0.935097\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 27870.8 27870.8i 1.34347 1.34347i
\(756\) 0 0
\(757\) 14800.7 + 14800.7i 0.710620 + 0.710620i 0.966665 0.256045i \(-0.0824195\pi\)
−0.256045 + 0.966665i \(0.582420\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −5724.34 −0.272677 −0.136339 0.990662i \(-0.543533\pi\)
−0.136339 + 0.990662i \(0.543533\pi\)
\(762\) 0 0
\(763\) 5052.28 5052.28i 0.239718 0.239718i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12913.2 −0.607910
\(768\) 0 0
\(769\) −16257.1 −0.762348 −0.381174 0.924503i \(-0.624480\pi\)
−0.381174 + 0.924503i \(0.624480\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 9339.94 9339.94i 0.434585 0.434585i −0.455600 0.890185i \(-0.650575\pi\)
0.890185 + 0.455600i \(0.150575\pi\)
\(774\) 0 0
\(775\) −67826.6 −3.14374
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14858.0 + 14858.0i 0.683365 + 0.683365i
\(780\) 0 0
\(781\) 9063.38 9063.38i 0.415254 0.415254i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 63923.9i 2.90642i
\(786\) 0 0
\(787\) 21944.5 + 21944.5i 0.993950 + 0.993950i 0.999982 0.00603172i \(-0.00191997\pi\)
−0.00603172 + 0.999982i \(0.501920\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9433.07i 0.424022i
\(792\) 0 0
\(793\) 321.299i 0.0143880i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 21112.7 + 21112.7i 0.938331 + 0.938331i 0.998206 0.0598747i \(-0.0190701\pi\)
−0.0598747 + 0.998206i \(0.519070\pi\)
\(798\) 0 0
\(799\) 40455.4i 1.79125i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1105.94 1105.94i 0.0486023 0.0486023i
\(804\) 0 0
\(805\) −44696.7 44696.7i −1.95696 1.95696i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −39210.9 −1.70406 −0.852028 0.523496i \(-0.824628\pi\)
−0.852028 + 0.523496i \(0.824628\pi\)
\(810\) 0 0
\(811\) 7512.78 7512.78i 0.325289 0.325289i −0.525503 0.850792i \(-0.676123\pi\)
0.850792 + 0.525503i \(0.176123\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4696.79 −0.201867
\(816\) 0 0
\(817\) 1678.97 0.0718966
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −12626.1 + 12626.1i −0.536727 + 0.536727i −0.922566 0.385839i \(-0.873912\pi\)
0.385839 + 0.922566i \(0.373912\pi\)
\(822\) 0 0
\(823\) −15641.0 −0.662468 −0.331234 0.943549i \(-0.607465\pi\)
−0.331234 + 0.943549i \(0.607465\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −26716.0 26716.0i −1.12334 1.12334i −0.991235 0.132109i \(-0.957825\pi\)
−0.132109 0.991235i \(-0.542175\pi\)
\(828\) 0 0
\(829\) 3654.34 3654.34i 0.153101 0.153101i −0.626401 0.779501i \(-0.715473\pi\)
0.779501 + 0.626401i \(0.215473\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 22087.9i 0.918729i
\(834\) 0 0
\(835\) −52958.5 52958.5i −2.19486 2.19486i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 7316.14i 0.301050i −0.988606 0.150525i \(-0.951904\pi\)
0.988606 0.150525i \(-0.0480965\pi\)
\(840\) 0 0
\(841\) 12062.3i 0.494579i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −11612.8 11612.8i −0.472771 0.472771i
\(846\) 0 0
\(847\) 12625.7i 0.512189i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −9236.79 + 9236.79i −0.372072 + 0.372072i
\(852\) 0 0
\(853\) −4362.84 4362.84i −0.175124 0.175124i 0.614102 0.789226i \(-0.289518\pi\)
−0.789226 + 0.614102i \(0.789518\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −10598.4 −0.422442 −0.211221 0.977438i \(-0.567744\pi\)
−0.211221 + 0.977438i \(0.567744\pi\)
\(858\) 0 0
\(859\) −25041.9 + 25041.9i −0.994668 + 0.994668i −0.999986 0.00531813i \(-0.998307\pi\)
0.00531813 + 0.999986i \(0.498307\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 11567.3 0.456265 0.228133 0.973630i \(-0.426738\pi\)
0.228133 + 0.973630i \(0.426738\pi\)
\(864\) 0 0
\(865\) 77966.2 3.06466
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −587.971 + 587.971i −0.0229523 + 0.0229523i
\(870\) 0 0
\(871\) −14659.6 −0.570289
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 79149.1 + 79149.1i 3.05797 + 3.05797i
\(876\) 0 0
\(877\) 29456.6 29456.6i 1.13418 1.13418i 0.144710 0.989474i \(-0.453775\pi\)
0.989474 0.144710i \(-0.0462250\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 42700.5i 1.63294i −0.577390 0.816468i \(-0.695929\pi\)
0.577390 0.816468i \(-0.304071\pi\)
\(882\) 0 0
\(883\) −135.261 135.261i −0.00515504 0.00515504i 0.704525 0.709680i \(-0.251160\pi\)
−0.709680 + 0.704525i \(0.751160\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 27302.4i 1.03351i −0.856132 0.516757i \(-0.827139\pi\)
0.856132 0.516757i \(-0.172861\pi\)
\(888\) 0 0
