Properties

Label 1425.2.c.p.799.5
Level $1425$
Weight $2$
Character 1425.799
Analytic conductor $11.379$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1425,2,Mod(799,1425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1425, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1425.799"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1425.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-12,0,0,0,0,-6,0,-6,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3786822880\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.24681024.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 12x^{4} + 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.5
Root \(2.14510i\) of defining polynomial
Character \(\chi\) \(=\) 1425.799
Dual form 1425.2.c.p.799.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.14510i q^{2} -1.00000i q^{3} -2.60147 q^{4} +2.14510 q^{6} +2.74657i q^{7} -1.29021i q^{8} -1.00000 q^{9} -3.74657 q^{11} +2.60147i q^{12} -6.29021i q^{13} -5.89167 q^{14} -2.43531 q^{16} -2.14510i q^{18} -1.00000 q^{19} +2.74657 q^{21} -8.03677i q^{22} -0.543637i q^{23} -1.29021 q^{24} +13.4931 q^{26} +1.00000i q^{27} -7.14510i q^{28} -3.00000 q^{29} +1.45636 q^{31} -7.80440i q^{32} +3.74657i q^{33} +2.60147 q^{36} +5.20293i q^{37} -2.14510i q^{38} -6.29021 q^{39} -12.5299 q^{41} +5.89167i q^{42} -8.00000i q^{43} +9.74657 q^{44} +1.16616 q^{46} -11.7833i q^{47} +2.43531i q^{48} -0.543637 q^{49} +16.3638i q^{52} +5.58041i q^{53} -2.14510 q^{54} +3.54364 q^{56} +1.00000i q^{57} -6.43531i q^{58} -5.25343 q^{59} -8.49314 q^{61} +3.12405i q^{62} -2.74657i q^{63} +11.8706 q^{64} -8.03677 q^{66} -2.83384i q^{67} -0.543637 q^{69} +7.83384 q^{71} +1.29021i q^{72} -7.58041i q^{73} -11.1608 q^{74} +2.60147 q^{76} -10.2902i q^{77} -13.4931i q^{78} +7.52991 q^{79} +1.00000 q^{81} -26.8779i q^{82} +2.25343i q^{83} -7.14510 q^{84} +17.1608 q^{86} +3.00000i q^{87} +4.83384i q^{88} -4.49314 q^{89} +17.2765 q^{91} +1.41425i q^{92} -1.45636i q^{93} +25.2765 q^{94} -7.80440 q^{96} -16.8706i q^{97} -1.16616i q^{98} +3.74657 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{4} - 6 q^{9} - 6 q^{11} - 6 q^{14} + 24 q^{16} - 6 q^{19} + 18 q^{24} + 48 q^{26} - 18 q^{29} + 18 q^{31} + 12 q^{36} - 12 q^{39} + 42 q^{44} + 42 q^{46} + 6 q^{49} + 12 q^{56} - 48 q^{59} - 18 q^{61}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1425\mathbb{Z}\right)^\times\).

\(n\) \(476\) \(1027\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.14510i 1.51682i 0.651780 + 0.758408i \(0.274023\pi\)
−0.651780 + 0.758408i \(0.725977\pi\)
\(3\) − 1.00000i − 0.577350i
\(4\) −2.60147 −1.30073
\(5\) 0 0
\(6\) 2.14510 0.875735
\(7\) 2.74657i 1.03811i 0.854742 + 0.519053i \(0.173715\pi\)
−0.854742 + 0.519053i \(0.826285\pi\)
\(8\) − 1.29021i − 0.456156i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −3.74657 −1.12963 −0.564816 0.825217i \(-0.691053\pi\)
−0.564816 + 0.825217i \(0.691053\pi\)
\(12\) 2.60147i 0.750978i
\(13\) − 6.29021i − 1.74459i −0.488981 0.872295i \(-0.662631\pi\)
0.488981 0.872295i \(-0.337369\pi\)
\(14\) −5.89167 −1.57462
\(15\) 0 0
\(16\) −2.43531 −0.608827
