Properties

Label 1428.2.cc.c.361.18
Level $1428$
Weight $2$
Character 1428.361
Analytic conductor $11.403$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1428,2,Mod(361,1428)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1428, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 8, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1428.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1428 = 2^{2} \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1428.cc (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.4026374086\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 361.18
Character \(\chi\) \(=\) 1428.361
Dual form 1428.2.cc.c.625.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.258819 + 0.965926i) q^{3} +(4.11475 + 1.10254i) q^{5} +(1.20191 + 2.35699i) q^{7} +(-0.866025 + 0.500000i) q^{9} +(4.92080 - 1.31853i) q^{11} -2.39520 q^{13} +4.25990i q^{15} +(4.03409 + 0.852138i) q^{17} +(-5.27196 + 3.04377i) q^{19} +(-1.96560 + 1.77099i) q^{21} +(0.964781 - 3.60061i) q^{23} +(11.3854 + 6.57339i) q^{25} +(-0.707107 - 0.707107i) q^{27} +(0.754976 - 0.754976i) q^{29} +(-2.20834 - 8.24163i) q^{31} +(2.54720 + 4.41187i) q^{33} +(2.34687 + 11.0236i) q^{35} +(-4.69701 - 1.25856i) q^{37} +(-0.619924 - 2.31359i) q^{39} +(-1.06291 - 1.06291i) q^{41} -5.55521i q^{43} +(-4.11475 + 1.10254i) q^{45} +(-5.27390 - 9.13467i) q^{47} +(-4.11083 + 5.66578i) q^{49} +(0.220997 + 4.11718i) q^{51} +(0.745169 + 0.430223i) q^{53} +21.7016 q^{55} +(-4.30454 - 4.30454i) q^{57} +(-6.11933 - 3.53300i) q^{59} +(-0.783732 + 2.92493i) q^{61} +(-2.21938 - 1.44026i) q^{63} +(-9.85566 - 2.64082i) q^{65} +(-4.16873 + 7.22046i) q^{67} +3.72763 q^{69} +(-7.20048 + 7.20048i) q^{71} +(-2.48048 - 9.25727i) q^{73} +(-3.40263 + 12.6988i) q^{75} +(9.02212 + 10.0136i) q^{77} +(-0.788112 + 2.94128i) q^{79} +(0.500000 - 0.866025i) q^{81} -0.914192i q^{83} +(15.6597 + 7.95409i) q^{85} +(0.924653 + 0.533848i) q^{87} +(6.61396 + 11.4557i) q^{89} +(-2.87882 - 5.64547i) q^{91} +(7.38925 - 4.26618i) q^{93} +(-25.0487 + 6.71177i) q^{95} +(2.56368 - 2.56368i) q^{97} +(-3.60228 + 3.60228i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 12 q^{5} - 20 q^{7} + 8 q^{11} + 24 q^{13} - 16 q^{17} + 20 q^{21} - 28 q^{23} + 48 q^{29} - 28 q^{31} + 24 q^{33} + 68 q^{35} + 20 q^{37} + 32 q^{41} - 12 q^{45} + 44 q^{47} - 4 q^{51} + 48 q^{55}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1428\mathbb{Z}\right)^\times\).

\(n\) \(409\) \(715\) \(953\) \(1261\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.258819 + 0.965926i 0.149429 + 0.557678i
\(4\) 0 0
\(5\) 4.11475 + 1.10254i 1.84017 + 0.493073i 0.998871 0.0474948i \(-0.0151238\pi\)
0.841301 + 0.540567i \(0.181790\pi\)
\(6\) 0 0
\(7\) 1.20191 + 2.35699i 0.454279 + 0.890859i
\(8\) 0 0
\(9\) −0.866025 + 0.500000i −0.288675 + 0.166667i
\(10\) 0 0
\(11\) 4.92080 1.31853i 1.48368 0.397550i 0.576081 0.817392i \(-0.304581\pi\)
0.907597 + 0.419842i \(0.137914\pi\)
\(12\) 0 0
\(13\) −2.39520 −0.664310 −0.332155 0.943225i \(-0.607776\pi\)
−0.332155 + 0.943225i \(0.607776\pi\)
\(14\) 0 0
\(15\) 4.25990i 1.09990i
\(16\) 0 0
\(17\) 4.03409 + 0.852138i 0.978410 + 0.206674i
\(18\) 0 0
\(19\) −5.27196 + 3.04377i −1.20947 + 0.698288i −0.962644 0.270771i \(-0.912721\pi\)
−0.246827 + 0.969060i \(0.579388\pi\)
\(20\) 0 0
\(21\) −1.96560 + 1.77099i −0.428930 + 0.386462i
\(22\) 0 0
\(23\) 0.964781 3.60061i 0.201171 0.750779i −0.789412 0.613864i \(-0.789614\pi\)
0.990583 0.136916i \(-0.0437189\pi\)
\(24\) 0 0
\(25\) 11.3854 + 6.57339i 2.27709 + 1.31468i
\(26\) 0 0
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) 0 0
\(29\) 0.754976 0.754976i 0.140195 0.140195i −0.633526 0.773721i \(-0.718393\pi\)
0.773721 + 0.633526i \(0.218393\pi\)
\(30\) 0 0
\(31\) −2.20834 8.24163i −0.396629 1.48024i −0.818987 0.573812i \(-0.805464\pi\)
0.422358 0.906429i \(-0.361203\pi\)
\(32\) 0 0
\(33\) 2.54720 + 4.41187i 0.443410 + 0.768009i
\(34\) 0 0
\(35\) 2.34687 + 11.0236i 0.396693 + 1.86333i
\(36\) 0 0
\(37\) −4.69701 1.25856i −0.772183 0.206906i −0.148847 0.988860i \(-0.547556\pi\)
−0.623336 + 0.781954i \(0.714223\pi\)
\(38\) 0 0
\(39\) −0.619924 2.31359i −0.0992673 0.370471i
\(40\) 0 0
\(41\) −1.06291 1.06291i −0.165999 0.165999i 0.619219 0.785218i \(-0.287449\pi\)
−0.785218 + 0.619219i \(0.787449\pi\)
\(42\) 0 0
\(43\) 5.55521i 0.847162i −0.905858 0.423581i \(-0.860773\pi\)
0.905858 0.423581i \(-0.139227\pi\)
\(44\) 0 0
\(45\) −4.11475 + 1.10254i −0.613391 + 0.164358i
\(46\) 0 0
\(47\) −5.27390 9.13467i −0.769278 1.33243i −0.937955 0.346757i \(-0.887283\pi\)
0.168677 0.985671i \(-0.446050\pi\)
\(48\) 0 0
\(49\) −4.11083 + 5.66578i −0.587261 + 0.809397i
\(50\) 0 0
\(51\) 0.220997 + 4.11718i 0.0309458 + 0.576520i
\(52\) 0 0
\(53\) 0.745169 + 0.430223i 0.102357 + 0.0590957i 0.550305 0.834964i \(-0.314512\pi\)
−0.447948 + 0.894060i \(0.647845\pi\)
\(54\) 0 0
\(55\) 21.7016 2.92625
\(56\) 0 0
\(57\) −4.30454 4.30454i −0.570150 0.570150i
\(58\) 0 0
\(59\) −6.11933 3.53300i −0.796669 0.459957i 0.0456364 0.998958i \(-0.485468\pi\)
−0.842305 + 0.539001i \(0.818802\pi\)
\(60\) 0 0
\(61\) −0.783732 + 2.92493i −0.100347 + 0.374499i −0.997776 0.0666601i \(-0.978766\pi\)
0.897429 + 0.441159i \(0.145432\pi\)
\(62\) 0 0
\(63\) −2.21938 1.44026i −0.279616 0.181456i
\(64\) 0 0
\(65\) −9.85566 2.64082i −1.22244 0.327553i
\(66\) 0 0
\(67\) −4.16873 + 7.22046i −0.509292 + 0.882120i 0.490650 + 0.871357i \(0.336759\pi\)
