Properties

Label 1428.2.cc
Level $1428$
Weight $2$
Character orbit 1428.cc
Rep. character $\chi_{1428}(361,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $96$
Newform subspaces $3$
Sturm bound $576$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1428 = 2^{2} \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1428.cc (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 119 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 3 \)
Sturm bound: \(576\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1428, [\chi])\).

Total New Old
Modular forms 1200 96 1104
Cusp forms 1104 96 1008
Eisenstein series 96 0 96

Trace form

\( 96 q + 4 q^{5} + 4 q^{7} + 4 q^{11} + 32 q^{13} - 8 q^{17} + 8 q^{23} - 8 q^{31} + 16 q^{33} + 24 q^{35} + 32 q^{41} - 4 q^{45} - 8 q^{47} + 16 q^{57} + 12 q^{61} + 4 q^{63} - 48 q^{65} - 8 q^{67} - 64 q^{69}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1428, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1428.2.cc.a 1428.cc 119.n $8$ $11.403$ \(\Q(\zeta_{24})\) None 1428.2.cc.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-\zeta_{24}^{3}+\zeta_{24}^{7})q^{3}+\zeta_{24}^{7}q^{5}+\cdots\)
1428.2.cc.b 1428.cc 119.n $16$ $11.403$ 16.0.\(\cdots\).1 None 1428.2.cc.b \(0\) \(0\) \(-8\) \(24\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-\beta _{5}+\beta _{14})q^{3}+(\beta _{6}-\beta _{9}+\beta _{10}+\cdots)q^{5}+\cdots\)
1428.2.cc.c 1428.cc 119.n $72$ $11.403$ None 1428.2.cc.c \(0\) \(0\) \(12\) \(-20\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1428, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1428, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(119, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(238, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(357, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(476, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(714, [\chi])\)\(^{\oplus 2}\)