Properties

Label 3.14.a.b
Level $3$
Weight $14$
Character orbit 3.a
Self dual yes
Analytic conductor $3.217$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3,14,Mod(1,3)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 3.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.21692786856\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1969}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 492 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 3\sqrt{1969}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 27) q^{2} + 729 q^{3} + (54 \beta + 10258) q^{4} + ( - 128 \beta + 20358) q^{5} + ( - 729 \beta - 19683) q^{6} + (3456 \beta - 10504) q^{7} + ( - 3524 \beta - 1012716) q^{8} + 531441 q^{9}+ \cdots + (19454992128 \beta + 178672589964) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 54 q^{2} + 1458 q^{3} + 20516 q^{4} + 40716 q^{5} - 39366 q^{6} - 21008 q^{7} - 2025432 q^{8} + 1062882 q^{9} + 3437244 q^{10} + 672408 q^{11} + 14956164 q^{12} + 17532604 q^{13} - 121920336 q^{14}+ \cdots + 357345179928 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
22.6867
−21.6867
−160.120 729.000 17446.5 3318.61 −116728. 449560. −1.48183e6 531441. −531376.
1.2 106.120 729.000 3069.51 37397.4 77361.7 −470568. −543600. 531441. 3.96862e6
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3.14.a.b 2
3.b odd 2 1 9.14.a.c 2
4.b odd 2 1 48.14.a.g 2
5.b even 2 1 75.14.a.e 2
5.c odd 4 2 75.14.b.c 4
7.b odd 2 1 147.14.a.b 2
8.b even 2 1 192.14.a.k 2
8.d odd 2 1 192.14.a.o 2
12.b even 2 1 144.14.a.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3.14.a.b 2 1.a even 1 1 trivial
9.14.a.c 2 3.b odd 2 1
48.14.a.g 2 4.b odd 2 1
75.14.a.e 2 5.b even 2 1
75.14.b.c 4 5.c odd 4 2
144.14.a.m 2 12.b even 2 1
147.14.a.b 2 7.b odd 2 1
192.14.a.k 2 8.b even 2 1
192.14.a.o 2 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 54T_{2} - 16992 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(3))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 54T - 16992 \) Copy content Toggle raw display
$3$ \( (T - 729)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 40716 T + 124107300 \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 211548155840 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 23635688182128 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 66233088387452 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 16\!\cdots\!24 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 59\!\cdots\!80 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 57\!\cdots\!20 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 49\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 18\!\cdots\!80 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 11\!\cdots\!60 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 16\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 72\!\cdots\!44 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 17\!\cdots\!80 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 21\!\cdots\!80 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 34\!\cdots\!64 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 53\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 27\!\cdots\!76 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 31\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 51\!\cdots\!92 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 61\!\cdots\!80 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 30\!\cdots\!44 \) Copy content Toggle raw display
show more
show less