−0.999942 + 0.0107629i \(0.996574\pi\)
\(68\) 0 0
\(69\) 3.72763 0.448754
\(70\) 0 0
\(71\) −7.20048 + 7.20048i −0.854540 + 0.854540i −0.990688 0.136149i \(-0.956527\pi\)
0.136149 + 0.990688i \(0.456527\pi\)
\(72\) 0 0
\(73\) −2.48048 9.25727i −0.290318 1.08348i −0.944865 0.327460i \(-0.893807\pi\)
0.654547 0.756021i \(-0.272859\pi\)
\(74\) 0 0
\(75\) −3.40263 + 12.6988i −0.392902 + 1.46633i
\(76\) 0 0
\(77\) 9.02212 + 10.0136i 1.02817 + 1.14115i
\(78\) 0 0
\(79\) −0.788112 + 2.94128i −0.0886696 + 0.330919i −0.995984 0.0895339i \(-0.971462\pi\)
0.907314 + 0.420453i \(0.138129\pi\)
\(80\) 0 0
\(81\) 0.500000 0.866025i 0.0555556 0.0962250i
\(82\) 0 0
\(83\) 0.914192i 0.100346i −0.998741 0.0501728i \(-0.984023\pi\)
0.998741 0.0501728i \(-0.0159772\pi\)
\(84\) 0 0
\(85\) 15.6597 + 7.95409i 1.69854 + 0.862742i
\(86\) 0 0
\(87\) 0.924653 + 0.533848i 0.0991332 + 0.0572346i
\(88\) 0 0
\(89\) 6.61396 + 11.4557i 0.701079 + 1.21430i 0.968088 + 0.250610i \(0.0806313\pi\)
−0.267009 + 0.963694i \(0.586035\pi\)
\(90\) 0 0
\(91\) −2.87882 5.64547i −0.301782 0.591806i
\(92\) 0 0
\(93\) 7.38925 4.26618i 0.766229 0.442383i
\(94\) 0 0
\(95\) −25.0487 + 6.71177i −2.56994 + 0.688614i
\(96\) 0 0
\(97\) 2.56368 2.56368i 0.260302 0.260302i −0.564875 0.825177i \(-0.691075\pi\)
0.825177 + 0.564875i \(0.191075\pi\)
\(98\) 0 0
\(99\) −3.60228 + 3.60228i −0.362043 + 0.362043i
\(100\) 0 0
\(101\) 8.38869 14.5296i 0.834706 1.44575i −0.0595643 0.998224i \(-0.518971\pi\)
0.894270 0.447528i \(-0.147696\pi\)
\(102\) 0 0
\(103\) −6.56494 11.3708i −0.646863 1.12040i −0.983868 0.178897i \(-0.942747\pi\)
0.337005 0.941503i \(-0.390586\pi\)
\(104\) 0 0
\(105\) −10.0406 + 5.12002i −0.979858 + 0.499662i
\(106\) 0 0
\(107\) −7.48905 2.00669i −0.723994 0.193994i −0.122041 0.992525i \(-0.538944\pi\)
−0.601953 + 0.798531i \(0.705611\pi\)
\(108\) 0 0
\(109\) 8.44021 2.26155i 0.808426 0.216617i 0.169146 0.985591i \(-0.445899\pi\)
0.639280 + 0.768974i \(0.279232\pi\)
\(110\) 0 0
\(111\) 4.86270i 0.461547i
\(112\) 0 0
\(113\) 3.97383 + 3.97383i 0.373827 + 0.373827i 0.868869 0.495042i \(-0.164847\pi\)
−0.495042 + 0.868869i \(0.664847\pi\)
\(114\) 0 0
\(115\) 7.93966 13.7519i 0.740377 1.28237i
\(116\) 0 0
\(117\) 2.07431 1.19760i 0.191770 0.110718i
\(118\) 0 0
\(119\) 2.84012 + 10.5325i 0.260354 + 0.965513i
\(120\) 0 0
\(121\) 12.9495 7.47642i 1.17723 0.679674i
\(122\) 0 0
\(123\) 0.751592 1.30180i 0.0677688 0.117379i
\(124\) 0 0
\(125\) 24.5398 + 24.5398i 2.19490 + 2.19490i
\(126\) 0 0
\(127\) 20.9257i 1.85686i 0.371510 + 0.928429i \(0.378840\pi\)
−0.371510 + 0.928429i \(0.621160\pi\)
\(128\) 0 0
\(129\) 5.36592 1.43779i 0.472443 0.126591i
\(130\) 0 0
\(131\) 5.72443 + 1.53386i 0.500146 + 0.134014i 0.500068 0.865986i \(-0.333308\pi\)
7.80846e−5 1.00000i \(0.499975\pi\)
\(132\) 0 0
\(133\) −13.5106 8.76764i −1.17151 0.760251i
\(134\) 0 0
\(135\) −2.12995 3.68918i −0.183317 0.317514i
\(136\) 0 0
\(137\) −7.24264 + 12.5446i −0.618780 + 1.07176i 0.370928 + 0.928661i \(0.379040\pi\)
−0.989709 + 0.143097i \(0.954294\pi\)
\(138\) 0 0
\(139\) 0.663746 0.663746i 0.0562982 0.0562982i −0.678397 0.734695i \(-0.737325\pi\)
0.734695 + 0.678397i \(0.237325\pi\)
\(140\) 0 0
\(141\) 7.45843 7.45843i 0.628113 0.628113i
\(142\) 0 0
\(143\) −11.7863 + 3.15814i −0.985622 + 0.264097i
\(144\) 0 0
\(145\) 3.93893 2.27414i 0.327110 0.188857i
\(146\) 0 0
\(147\) −6.53669 2.50434i −0.539137 0.206555i
\(148\) 0 0
\(149\) −2.88555 4.99791i −0.236393 0.409445i 0.723283 0.690551i \(-0.242632\pi\)
−0.959677 + 0.281106i \(0.909299\pi\)
\(150\) 0 0
\(151\) 19.7399 + 11.3968i 1.60641 + 0.927461i 0.990165 + 0.139908i \(0.0446806\pi\)
0.616246 + 0.787554i \(0.288653\pi\)
\(152\) 0 0
\(153\) −3.91969 + 1.27907i −0.316888 + 0.103407i
\(154\) 0 0
\(155\) 36.3471i 2.91947i
\(156\) 0 0
\(157\) −8.93548 + 15.4767i −0.713129 + 1.23517i 0.250548 + 0.968104i \(0.419389\pi\)
−0.963677 + 0.267071i \(0.913944\pi\)
\(158\) 0 0
\(159\) −0.222700 + 0.831127i −0.0176613 + 0.0659127i
\(160\) 0 0
\(161\) 9.64619 2.05363i 0.760226 0.161848i
\(162\) 0 0
\(163\) −3.32023 + 12.3913i −0.260061 + 0.970560i 0.705144 + 0.709064i \(0.250882\pi\)
−0.965205 + 0.261496i \(0.915784\pi\)
\(164\) 0 0
\(165\) 5.61679 + 20.9622i 0.437267 + 1.63190i
\(166\) 0 0
\(167\) −13.4309 + 13.4309i −1.03931 + 1.03931i −0.0401201 + 0.999195i \(0.512774\pi\)
−0.999195 + 0.0401201i \(0.987226\pi\)
\(168\) 0 0
\(169\) −7.26301 −0.558693
\(170\) 0 0
\(171\) 3.04377 5.27196i 0.232763 0.403157i
\(172\) 0 0
\(173\) 5.43835 + 1.45720i 0.413470 + 0.110789i 0.459557 0.888148i \(-0.348008\pi\)
−0.0460865 + 0.998937i \(0.514675\pi\)
\(174\) 0 0
\(175\) −1.80916 + 34.7360i −0.136760 + 2.62580i
\(176\) 0 0
\(177\) 1.82881 6.82522i 0.137462 0.513015i
\(178\) 0 0
\(179\) −14.0690 8.12274i −1.05157 0.607122i −0.128479 0.991712i \(-0.541010\pi\)
−0.923088 + 0.384590i \(0.874343\pi\)
\(180\) 0 0
\(181\) −6.88887 6.88887i −0.512046 0.512046i 0.403107 0.915153i \(-0.367930\pi\)
−0.915153 + 0.403107i \(0.867930\pi\)
\(182\) 0 0
\(183\) −3.02811 −0.223844
\(184\) 0 0
\(185\) −17.9394 10.3573i −1.31893 0.761485i
\(186\) 0 0
\(187\) 20.9745 1.12584i 1.53381 0.0823299i
\(188\) 0 0
\(189\) 0.816767 2.51652i 0.0594111 0.183050i
\(190\) 0 0
\(191\) 9.27436 + 16.0637i 0.671069 + 1.16233i 0.977601 + 0.210465i \(0.0674979\pi\)
−0.306532 + 0.951860i \(0.599169\pi\)
\(192\) 0 0
\(193\) 23.1910 6.21401i 1.66932 0.447294i 0.704396 0.709807i \(-0.251218\pi\)
