Defining parameters
Level: | \( N \) | \(=\) | \( 1428 = 2^{2} \cdot 3 \cdot 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1428.cc (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 119 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1428, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1200 | 96 | 1104 |
Cusp forms | 1104 | 96 | 1008 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1428, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1428.2.cc.a | $8$ | $11.403$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\zeta_{24}^{3}+\zeta_{24}^{7})q^{3}+\zeta_{24}^{7}q^{5}+\cdots\) |
1428.2.cc.b | $16$ | $11.403$ | 16.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(-8\) | \(24\) | \(q+(-\beta _{5}+\beta _{14})q^{3}+(\beta _{6}-\beta _{9}+\beta _{10}+\cdots)q^{5}+\cdots\) |
1428.2.cc.c | $72$ | $11.403$ | None | \(0\) | \(0\) | \(12\) | \(-20\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1428, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1428, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(119, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(238, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(357, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(476, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(714, [\chi])\)\(^{\oplus 2}\)