Properties

Label 144.14.a.m
Level $144$
Weight $14$
Character orbit 144.a
Self dual yes
Analytic conductor $154.413$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,14,Mod(1,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 14, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 144.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-40716,0,21008] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(154.412537691\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1969}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 492 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8}\cdot 3 \)
Twist minimal: no (minimal twist has level 3)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 384\sqrt{1969}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 20358) q^{5} + (27 \beta + 10504) q^{7} + ( - 286 \beta + 336204) q^{11} + (702 \beta + 8766302) q^{13} + ( - 570 \beta - 41919282) q^{17} + ( - 5994 \beta - 128146772) q^{19} + ( - 28886 \beta + 429790968) q^{23}+ \cdots + ( - 289584180 \beta - 4937463078238) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 40716 q^{5} + 21008 q^{7} + 672408 q^{11} + 17532604 q^{13} - 83838564 q^{17} - 256293544 q^{19} + 859581936 q^{23} - 1031828194 q^{25} + 4728475332 q^{29} + 5982551648 q^{31} - 16106087520 q^{35}+ \cdots - 9874926156476 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
22.6867
−21.6867
0 0 0 −37397.4 0 470568. 0 0 0
1.2 0 0 0 −3318.61 0 −449560. 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.14.a.m 2
3.b odd 2 1 48.14.a.g 2
4.b odd 2 1 9.14.a.c 2
12.b even 2 1 3.14.a.b 2
24.f even 2 1 192.14.a.k 2
24.h odd 2 1 192.14.a.o 2
60.h even 2 1 75.14.a.e 2
60.l odd 4 2 75.14.b.c 4
84.h odd 2 1 147.14.a.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3.14.a.b 2 12.b even 2 1
9.14.a.c 2 4.b odd 2 1
48.14.a.g 2 3.b odd 2 1
75.14.a.e 2 60.h even 2 1
75.14.b.c 4 60.l odd 4 2
144.14.a.m 2 1.a even 1 1 trivial
147.14.a.b 2 84.h odd 2 1
192.14.a.k 2 24.f even 2 1
192.14.a.o 2 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 40716T_{5} + 124107300 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(144))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 40716 T + 124107300 \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 211548155840 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 23635688182128 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 66233088387452 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 16\!\cdots\!24 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 59\!\cdots\!80 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 57\!\cdots\!20 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 49\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 18\!\cdots\!80 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 11\!\cdots\!60 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 16\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 72\!\cdots\!44 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 17\!\cdots\!80 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 21\!\cdots\!80 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 34\!\cdots\!64 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 53\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 27\!\cdots\!76 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 31\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 51\!\cdots\!92 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 61\!\cdots\!80 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 30\!\cdots\!44 \) Copy content Toggle raw display
show more
show less