0.964929 + 0.262513i \(0.0845511\pi\)
\(194\) 0 0
\(195\) 10.2033i 0.730676i
\(196\) 0 0
\(197\) 10.3235 + 10.3235i 0.735522 + 0.735522i 0.971708 0.236186i \(-0.0758973\pi\)
−0.236186 + 0.971708i \(0.575897\pi\)
\(198\) 0 0
\(199\) −4.44863 16.6025i −0.315355 1.17692i −0.923659 0.383216i \(-0.874817\pi\)
0.608304 0.793704i \(-0.291850\pi\)
\(200\) 0 0
\(201\) −8.05338 2.15790i −0.568041 0.152206i
\(202\) 0 0
\(203\) 2.68688 + 0.872060i 0.188582 + 0.0612066i
\(204\) 0 0
\(205\) −3.20171 5.54552i −0.223617 0.387316i
\(206\) 0 0
\(207\) 0.964781 + 3.60061i 0.0670569 + 0.250260i
\(208\) 0 0
\(209\) −21.9290 + 21.9290i −1.51686 + 1.51686i
\(210\) 0 0
\(211\) −8.61343 8.61343i −0.592973 0.592973i 0.345461 0.938433i \(-0.387723\pi\)
−0.938433 + 0.345461i \(0.887723\pi\)
\(212\) 0 0
\(213\) −8.81875 5.09151i −0.604251 0.348864i
\(214\) 0 0
\(215\) 6.12487 22.8583i 0.417712 1.55892i
\(216\) 0 0
\(217\) 16.7712 15.1107i 1.13851 1.02578i
\(218\) 0 0
\(219\) 8.29984 4.79192i 0.560852 0.323808i
\(220\) 0 0
\(221\) −9.66246 2.04104i −0.649967 0.137295i
\(222\) 0 0
\(223\) 24.1501i 1.61721i −0.588351 0.808606i \(-0.700223\pi\)
0.588351 0.808606i \(-0.299777\pi\)
\(224\) 0 0
\(225\) −13.1468 −0.876451
\(226\) 0 0
\(227\) −13.5630 + 3.63420i −0.900209 + 0.241210i −0.679106 0.734040i \(-0.737632\pi\)
−0.221103 + 0.975251i \(0.570966\pi\)
\(228\) 0 0
\(229\) 4.42090 2.55241i 0.292142 0.168668i −0.346766 0.937952i \(-0.612720\pi\)
0.638907 + 0.769284i \(0.279387\pi\)
\(230\) 0 0
\(231\) −7.33725 + 11.3064i −0.482756 + 0.743906i
\(232\) 0 0
\(233\) −22.5769 6.04946i −1.47906 0.396313i −0.573034 0.819532i \(-0.694234\pi\)
−0.906028 + 0.423218i \(0.860900\pi\)
\(234\) 0 0
\(235\) −11.6294 43.4016i −0.758620 2.83121i
\(236\) 0 0
\(237\) −3.04503 −0.197796
\(238\) 0 0
\(239\) 15.6211 1.01044 0.505222 0.862989i \(-0.331411\pi\)
0.505222 + 0.862989i \(0.331411\pi\)
\(240\) 0 0
\(241\) 0.603793 + 2.25338i 0.0388937 + 0.145153i 0.982642 0.185511i \(-0.0593940\pi\)
−0.943749 + 0.330664i \(0.892727\pi\)
\(242\) 0 0
\(243\) 0.965926 + 0.258819i 0.0619642 + 0.0166032i
\(244\) 0 0
\(245\) −23.1618 + 18.7809i −1.47975 + 1.19987i
\(246\) 0 0
\(247\) 12.6274 7.29044i 0.803463 0.463880i
\(248\) 0 0
\(249\) 0.883041 0.236610i 0.0559605 0.0149946i
\(250\) 0 0
\(251\) −2.32271 −0.146608 −0.0733041 0.997310i \(-0.523354\pi\)
−0.0733041 + 0.997310i \(0.523354\pi\)
\(252\) 0 0
\(253\) 18.9900i 1.19389i
\(254\) 0 0
\(255\) −3.63002 + 17.1848i −0.227321 + 1.07616i
\(256\) 0 0
\(257\) 8.96197 5.17419i 0.559032 0.322757i −0.193725 0.981056i \(-0.562057\pi\)
0.752757 + 0.658299i \(0.228724\pi\)
\(258\) 0 0
\(259\) −2.67896 12.5835i −0.166463 0.781900i
\(260\) 0 0
\(261\) −0.276340 + 1.03132i −0.0171050 + 0.0638369i
\(262\) 0 0
\(263\) −9.98055 5.76227i −0.615427 0.355317i 0.159660 0.987172i \(-0.448960\pi\)
−0.775086 + 0.631855i \(0.782294\pi\)
\(264\) 0 0
\(265\) 2.59184 + 2.59184i 0.159216 + 0.159216i
\(266\) 0 0
\(267\) −9.35356 + 9.35356i −0.572429 + 0.572429i
\(268\) 0 0
\(269\) 0.0494360 + 0.184498i 0.00301417 + 0.0112490i 0.967417 0.253190i \(-0.0814798\pi\)
−0.964402 + 0.264439i \(0.914813\pi\)
\(270\) 0 0
\(271\) −4.59141 7.95255i −0.278908 0.483083i 0.692206 0.721700i \(-0.256639\pi\)
−0.971114 + 0.238617i \(0.923306\pi\)
\(272\) 0 0
\(273\) 4.70802 4.24188i 0.284942 0.256730i
\(274\) 0 0
\(275\) 64.6927 + 17.3344i 3.90112 + 1.04530i
\(276\) 0 0
\(277\) −6.08965 22.7269i −0.365892 1.36553i −0.866208 0.499684i \(-0.833450\pi\)
0.500316 0.865843i \(-0.333217\pi\)
\(278\) 0 0
\(279\) 6.03329 + 6.03329i 0.361204 + 0.361204i
\(280\) 0 0
\(281\) 12.9619i 0.773241i −0.922239 0.386620i \(-0.873642\pi\)
0.922239 0.386620i \(-0.126358\pi\)
\(282\) 0 0
\(283\) 14.6256 3.91891i 0.869399 0.232955i 0.203571 0.979060i \(-0.434745\pi\)
0.665828 + 0.746105i \(0.268078\pi\)
\(284\) 0 0
\(285\) −12.9662 22.4580i −0.768049 1.33030i
\(286\) 0 0
\(287\) 1.22775 3.78280i 0.0724719 0.223291i
\(288\) 0 0
\(289\) 15.5477 + 6.87520i 0.914572 + 0.404423i
\(290\) 0 0
\(291\) 3.13985 + 1.81280i 0.184061 + 0.106268i
\(292\) 0 0
\(293\) −5.89205 −0.344217 −0.172109 0.985078i \(-0.555058\pi\)
−0.172109 + 0.985078i \(0.555058\pi\)
\(294\) 0 0
\(295\) −21.2842 21.2842i −1.23922 1.23922i
\(296\) 0 0
\(297\) −4.41187 2.54720i −0.256003 0.147803i
\(298\) 0 0
\(299\) −2.31085 + 8.62419i −0.133640 + 0.498750i
\(300\) 0 0
\(301\) 13.0936 6.67686i 0.754702 0.384848i
\(302\) 0 0
\(303\) 16.2057 + 4.34230i 0.930993 + 0.249459i
\(304\) 0 0
\(305\) −6.44972 + 11.1712i −0.369310 + 0.639664i
\(306\) 0 0
\(307\) 2.73082 0.155856 0.0779281 0.996959i \(-0.475170\pi\)
0.0779281 + 0.996959i \(0.475170\pi\)
\(308\) 0 0
\(309\) 9.28423 9.28423i 0.528162 0.528162i
\(310\) 0 0
\(311\) −7.89120 29.4503i −0.447469 1.66998i −0.709335 0.704872i \(-0.751005\pi\)
0.261866 0.965104i \(-0.415662\pi\)
\(312\) 0 0
\(313\) 1.97150 7.35775i 0.111436 0.415885i −0.887560 0.460693i \(-0.847601\pi\)
0.998996 + 0.0448080i \(0.0142676\pi\)
\(314\) 0 0
\(315\) −7.54424 8.37328i −0.425070 0.471781i
\(316\) 0 0
\(317\) 3.47921 12.9846i 0.195412 0.729287i −0.796748 0.604312i \(-0.793448\pi\)
0.992160 0.124976i \(-0.0398852\pi\)
\(318\) 0 0
\(319\) 2.71963 4.71054i 0.152270 0.263740i
\(320\) 0 0
\(321\) 7.75324i 0.432744i
\(322\) 0 0
\(323\) −23.8613 + 7.78639i −1.32768 + 0.433246i
\(324\) 0 0
\(325\) −27.2704 15.7446i −1.51269 0.873353i
\(326\) 0 0
\(327\) 4.36898 + 7.56729i 0.241605 + 0.418472i
