gp: [N,k,chi] = [1428,2,Mod(361,1428)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1428, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([0, 0, 8, 9]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1428.361");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [72]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{72} - 12 T_{5}^{71} + 72 T_{5}^{70} - 424 T_{5}^{69} + 1723 T_{5}^{68} - 1868 T_{5}^{67} + \cdots + 13841287201 \)
T5^72 - 12*T5^71 + 72*T5^70 - 424*T5^69 + 1723*T5^68 - 1868*T5^67 - 11752*T5^66 + 135036*T5^65 - 785117*T5^64 + 1757036*T5^63 + 182136*T5^62 - 32253604*T5^61 + 251555678*T5^60 - 798601164*T5^59 + 1441435336*T5^58 + 1314663676*T5^57 - 38183156081*T5^56 + 152351762416*T5^55 - 340786938688*T5^54 + 300667091340*T5^53 + 4188685884099*T5^52 - 20734213550952*T5^51 + 53978141713504*T5^50 - 105149066463800*T5^49 - 184776625161477*T5^48 + 1560150321444952*T5^47 - 4318727734158416*T5^46 + 9630135324269424*T5^45 + 4104419804748954*T5^44 - 84872498466419928*T5^43 + 245381798618274416*T5^42 - 594229728592931192*T5^41 + 235164666222309534*T5^40 + 2810709448289106392*T5^39 - 8059152646628793872*T5^38 + 19099657708025197000*T5^37 - 11019089541214417816*T5^36 - 64207005678329679432*T5^35 + 179762243196833975312*T5^34 - 433552806398984971832*T5^33 + 386854605155884811186*T5^32 + 820810417027062121520*T5^31 - 2443334306059549341024*T5^30 + 5946827555425832885544*T5^29 - 6223340295368195217594*T5^28 - 6684740747297051694336*T5^27 + 22073427087950525406144*T5^26 - 56941546218795252400720*T5^25 + 78353182318882130396611*T5^24 + 324723686511008947092*T5^23 - 77206093065980512151224*T5^22 + 228377740040570160354360*T5^21 - 349191339981335627718469*T5^20 + 54128599143351331790020*T5^19 + 215984916501306231821048*T5^18 - 690515391105608978648484*T5^17 + 1144423758560173364803151*T5^16 - 497293949550682585934532*T5^15 + 188398818097441180841432*T5^14 - 135536701942558201152004*T5^13 + 12104663509990787343386*T5^12 + 11592695602052850024308*T5^11 + 790414177242843669096*T5^10 + 316852912422493490876*T5^9 + 75521768878186002639*T5^8 + 856335540886123648*T5^7 + 23355047053368352*T5^6 + 2659144117841708*T5^5 - 1059169138160889*T5^4 - 24013891752088*T5^3 + 4611840800*T5^2 + 11299009960*T5 + 13841287201
acting on \(S_{2}^{\mathrm{new}}(1428, [\chi])\).