\(889\) 34786.9i 1.31239i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −25078.0 25078.0i −0.939758 0.939758i
\(894\) 0 0
\(895\) 17642.7i 0.658917i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −15778.7 + 15778.7i −0.585370 + 0.585370i
\(900\) 0 0
\(901\) −9680.68 9680.68i −0.357947 0.357947i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 566.598 0.0208114
\(906\) 0 0
\(907\) 22150.8 22150.8i 0.810921 0.810921i −0.173851 0.984772i \(-0.555621\pi\)
0.984772 + 0.173851i \(0.0556212\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −40596.8 −1.47643 −0.738217 0.674564i \(-0.764332\pi\)
−0.738217 + 0.674564i \(0.764332\pi\)
\(912\) 0 0
\(913\) 36102.7 1.30868
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4951.63 4951.63i 0.178317 0.178317i
\(918\) 0 0
\(919\) 33460.1 1.20103 0.600515 0.799613i \(-0.294962\pi\)
0.600515 + 0.799613i \(0.294962\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −12015.0 12015.0i −0.428470 0.428470i
\(924\) 0 0
\(925\) 25979.3 25979.3i 0.923452 0.923452i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 22691.6i 0.801387i 0.916212 + 0.400693i \(0.131231\pi\)
−0.916212 + 0.400693i \(0.868769\pi\)
\(930\) 0 0
\(931\) −13692.2 13692.2i −0.482001 0.482001i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 52761.7i 1.84545i
\(936\) 0 0
\(937\) 5447.73i 0.189936i 0.995480 + 0.0949678i \(0.0302748\pi\)
−0.995480 + 0.0949678i \(0.969725\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 20191.7 + 20191.7i 0.699501 + 0.699501i 0.964303 0.264802i \(-0.0853067\pi\)
−0.264802 + 0.964303i \(0.585307\pi\)
\(942\) 0 0
\(943\) 33476.4i 1.15603i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −2444.37 + 2444.37i −0.0838768 + 0.0838768i −0.747800 0.663924i \(-0.768890\pi\)
0.663924 + 0.747800i \(0.268890\pi\)
\(948\) 0 0
\(949\) −1466.10 1466.10i −0.0501491 0.0501491i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 9299.20 0.316087 0.158043 0.987432i \(-0.449481\pi\)
0.158043 + 0.987432i \(0.449481\pi\)
\(954\) 0 0
\(955\) 26274.1 26274.1i 0.890273 0.890273i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 24142.3 0.812926
\(960\) 0 0
\(961\) −10603.6 −0.355933
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −62307.0 + 62307.0i −2.07848 + 2.07848i
\(966\) 0 0
\(967\) −39928.8 −1.32784 −0.663922 0.747802i \(-0.731109\pi\)
−0.663922 + 0.747802i \(0.731109\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −18987.0 18987.0i −0.627521 0.627521i 0.319923 0.947444i \(-0.396343\pi\)
−0.947444 + 0.319923i \(0.896343\pi\)
\(972\) 0 0
\(973\) 29386.2 29386.2i 0.968222 0.968222i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 26451.4i 0.866176i −0.901352 0.433088i \(-0.857424\pi\)
0.901352 0.433088i \(-0.142576\pi\)
\(978\) 0 0
\(979\) −5679.88 5679.88i −0.185424 0.185424i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3516.98i 0.114114i −0.998371 0.0570571i \(-0.981828\pi\)
0.998371 0.0570571i \(-0.0181717\pi\)
\(984\) 0 0
\(985\) 118281.i 3.82615i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1891.43 1891.43i −0.0608130 0.0608130i
\(990\) 0 0
\(991\) 55027.6i 1.76388i −0.471359 0.881942i \(-0.656236\pi\)
0.471359 0.881942i \(-0.343764\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 50681.9 50681.9i 1.61480 1.61480i
\(996\) 0 0
\(997\) 28913.9 + 28913.9i 0.918466 + 0.918466i 0.996918 0.0784515i \(-0.0249976\pi\)
−0.0784515 + 0.996918i \(0.524998\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.4.l.b.287.1 48
3.2 odd 2 inner 1152.4.l.b.287.24 48
4.3 odd 2 1152.4.l.a.287.1 48
8.3 odd 2 576.4.l.a.143.24 48
8.5 even 2 144.4.l.a.107.1 yes 48
12.11 even 2 1152.4.l.a.287.24 48
16.3 odd 4 inner 1152.4.l.b.863.24 48
16.5 even 4 576.4.l.a.431.1 48
16.11 odd 4 144.4.l.a.35.24 yes 48
16.13 even 4 1152.4.l.a.863.24 48
24.5 odd 2 144.4.l.a.107.24 yes 48
24.11 even 2 576.4.l.a.143.1 48
48.5 odd 4 576.4.l.a.431.24 48
48.11 even 4 144.4.l.a.35.1 48
48.29 odd 4 1152.4.l.a.863.1 48
48.35 even 4 inner 1152.4.l.b.863.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.l.a.35.1 48 48.11 even 4
144.4.l.a.35.24 yes 48 16.11 odd 4
144.4.l.a.107.1 yes 48 8.5 even 2
144.4.l.a.107.24 yes 48 24.5 odd 2
576.4.l.a.143.1 48 24.11 even 2
576.4.l.a.143.24 48 8.3 odd 2
576.4.l.a.431.1 48 16.5 even 4
576.4.l.a.431.24 48 48.5 odd 4
1152.4.l.a.287.1 48 4.3 odd 2
1152.4.l.a.287.24 48 12.11 even 2
1152.4.l.a.863.1 48 48.29 odd 4
1152.4.l.a.863.24 48 16.13 even 4
1152.4.l.b.287.1 48 1.1 even 1 trivial
1152.4.l.b.287.24 48 3.2 odd 2 inner
1152.4.l.b.863.1 48 48.35 even 4 inner
1152.4.l.b.863.24 48 16.3 odd 4 inner