\(328\) 0 0
\(329\) 15.1916 23.4096i 0.837540 1.29061i
\(330\) 0 0
\(331\) 5.45694 3.15056i 0.299940 0.173171i −0.342476 0.939527i \(-0.611265\pi\)
0.642416 + 0.766356i \(0.277932\pi\)
\(332\) 0 0
\(333\) 4.69701 1.25856i 0.257394 0.0689686i
\(334\) 0 0
\(335\) −25.1142 + 25.1142i −1.37213 + 1.37213i
\(336\) 0 0
\(337\) −19.9633 + 19.9633i −1.08747 + 1.08747i −0.0916848 + 0.995788i \(0.529225\pi\)
−0.995788 + 0.0916848i \(0.970775\pi\)
\(338\) 0 0
\(339\) −2.80992 + 4.86693i −0.152614 + 0.264335i
\(340\) 0 0
\(341\) −21.7336 37.6437i −1.17694 2.03852i
\(342\) 0 0
\(343\) −18.2950 2.87944i −0.987840 0.155475i
\(344\) 0 0
\(345\) 15.3383 + 4.10987i 0.825784 + 0.221268i
\(346\) 0 0
\(347\) 4.63505 1.24196i 0.248823 0.0666718i −0.132252 0.991216i \(-0.542221\pi\)
0.381075 + 0.924544i \(0.375554\pi\)
\(348\) 0 0
\(349\) 19.1796i 1.02666i 0.858192 + 0.513329i \(0.171588\pi\)
−0.858192 + 0.513329i \(0.828412\pi\)
\(350\) 0 0
\(351\) 1.69366 + 1.69366i 0.0904011 + 0.0904011i
\(352\) 0 0
\(353\) −6.29479 + 10.9029i −0.335038 + 0.580302i −0.983492 0.180951i \(-0.942082\pi\)
0.648454 + 0.761254i \(0.275416\pi\)
\(354\) 0 0
\(355\) −37.5670 + 21.6893i −1.99385 + 1.15115i
\(356\) 0 0
\(357\) −9.43854 + 5.46936i −0.499541 + 0.289469i
\(358\) 0 0
\(359\) 8.37729 4.83663i 0.442136 0.255268i −0.262367 0.964968i \(-0.584503\pi\)
0.704503 + 0.709701i \(0.251170\pi\)
\(360\) 0 0
\(361\) 9.02904 15.6388i 0.475213 0.823092i
\(362\) 0 0
\(363\) 10.5732 + 10.5732i 0.554952 + 0.554952i
\(364\) 0 0
\(365\) 40.8262i 2.13694i
\(366\) 0 0
\(367\) 2.71990 0.728795i 0.141978 0.0380428i −0.187130 0.982335i \(-0.559919\pi\)
0.329108 + 0.944292i \(0.393252\pi\)
\(368\) 0 0
\(369\) 1.45196 + 0.389053i 0.0755862 + 0.0202533i
\(370\) 0 0
\(371\) −0.118408 + 2.27345i −0.00614744 + 0.118031i
\(372\) 0 0
\(373\) 8.60798 + 14.9095i 0.445704 + 0.771982i 0.998101 0.0615991i \(-0.0196200\pi\)
−0.552397 + 0.833581i \(0.686287\pi\)
\(374\) 0 0
\(375\) −17.3522 + 30.0549i −0.896065 + 1.55203i
\(376\) 0 0
\(377\) −1.80832 + 1.80832i −0.0931332 + 0.0931332i
\(378\) 0 0
\(379\) 11.9223 11.9223i 0.612406 0.612406i −0.331167 0.943572i \(-0.607442\pi\)
0.943572 + 0.331167i \(0.107442\pi\)
\(380\) 0 0
\(381\) −20.2127 + 5.41598i −1.03553 + 0.277469i
\(382\) 0 0
\(383\) −0.285880 + 0.165053i −0.0146078 + 0.00843382i −0.507286 0.861778i \(-0.669351\pi\)
0.492678 + 0.870212i \(0.336018\pi\)
\(384\) 0 0
\(385\) 26.0834 + 51.1505i 1.32933 + 2.60687i
\(386\) 0 0
\(387\) 2.77761 + 4.81095i 0.141194 + 0.244555i
\(388\) 0 0
\(389\) 29.5584 + 17.0655i 1.49867 + 0.865258i 0.999999 0.00153346i \(-0.000488115\pi\)
0.498671 + 0.866791i \(0.333821\pi\)
\(390\) 0 0
\(391\) 6.96023 13.7031i 0.351994 0.692993i
\(392\) 0 0
\(393\) 5.92637i 0.298946i
\(394\) 0 0
\(395\) −6.48577 + 11.2337i −0.326335 + 0.565228i
\(396\) 0 0
\(397\) 5.94955 22.2040i 0.298599 1.11439i −0.639718 0.768610i \(-0.720949\pi\)
0.938317 0.345777i \(-0.112385\pi\)
\(398\) 0 0
\(399\) 4.97210 15.3194i 0.248916 0.766931i
\(400\) 0 0
\(401\) 7.08627 26.4463i 0.353871 1.32067i −0.528028 0.849227i \(-0.677068\pi\)
0.881899 0.471438i \(-0.156265\pi\)
\(402\) 0 0
\(403\) 5.28942 + 19.7404i 0.263485 + 0.983338i
\(404\) 0 0
\(405\) 3.01221 3.01221i 0.149678 0.149678i
\(406\) 0 0
\(407\) −24.7725 −1.22793
\(408\) 0 0
\(409\) −12.0278 + 20.8327i −0.594735 + 1.03011i 0.398849 + 0.917017i \(0.369410\pi\)
−0.993584 + 0.113095i \(0.963924\pi\)
\(410\) 0 0
\(411\) −13.9917 3.74906i −0.690160 0.184928i
\(412\) 0 0
\(413\) 0.972368 18.6695i 0.0478471 0.918668i
\(414\) 0 0
\(415\) 1.00794 3.76167i 0.0494777 0.184653i
\(416\) 0 0
\(417\) 0.812919 + 0.469339i 0.0398088 + 0.0229836i
\(418\) 0 0
\(419\) −13.8863 13.8863i −0.678391 0.678391i 0.281245 0.959636i \(-0.409253\pi\)
−0.959636 + 0.281245i \(0.909253\pi\)
\(420\) 0 0
\(421\) 6.96968 0.339681 0.169841 0.985472i \(-0.445675\pi\)
0.169841 + 0.985472i \(0.445675\pi\)
\(422\) 0 0
\(423\) 9.13467 + 5.27390i 0.444143 + 0.256426i
\(424\) 0 0
\(425\) 40.3284 + 36.2196i 1.95622 + 1.75691i
\(426\) 0 0
\(427\) −7.83601 + 1.66825i −0.379211 + 0.0807321i
\(428\) 0 0
\(429\) −6.10105 10.5673i −0.294561 0.510195i
\(430\) 0 0
\(431\) 24.8820 6.66711i 1.19852 0.321143i 0.396274 0.918132i \(-0.370303\pi\)
0.802249 + 0.596989i \(0.203636\pi\)
\(432\) 0 0
\(433\) 23.2712i 1.11834i 0.829052 + 0.559172i \(0.188881\pi\)
−0.829052 + 0.559172i \(0.811119\pi\)
\(434\) 0 0
\(435\) 3.21612 + 3.21612i 0.154201 + 0.154201i
\(436\) 0 0
\(437\) 5.87314 + 21.9188i 0.280950 + 1.04852i
\(438\) 0 0
\(439\) 13.1943 + 3.53540i 0.629729 + 0.168735i 0.559547 0.828799i \(-0.310975\pi\)
0.0701821 + 0.997534i \(0.477642\pi\)
\(440\) 0 0
\(441\) 0.727191 6.96213i 0.0346281 0.331530i
\(442\) 0 0
\(443\) 8.93238 + 15.4713i 0.424390 + 0.735065i 0.996363 0.0852073i \(-0.0271552\pi\)
−0.571973 + 0.820272i \(0.693822\pi\)
\(444\) 0 0
\(445\) 14.5844 + 54.4296i 0.691366 + 2.58021i
\(446\) 0 0
\(447\) 4.08078 4.08078i 0.193014 0.193014i
\(448\) 0 0
\(449\) −1.01189 1.01189i −0.0477539 0.0477539i 0.682827 0.730581i \(-0.260750\pi\)
−0.730581 + 0.682827i \(0.760750\pi\)
\(450\) 0 0
\(451\) −6.63186 3.82890i −0.312282 0.180296i
\(452\) 0 0
\(453\) −5.89944 + 22.0170i −0.277180 + 1.03445i
\(454\) 0 0
\(455\) −5.62122 26.4037i −0.263527 1.23783i
\(456\) 0 0
\(457\) −7.32545 + 4.22935i −0.342670 + 0.197841i −0.661452 0.749987i \(-0.730060\pi\)
0.318782 + 0.947828i \(0.396726\pi\)
\(458\) 0 0
\(459\) −2.24998 3.45508i −0.105020 0.161269i
\(460\) 0 0
\(461\) 37.5811i 1.75033i 0.483828 + 0.875163i \(0.339246\pi\)
−0.483828 + 0.875163i \(0.660754\pi\)
\(462\) 0 0
\(463\) −0.480130 −0.0223135 −0.0111568 0.999938i \(-0.503551\pi\)
−0.0111568 + 0.999938i \(0.503551\pi\)
\(464\) 0 0
\(465\) 35.1086 9.40731i 1.62812 0.436254i
\(466\) 0 0
\(467\) −7.01381 + 4.04942i −0.324560 + 0.187385i −0.653423 0.756993i \(-0.726668\pi\)
0.328863 + 0.944378i \(0.393335\pi\)
\(468\) 0 0
\(469\) −22.0290 1.14734i −1.01721 0.0529792i
\(470\) 0 0
\(471\) −17.2620 4.62534i −0.795392 0.213125i
\(472\) 0 0
\(473\) −7.32469 27.3361i −0.336790 1.25692i
\(474\) 0 0
\(475\) −80.0314 −3.67209
\(476\) 0 0
\(477\) −0.860446 −0.0393971
\(478\) 0 0
\(479\) −4.86127 18.1425i −0.222117 0.828952i −0.983539 0.180695i \(-0.942165\pi\)
0.761422 0.648256i \(-0.224502\pi\)
\(480\) 0 0
\(481\) 11.2503 + 3.01450i 0.512969 + 0.137450i
\(482\) 0 0
\(483\) 4.48027 + 8.78599i 0.203859 + 0.399776i
\(484\) 0 0
\(485\) 13.3755 7.72233i 0.607349 0.350653i
\(486\) 0 0
\(487\) 6.14436 1.64638i 0.278427 0.0746044i −0.116903 0.993143i \(-0.537297\pi\)
0.395331 + 0.918539i \(0.370630\pi\)
\(488\) 0 0
\(489\) −12.8284 −0.580120
\(490\) 0 0
\(491\) 34.2882i 1.54740i 0.633550 + 0.773702i \(0.281597\pi\)
−0.633550 + 0.773702i \(0.718403\pi\)
\(492\) 0 0
\(493\) 3.68898 2.40229i 0.166143 0.108194i
\(494\) 0 0
\(495\) −18.7941 + 10.8508i −0.844734 + 0.487708i
\(496\) 0 0
\(497\) −25.6258 8.31715i −1.14947 0.373075i
\(498\) 0 0
\(499\) 3.80914 14.2159i 0.170521 0.636392i −0.826751 0.562568i \(-0.809813\pi\)
0.997271 0.0738232i \(-0.0235201\pi\)
\(500\) 0 0
\(501\) −16.4494 9.49709i −0.734907 0.424299i
\(502\) 0 0
\(503\) 18.7473 + 18.7473i 0.835903 + 0.835903i 0.988317 0.152414i \(-0.0487046\pi\)
−0.152414 + 0.988317i \(0.548705\pi\)
\(504\) 0 0
\(505\) 50.5369 50.5369i 2.24886 2.24886i
\(506\) 0 0
\(507\) −1.87980 7.01553i −0.0834850 0.311570i
\(508\) 0 0
\(509\) −4.18417 7.24720i −0.185460 0.321226i 0.758271 0.651939i \(-0.226044\pi\)
−0.943731 + 0.330713i \(0.892711\pi\)
\(510\) 0 0
\(511\) 18.8380 16.9729i 0.833345 0.750836i
\(512\) 0 0
\(513\) 5.88011 + 1.57557i 0.259613 + 0.0695631i
\(514\) 0 0
\(515\) −14.4763 54.0262i −0.637901 2.38068i
\(516\) 0 0
\(517\) −37.9961 37.9961i −1.67107 1.67107i
\(518\) 0 0
\(519\) 5.63019i 0.247138i
\(520\) 0 0
\(521\) 1.33055 0.356521i 0.0582926 0.0156195i −0.229555 0.973296i \(-0.573727\pi\)
0.287847 + 0.957676i \(0.407060\pi\)
\(522\) 0 0
\(523\) −2.84968 4.93580i −0.124608 0.215827i 0.796972 0.604017i \(-0.206434\pi\)
−0.921580 + 0.388189i \(0.873101\pi\)
\(524\) 0 0
\(525\) −34.0206 + 7.24283i −1.48478 + 0.316103i
\(526\) 0 0
\(527\) −1.88563 35.1293i −0.0821392 1.53026i
\(528\) 0 0
\(529\) 7.88499 + 4.55240i 0.342826 + 0.197930i
\(530\) 0 0
\(531\) 7.06599 0.306638
\(532\) 0 0
\(533\) 2.54589 + 2.54589i 0.110275 + 0.110275i
\(534\) 0 0
\(535\) −28.6031 16.5140i −1.23662 0.713963i
\(536\) 0 0
\(537\) 4.20464 15.6919i 0.181444 0.677157i
\(538\) 0 0
\(539\) −12.7581 + 33.3004i −0.549530 + 1.43435i
\(540\) 0 0
\(541\) 1.89081 + 0.506641i 0.0812922 + 0.0217822i 0.299236 0.954179i \(-0.403268\pi\)
−0.217944 + 0.975961i \(0.569935\pi\)
\(542\) 0 0
\(543\) 4.87117 8.43711i 0.209042 0.362071i
\(544\) 0 0
\(545\) 37.2228 1.59445
\(546\) 0 0
\(547\) −8.29629 + 8.29629i −0.354724 + 0.354724i −0.861864 0.507140i \(-0.830703\pi\)
0.507140 + 0.861864i \(0.330703\pi\)
\(548\) 0 0
\(549\) −0.783732 2.92493i −0.0334489 0.124833i
\(550\) 0 0
\(551\) −1.68223 + 6.27817i −0.0716655 + 0.267459i
\(552\) 0 0
\(553\) −7.87980 + 1.67757i −0.335083 + 0.0713376i
\(554\) 0 0
\(555\) 5.36134 20.0088i 0.227576 0.849326i
\(556\) 0 0
\(557\) −2.94718 + 5.10466i −0.124876 + 0.216292i −0.921684 0.387940i \(-0.873187\pi\)
0.796808 + 0.604232i \(0.206520\pi\)
\(558\) 0 0
\(559\) 13.3059i 0.562778i
\(560\) 0 0
\(561\) 6.51609 + 19.9684i 0.275109 + 0.843068i
\(562\) 0 0
\(563\) −20.4389 11.8004i −0.861399 0.497329i 0.00308167 0.999995i \(-0.499019\pi\)
−0.864480 + 0.502666i \(0.832352\pi\)
\(564\) 0 0
\(565\) 11.9700 + 20.7326i 0.503582 + 0.872229i
\(566\) 0 0
\(567\) 2.64217 + 0.137612i 0.110961 + 0.00577918i
\(568\) 0 0
\(569\) 5.42959 3.13477i 0.227620 0.131417i −0.381854 0.924223i \(-0.624714\pi\)
0.609474 + 0.792806i \(0.291381\pi\)
\(570\) 0 0
\(571\) 12.0906 3.23968i 0.505978 0.135576i 0.00320476 0.999995i \(-0.498980\pi\)
0.502773 + 0.864419i \(0.332313\pi\)
\(572\) 0 0
\(573\) −13.1159 + 13.1159i −0.547926 + 0.547926i
\(574\) 0 0
\(575\) 34.6527 34.6527i 1.44512 1.44512i
\(576\) 0 0
\(577\) −10.5641 + 18.2975i −0.439788 + 0.761736i −0.997673 0.0681829i \(-0.978280\pi\)
0.557885 + 0.829919i \(0.311613\pi\)
\(578\) 0 0
\(579\) 12.0045 + 20.7925i 0.498892 + 0.864106i
\(580\) 0 0
\(581\) 2.15474 1.09878i 0.0893938 0.0455849i
\(582\) 0 0
\(583\) 4.23409 + 1.13452i 0.175358 + 0.0469871i
\(584\) 0 0
\(585\) 9.85566 2.64082i 0.407481 0.109184i
\(586\) 0 0
\(587\) 2.29594i 0.0947635i −0.998877 0.0473817i \(-0.984912\pi\)
0.998877 0.0473817i \(-0.0150877\pi\)
\(588\) 0 0
\(589\) 36.7279 + 36.7279i 1.51335 + 1.51335i
\(590\) 0 0
\(591\) −7.29985 + 12.6437i −0.300276 + 0.520093i
\(592\) 0 0
\(593\) 35.1673 20.3039i 1.44415 0.833779i 0.446025 0.895020i \(-0.352839\pi\)
0.998123 + 0.0612412i \(0.0195059\pi\)
\(594\) 0 0
\(595\) 0.0738526 + 46.4700i 0.00302766 + 1.90508i
\(596\) 0 0
\(597\) 14.8854 8.59408i 0.609218 0.351732i
\(598\) 0 0
\(599\) 5.50876 9.54146i 0.225082 0.389853i −0.731262 0.682097i \(-0.761068\pi\)
0.956344 + 0.292243i \(0.0944017\pi\)
\(600\) 0 0
\(601\) −3.87291 3.87291i −0.157979 0.157979i 0.623691 0.781671i \(-0.285632\pi\)
−0.781671 + 0.623691i \(0.785632\pi\)
\(602\) 0 0
\(603\) 8.33747i 0.339528i
\(604\) 0 0
\(605\) 61.5272 16.4862i 2.50143 0.670257i
\(606\) 0 0
\(607\) −27.4926 7.36662i −1.11589 0.299002i −0.346671 0.937987i \(-0.612688\pi\)
−0.769219 + 0.638985i \(0.779354\pi\)
\(608\) 0 0
\(609\) −0.146928 + 2.82104i −0.00595383 + 0.114314i
\(610\) 0 0
\(611\) 12.6321 + 21.8794i 0.511039 + 0.885145i
\(612\) 0 0
\(613\) −14.7328 + 25.5179i −0.595052 + 1.03066i 0.398488 + 0.917174i \(0.369535\pi\)
−0.993540 + 0.113486i \(0.963798\pi\)
\(614\) 0 0
\(615\) 4.52790 4.52790i 0.182583 0.182583i
\(616\) 0 0
\(617\) −5.34011 + 5.34011i −0.214985 + 0.214985i −0.806381 0.591396i \(-0.798577\pi\)
0.591396 + 0.806381i \(0.298577\pi\)
\(618\) 0 0
\(619\) −27.3602 + 7.33114i −1.09970 + 0.294663i −0.762642 0.646821i \(-0.776098\pi\)
−0.337056 + 0.941484i \(0.609431\pi\)
\(620\) 0 0
\(621\) −3.22822 + 1.86381i −0.129544 + 0.0747923i
\(622\) 0 0
\(623\) −19.0517 + 29.3578i −0.763289 + 1.17620i
\(624\) 0 0
\(625\) 41.0519 + 71.1039i 1.64207 + 2.84416i
\(626\) 0 0
\(627\) −26.8574 15.5061i −1.07258 0.619256i
\(628\) 0 0
\(629\) −17.8757 9.07963i −0.712750 0.362029i
\(630\) 0 0
\(631\) 7.43975i 0.296172i −0.988975 0.148086i \(-0.952689\pi\)
0.988975 0.148086i \(-0.0473112\pi\)
\(632\) 0 0
\(633\) 6.09061 10.5492i 0.242080 0.419295i
\(634\) 0 0
\(635\) −23.0715 + 86.1041i −0.915566 + 3.41694i
\(636\) 0 0
\(637\) 9.84627 13.5707i 0.390123 0.537691i
\(638\) 0 0
\(639\) 2.63556 9.83604i 0.104261 0.389108i
\(640\) 0 0
\(641\) −8.86823 33.0967i −0.350274 1.30724i −0.886328 0.463057i \(-0.846752\pi\)
0.536054 0.844184i \(-0.319914\pi\)
\(642\) 0 0
\(643\) −13.7087 + 13.7087i −0.540619 + 0.540619i −0.923710 0.383091i \(-0.874859\pi\)
0.383091 + 0.923710i \(0.374859\pi\)
\(644\) 0 0
\(645\) 23.6647 0.931795
\(646\) 0 0
\(647\) −4.49360 + 7.78314i −0.176662 + 0.305987i −0.940735 0.339142i \(-0.889863\pi\)
0.764073 + 0.645129i \(0.223196\pi\)
\(648\) 0 0
\(649\) −34.7704 9.31669i −1.36486 0.365712i
\(650\) 0 0
\(651\) 18.9366 + 12.2888i 0.742183 + 0.481637i
\(652\) 0 0
\(653\) −1.41708 + 5.28861i −0.0554545 + 0.206959i −0.988094 0.153850i \(-0.950833\pi\)
0.932640 + 0.360809i \(0.117499\pi\)
\(654\) 0 0
\(655\) 21.8635 + 12.6229i 0.854276 + 0.493216i
\(656\) 0 0
\(657\) 6.77679 + 6.77679i 0.264388 + 0.264388i
\(658\) 0 0
\(659\) 7.47863 0.291326 0.145663 0.989334i \(-0.453468\pi\)
0.145663 + 0.989334i \(0.453468\pi\)
\(660\) 0 0
\(661\) −23.9665 13.8371i −0.932188 0.538199i −0.0446851 0.999001i \(-0.514228\pi\)
−0.887503 + 0.460802i \(0.847562\pi\)
\(662\) 0 0
\(663\) −0.529332 9.86148i −0.0205576 0.382988i
\(664\) 0 0
\(665\) −45.9258 50.9726i −1.78093 1.97663i
\(666\) 0 0
\(667\) −1.98999 3.44676i −0.0770526 0.133459i
\(668\) 0 0
\(669\) 23.3272 6.25051i 0.901883 0.241659i
\(670\) 0 0
\(671\) 15.4264i 0.595528i
\(672\) 0 0
\(673\) 8.83882 + 8.83882i 0.340711 + 0.340711i 0.856635 0.515923i \(-0.172551\pi\)
−0.515923 + 0.856635i \(0.672551\pi\)
\(674\) 0 0
\(675\) −3.40263 12.6988i −0.130967 0.488777i
\(676\) 0 0
\(677\) 3.12635 + 0.837704i 0.120156 + 0.0321956i 0.318396 0.947958i \(-0.396856\pi\)
−0.198240 + 0.980153i \(0.563523\pi\)
\(678\) 0 0
\(679\) 9.12389 + 2.96126i 0.350143 + 0.113643i
\(680\) 0 0
\(681\) −7.02073 12.1603i −0.269035 0.465982i
\(682\) 0 0
\(683\) 4.70832 + 17.5717i 0.180159 + 0.672362i 0.995615 + 0.0935432i \(0.0298193\pi\)
−0.815456 + 0.578818i \(0.803514\pi\)
\(684\) 0 0
\(685\) −43.6326 + 43.6326i −1.66712 + 1.66712i
\(686\) 0 0
\(687\) 3.60965 + 3.60965i 0.137717 + 0.137717i
\(688\) 0 0
\(689\) −1.78483 1.03047i −0.0679966 0.0392578i
\(690\) 0 0
\(691\) −11.6980 + 43.6574i −0.445012 + 1.66081i 0.270894 + 0.962609i \(0.412681\pi\)
−0.715905 + 0.698197i \(0.753986\pi\)
\(692\) 0 0
\(693\) −12.8202 4.16093i −0.486998 0.158061i
\(694\) 0 0
\(695\) 3.46296 1.99934i 0.131357 0.0758392i
\(696\) 0 0
\(697\) −3.38213 5.19362i −0.128107 0.196723i
\(698\) 0 0
\(699\) 23.3733i 0.884060i
\(700\) 0 0
\(701\) 21.9211 0.827949 0.413975 0.910288i \(-0.364140\pi\)
0.413975 + 0.910288i \(0.364140\pi\)
\(702\) 0 0
\(703\) 28.5932 7.66152i 1.07841 0.288960i
\(704\) 0 0
\(705\) 38.9128 22.4663i 1.46554 0.846130i
\(706\) 0 0
\(707\) 44.3287 + 2.30877i 1.66715 + 0.0868304i
\(708\) 0 0
\(709\) −4.06415 1.08899i −0.152632 0.0408977i 0.181694 0.983355i \(-0.441842\pi\)
−0.334326 + 0.942457i \(0.608509\pi\)
\(710\) 0 0
\(711\) −0.788112 2.94128i −0.0295565 0.110306i
\(712\) 0 0
\(713\) −31.8055 −1.19112
\(714\) 0 0
\(715\) −51.9798 −1.94393
\(716\) 0 0
\(717\) 4.04304 + 15.0888i 0.150990 + 0.563502i
\(718\) 0 0
\(719\) 38.9731 + 10.4428i 1.45345 + 0.389451i 0.897223 0.441578i \(-0.145581\pi\)
0.556229 + 0.831029i \(0.312248\pi\)
\(720\) 0 0
\(721\) 18.9105 29.1402i 0.704263 1.08524i
\(722\) 0 0
\(723\) −2.02033 + 1.16644i −0.0751368 + 0.0433803i
\(724\) 0 0
\(725\) 13.5585 3.63298i 0.503549 0.134926i
\(726\) 0 0
\(727\) 40.5821 1.50511 0.752553 0.658532i \(-0.228822\pi\)
0.752553 + 0.658532i \(0.228822\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 4.73381 22.4102i 0.175086 0.828872i
\(732\) 0 0
\(733\) 6.63734 3.83207i 0.245156 0.141541i −0.372388 0.928077i \(-0.621461\pi\)
0.617544 + 0.786536i \(0.288128\pi\)
\(734\) 0 0
\(735\) −24.1357 17.5117i −0.890258 0.645930i
\(736\) 0 0
\(737\) −10.9932 + 41.0271i −0.404939 + 1.51125i
\(738\) 0 0
\(739\) 21.1801 + 12.2283i 0.779122 + 0.449826i 0.836119 0.548548i \(-0.184819\pi\)
−0.0569971 + 0.998374i \(0.518153\pi\)
\(740\) 0 0
\(741\) 10.3102 + 10.3102i 0.378756 + 0.378756i
\(742\) 0 0
\(743\) 6.22577 6.22577i 0.228402 0.228402i −0.583623 0.812025i \(-0.698365\pi\)
0.812025 + 0.583623i \(0.198365\pi\)
\(744\) 0 0
\(745\) −6.36288 23.7466i −0.233118 0.870008i
\(746\) 0 0
\(747\) 0.457096 + 0.791713i 0.0167243 + 0.0289673i
\(748\) 0 0
\(749\) −4.27142 20.0635i −0.156074 0.733104i
\(750\) 0 0
\(751\) −6.14101 1.64548i −0.224088 0.0600443i 0.145028 0.989428i \(-0.453673\pi\)
−0.369116 + 0.929383i \(0.620340\pi\)
\(752\) 0 0
\(753\) −0.601162 2.24357i −0.0219076 0.0817601i
\(754\) 0 0
\(755\) 68.6592 + 68.6592i 2.49877 + 2.49877i
\(756\) 0 0
\(757\) 15.0097i 0.545536i −0.962080 0.272768i \(-0.912061\pi\)
0.962080 0.272768i \(-0.0879391\pi\)
\(758\) 0 0
\(759\) 18.3429 4.91497i 0.665806 0.178402i
\(760\) 0 0
\(761\) −2.68756 4.65500i −0.0974242 0.168744i 0.813194 0.581993i \(-0.197727\pi\)
−0.910618 + 0.413250i \(0.864394\pi\)
\(762\) 0 0
\(763\) 15.4748 + 17.1753i 0.560226 + 0.621789i
\(764\) 0 0
\(765\) −17.5388 + 0.941425i −0.634116 + 0.0340373i
\(766\) 0 0
\(767\) 14.6570 + 8.46224i 0.529235 + 0.305554i
\(768\) 0 0
\(769\) 25.4733 0.918592 0.459296 0.888283i \(-0.348102\pi\)
0.459296 + 0.888283i \(0.348102\pi\)
\(770\) 0 0
\(771\) 7.31741 + 7.31741i 0.263530 + 0.263530i
\(772\) 0 0
\(773\) −13.0397 7.52848i −0.469006 0.270781i 0.246818 0.969062i \(-0.420615\pi\)
−0.715824 + 0.698281i \(0.753949\pi\)
\(774\) 0 0
\(775\) 29.0325 108.351i 1.04288 3.89208i
\(776\) 0 0
\(777\) 11.4613 5.84452i 0.411174 0.209671i
\(778\) 0 0
\(779\) 8.83888 + 2.36837i 0.316686 + 0.0848557i
\(780\) 0 0
\(781\) −25.9381 + 44.9262i −0.928139 + 1.60758i
\(782\) 0 0
\(783\) −1.06770 −0.0381564
\(784\) 0 0
\(785\) −53.8310 + 53.8310i −1.92131 + 1.92131i
\(786\) 0 0
\(787\) 8.96967 + 33.4753i 0.319734 + 1.19326i 0.919500 + 0.393089i \(0.128594\pi\)
−0.599766 + 0.800175i \(0.704740\pi\)
\(788\) 0 0
\(789\) 2.98277 11.1319i 0.106189 0.396304i
\(790\) 0 0
\(791\) −4.59011 + 14.1425i −0.163205 + 0.502849i
\(792\) 0 0
\(793\) 1.87720 7.00579i 0.0666612 0.248783i
\(794\) 0 0
\(795\) −1.83271 + 3.17435i −0.0649995 + 0.112582i
\(796\) 0 0
\(797\) 42.4670i 1.50426i −0.659015 0.752130i \(-0.729027\pi\)
0.659015 0.752130i \(-0.270973\pi\)
\(798\) 0 0
\(799\) −13.4914 41.3441i −0.477291 1.46265i
\(800\) 0 0
\(801\) −11.4557 6.61396i −0.404768 0.233693i
\(802\) 0 0
\(803\) −24.4119 42.2827i −0.861477 1.49212i
\(804\) 0 0
\(805\) 41.9559 + 2.18519i 1.47875 + 0.0770179i
\(806\) 0 0
\(807\) −0.165416 + 0.0955031i −0.00582293 + 0.00336187i
\(808\) 0 0
\(809\) −38.7913 + 10.3941i −1.36383 + 0.365437i −0.865221 0.501391i \(-0.832822\pi\)
−0.498608 + 0.866828i \(0.666155\pi\)
\(810\) 0 0
\(811\) 30.5053 30.5053i 1.07119 1.07119i 0.0739213 0.997264i \(-0.476449\pi\)
0.997264 0.0739213i \(-0.0235514\pi\)
\(812\) 0 0
\(813\) 6.49323 6.49323i 0.227727 0.227727i
\(814\) 0 0
\(815\) −27.3239 + 47.3263i −0.957113 + 1.65777i
\(816\) 0 0
\(817\) 16.9088 + 29.2869i 0.591563 + 1.02462i
\(818\) 0 0
\(819\) 5.31586 + 3.44972i 0.185751 + 0.120543i
\(820\) 0 0
\(821\) −33.7910 9.05426i −1.17931 0.315996i −0.384659 0.923059i \(-0.625681\pi\)
−0.794654 + 0.607063i \(0.792348\pi\)
\(822\) 0 0
\(823\) −32.0872 + 8.59773i −1.11849 + 0.299698i −0.770272 0.637716i \(-0.779879\pi\)
−0.348217 + 0.937414i \(0.613213\pi\)
\(824\) 0 0
\(825\) 66.9748i 2.33176i
\(826\) 0 0
\(827\) −9.61920 9.61920i −0.334492 0.334492i 0.519797 0.854290i \(-0.326007\pi\)
−0.854290 + 0.519797i \(0.826007\pi\)
\(828\) 0 0
\(829\) −8.97501 + 15.5452i −0.311715 + 0.539906i −0.978734 0.205135i \(-0.934237\pi\)
0.667019 + 0.745041i \(0.267570\pi\)
\(830\) 0 0
\(831\) 20.3764 11.7643i 0.706849 0.408099i
\(832\) 0 0
\(833\) −21.4115 + 19.3533i −0.741863 + 0.670551i
\(834\) 0 0
\(835\) −70.0730 + 40.4567i −2.42498 + 1.40006i
\(836\) 0 0
\(837\) −4.26618 + 7.38925i −0.147461 + 0.255410i
\(838\) 0 0
\(839\) 29.4007 + 29.4007i 1.01502 + 1.01502i 0.999885 + 0.0151382i \(0.00481882\pi\)
0.0151382 + 0.999885i \(0.495181\pi\)
\(840\) 0 0
\(841\) 27.8600i 0.960690i
\(842\) 0 0
\(843\) 12.5202 3.35478i 0.431219 0.115545i
\(844\) 0 0
\(845\) −29.8855 8.00778i −1.02809 0.275476i
\(846\) 0 0
\(847\) 33.1860 + 21.5360i 1.14029 + 0.739985i
\(848\) 0 0
\(849\) 7.57075 + 13.1129i 0.259827 + 0.450034i
\(850\) 0 0
\(851\) −9.06316 + 15.6979i −0.310681 + 0.538116i
\(852\) 0 0
\(853\) 25.0473 25.0473i 0.857604 0.857604i −0.133452 0.991055i \(-0.542606\pi\)
0.991055 + 0.133452i \(0.0426061\pi\)
\(854\) 0 0
\(855\) 18.3369 18.3369i 0.627109 0.627109i
\(856\) 0 0
\(857\) 2.14184 0.573904i 0.0731638 0.0196042i −0.222051 0.975035i \(-0.571275\pi\)
0.295215 + 0.955431i \(0.404609\pi\)
\(858\) 0 0
\(859\) 21.3891 12.3490i 0.729787 0.421342i −0.0885575 0.996071i \(-0.528226\pi\)
0.818344 + 0.574729i \(0.194892\pi\)
\(860\) 0 0
\(861\) 3.97167 + 0.206857i 0.135354 + 0.00704966i
\(862\) 0 0
\(863\) 3.62068 + 6.27121i 0.123249 + 0.213474i 0.921047 0.389451i \(-0.127335\pi\)
−0.797798 + 0.602925i \(0.794002\pi\)
\(864\) 0 0
\(865\) 20.7708 + 11.9920i 0.706229 + 0.407742i
\(866\) 0 0
\(867\) −2.61688 + 16.7974i −0.0888740 + 0.570469i
\(868\) 0 0
\(869\) 15.5126i 0.526228i
\(870\) 0 0
\(871\) 9.98496 17.2945i 0.338328 0.586001i
\(872\) 0 0
\(873\) −0.938372 + 3.50205i −0.0317591 + 0.118526i
\(874\) 0 0
\(875\) −28.3455 + 87.3346i −0.958251 + 2.95245i
\(876\) 0 0
\(877\) 6.41192 23.9296i 0.216515 0.808045i −0.769113 0.639113i \(-0.779301\pi\)
0.985628 0.168932i \(-0.0540319\pi\)
\(878\) 0 0
\(879\) −1.52498 5.69128i −0.0514361 0.191962i
\(880\) 0 0
\(881\) −13.8175 + 13.8175i −0.465523 + 0.465523i −0.900461 0.434937i \(-0.856771\pi\)
0.434937 + 0.900461i \(0.356771\pi\)
\(882\) 0 0
\(883\) 13.2185 0.444839 0.222419 0.974951i \(-0.428605\pi\)
0.222419 + 0.974951i \(0.428605\pi\)
\(884\) 0 0
\(885\) 15.0502 26.0677i 0.505907 0.876257i
\(886\) 0 0
\(887\) 48.4536 + 12.9831i 1.62691 + 0.435930i 0.953022 0.302902i \(-0.0979553\pi\)
0.673890 + 0.738831i \(0.264622\pi\)
\(888\) 0 0
\(889\) −49.3218 + 25.1508i −1.65420 + 0.843531i
\(890\) 0 0
\(891\) 1.31853 4.92080i 0.0441723 0.164853i
\(892\) 0 0
\(893\) 55.6076 + 32.1051i 1.86084 + 1.07436i
\(894\) 0 0
\(895\) −48.9347 48.9347i −1.63571 1.63571i
\(896\) 0 0
\(897\) −8.92842 −0.298111
\(898\) 0 0
\(899\) −7.88948 4.55499i −0.263129 0.151917i
\(900\) 0 0
\(901\) 2.63947 + 2.37054i 0.0879333 + 0.0789743i
\(902\) 0 0
\(903\) 9.83822 + 10.9193i 0.327396 + 0.363373i
\(904\) 0 0
\(905\) −20.7507 35.9413i −0.689777 1.19473i
\(906\) 0 0
\(907\) −45.2538 + 12.1257i −1.50263 + 0.402628i −0.913979 0.405761i \(-0.867006\pi\)
−0.588649 + 0.808389i \(0.700340\pi\)
\(908\) 0 0
\(909\) 16.7774i 0.556470i
\(910\) 0 0
\(911\) 14.7827 + 14.7827i 0.489772 + 0.489772i 0.908234 0.418462i \(-0.137431\pi\)
−0.418462 + 0.908234i \(0.637431\pi\)
\(912\) 0 0
\(913\) −1.20539 4.49856i −0.0398924 0.148881i
\(914\) 0 0
\(915\) −12.4599 3.33862i −0.411912 0.110371i
\(916\) 0 0
\(917\) 3.26496 + 15.3360i 0.107818 + 0.506439i
\(918\) 0 0
\(919\) 26.2526 + 45.4708i 0.865992 + 1.49994i 0.866059 + 0.499942i \(0.166645\pi\)
−6.67316e−5 1.00000i \(0.500021\pi\)
\(920\) 0 0
\(921\) 0.706788 + 2.63777i 0.0232895 + 0.0869175i
\(922\) 0 0
\(923\) 17.2466 17.2466i 0.567679 0.567679i
\(924\) 0 0
\(925\) −45.2045 45.2045i −1.48631 1.48631i
\(926\) 0 0
\(927\) 11.3708 + 6.56494i 0.373467 + 0.215621i
\(928\) 0 0
\(929\) −4.29232 + 16.0192i −0.140827 + 0.525572i 0.859079 + 0.511843i \(0.171037\pi\)
−0.999906 + 0.0137292i \(0.995630\pi\)
\(930\) 0 0
\(931\) 4.42680 42.3822i 0.145082 1.38902i
\(932\) 0 0
\(933\) 26.4045 15.2446i 0.864443 0.499086i
\(934\) 0 0
\(935\) 87.5462 + 18.4928i 2.86307 + 0.604778i
\(936\) 0 0
\(937\) 33.5344i 1.09552i −0.836635 0.547760i \(-0.815481\pi\)
0.836635 0.547760i \(-0.184519\pi\)
\(938\) 0 0
\(939\) 7.61731 0.248581
\(940\) 0 0
\(941\) −3.70505 + 0.992766i −0.120781 + 0.0323633i −0.318703 0.947855i \(-0.603247\pi\)
0.197922 + 0.980218i \(0.436581\pi\)
\(942\) 0 0
\(943\) −4.85261 + 2.80165i −0.158023 + 0.0912344i
\(944\) 0 0
\(945\) 6.13537 9.45434i 0.199584 0.307550i
\(946\) 0 0
\(947\) −12.8642 3.44694i −0.418029 0.112011i 0.0436723 0.999046i \(-0.486094\pi\)
−0.461702 + 0.887035i \(0.652761\pi\)
\(948\) 0 0
\(949\) 5.94125 + 22.1730i 0.192861 + 0.719767i
\(950\) 0 0
\(951\) 13.4426 0.435907
\(952\) 0 0
\(953\) 36.4900 1.18203 0.591014 0.806661i \(-0.298728\pi\)
0.591014 + 0.806661i \(0.298728\pi\)
\(954\) 0 0
\(955\) 20.4508 + 76.3233i 0.661772 + 2.46977i
\(956\) 0 0
\(957\) 5.25393 + 1.40779i 0.169835 + 0.0455073i
\(958\) 0 0
\(959\) −38.2726 1.99335i −1.23589 0.0643687i
\(960\) 0 0
\(961\) −36.2010 + 20.9006i −1.16777 + 0.674214i
\(962\) 0 0
\(963\) 7.48905 2.00669i 0.241331 0.0646645i
\(964\) 0 0
\(965\) 102.276 3.29239
\(966\) 0 0
\(967\) 8.30768i 0.267157i 0.991038 + 0.133579i \(0.0426468\pi\)
−0.991038 + 0.133579i \(0.957353\pi\)
\(968\) 0 0
\(969\) −13.6968 21.0329i −0.440005 0.675675i
\(970\) 0 0
\(971\) −49.3188 + 28.4742i −1.58272 + 0.913781i −0.588254 + 0.808676i \(0.700184\pi\)
−0.994461 + 0.105105i \(0.966482\pi\)
\(972\) 0 0
\(973\) 2.36221 + 0.766682i 0.0757288 + 0.0245787i
\(974\) 0 0
\(975\) 8.15000 30.4162i 0.261009 0.974098i
\(976\) 0 0
\(977\) −50.7231 29.2850i −1.62278 0.936910i −0.986173 0.165719i \(-0.947006\pi\)
−0.636603 0.771192i \(-0.719661\pi\)
\(978\) 0 0
\(979\) 47.6507 + 47.6507i 1.52292 + 1.52292i
\(980\) 0 0
\(981\) −6.17866 + 6.17866i −0.197270 + 0.197270i
\(982\) 0 0
\(983\) 11.7196 + 43.7381i 0.373797 + 1.39503i 0.855095 + 0.518471i \(0.173499\pi\)
−0.481299 + 0.876557i \(0.659835\pi\)
\(984\) 0 0
\(985\) 31.0967 + 53.8610i 0.990822 + 1.71615i
\(986\) 0 0
\(987\) 26.5438 + 8.61510i 0.844899 + 0.274222i
\(988\) 0 0
\(989\) −20.0022 5.35956i −0.636032 0.170424i
\(990\) 0 0
\(991\) −13.2522 49.4579i −0.420970 1.57108i −0.772569 0.634931i \(-0.781029\pi\)
0.351599 0.936151i \(-0.385638\pi\)
\(992\) 0 0
\(993\) 4.45557 + 4.45557i 0.141393 + 0.141393i
\(994\) 0 0
\(995\) 73.2199i 2.32123i
\(996\) 0 0
\(997\) 6.93843 1.85915i 0.219742 0.0588798i −0.147268 0.989097i \(-0.547048\pi\)
0.367010 + 0.930217i \(0.380381\pi\)
\(998\) 0 0
\(999\) 2.43135 + 4.21122i 0.0769245 + 0.133237i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1428.2.cc.c.361.18 72
7.2 even 3 inner 1428.2.cc.c.1381.8 yes 72
17.13 even 4 inner 1428.2.cc.c.1033.8 yes 72
119.30 even 12 inner 1428.2.cc.c.625.18 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1428.2.cc.c.361.18 72 1.1 even 1 trivial
1428.2.cc.c.625.18 yes 72 119.30 even 12 inner
1428.2.cc.c.1033.8 yes 72 17.13 even 4 inner
1428.2.cc.c.1381.8 yes 72 7.2 even 3 inner