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) − 2.14510i − 0.505606i
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 2.74657 0.599350
\(22\) − 8.03677i − 1.71345i
\(23\) − 0.543637i − 0.113356i −0.998393 0.0566781i \(-0.981949\pi\)
0.998393 0.0566781i \(-0.0180509\pi\)
\(24\) −1.29021 −0.263362
\(25\) 0 0
\(26\) 13.4931 2.64622
\(27\) 1.00000i 0.192450i
\(28\) − 7.14510i − 1.35030i
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) 1.45636 0.261570 0.130785 0.991411i \(-0.458250\pi\)
0.130785 + 0.991411i \(0.458250\pi\)
\(32\) − 7.80440i − 1.37964i
\(33\) 3.74657i 0.652194i
\(34\) 0 0
\(35\) 0 0
\(36\) 2.60147 0.433578
\(37\) 5.20293i 0.855357i 0.903931 + 0.427678i \(0.140668\pi\)
−0.903931 + 0.427678i \(0.859332\pi\)
\(38\) − 2.14510i − 0.347982i
\(39\) −6.29021 −1.00724
\(40\) 0 0
\(41\) −12.5299 −1.95684 −0.978422 0.206618i \(-0.933754\pi\)
−0.978422 + 0.206618i \(0.933754\pi\)
\(42\) 5.89167i 0.909105i
\(43\) − 8.00000i − 1.21999i −0.792406 0.609994i \(-0.791172\pi\)
0.792406 0.609994i \(-0.208828\pi\)
\(44\) 9.74657 1.46935
\(45\) 0 0
\(46\) 1.16616 0.171941
\(47\) − 11.7833i − 1.71878i −0.511323 0.859389i \(-0.670844\pi\)
0.511323 0.859389i \(-0.329156\pi\)
\(48\) 2.43531i 0.351506i
\(49\) −0.543637 −0.0776624
\(50\) 0 0
\(51\) 0 0
\(52\) 16.3638i 2.26924i
\(53\) 5.58041i 0.766528i 0.923639 + 0.383264i \(0.125200\pi\)
−0.923639 + 0.383264i \(0.874800\pi\)
\(54\) −2.14510 −0.291912
\(55\) 0 0
\(56\) 3.54364 0.473538
\(57\) 1.00000i 0.132453i
\(58\) − 6.43531i − 0.844997i
\(59\) −5.25343 −0.683939 −0.341969 0.939711i \(-0.611094\pi\)
−0.341969 + 0.939711i \(0.611094\pi\)
\(60\) 0 0
\(61\) −8.49314 −1.08743 −0.543717 0.839268i \(-0.682984\pi\)
−0.543717 + 0.839268i \(0.682984\pi\)
\(62\) 3.12405i 0.396754i
\(63\) − 2.74657i − 0.346035i
\(64\) 11.8706 1.48383
\(65\) 0 0
\(66\) −8.03677 −0.989258
\(67\) − 2.83384i − 0.346209i −0.984903 0.173104i \(-0.944620\pi\)
0.984903 0.173104i \(-0.0553798\pi\)
\(68\) 0 0
\(69\) −0.543637 −0.0654462
\(70\) 0 0
\(71\) 7.83384 0.929706 0.464853 0.885388i \(-0.346107\pi\)
0.464853 + 0.885388i \(0.346107\pi\)
\(72\) 1.29021i 0.152052i
\(73\) − 7.58041i − 0.887220i −0.896220 0.443610i \(-0.853698\pi\)
0.896220 0.443610i \(-0.146302\pi\)
\(74\) −11.1608 −1.29742
\(75\) 0 0
\(76\) 2.60147 0.298409
\(77\) − 10.2902i − 1.17268i
\(78\) − 13.4931i − 1.52780i
\(79\) 7.52991 0.847181 0.423591 0.905854i \(-0.360770\pi\)
0.423591 + 0.905854i \(0.360770\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 26.8779i − 2.96817i
\(83\) 2.25343i 0.247346i 0.992323 + 0.123673i \(0.0394674\pi\)
−0.992323 + 0.123673i \(0.960533\pi\)
\(84\) −7.14510 −0.779595
\(85\) 0 0
\(86\) 17.1608 1.85050
\(87\) 3.00000i 0.321634i
\(88\) 4.83384i 0.515289i
\(89\) −4.49314 −0.476272 −0.238136 0.971232i \(-0.576536\pi\)
−0.238136 + 0.971232i \(0.576536\pi\)
\(90\) 0 0
\(91\) 17.2765 1.81107
\(92\) 1.41425i 0.147446i
\(93\) − 1.45636i − 0.151018i
\(94\) 25.2765 2.60707
\(95\) 0 0
\(96\) −7.80440 −0.796533
\(97\) − 16.8706i − 1.71295i −0.516187 0.856476i \(-0.672649\pi\)
0.516187 0.856476i \(-0.327351\pi\)
\(98\) − 1.16616i − 0.117800i
\(99\) 3.74657 0.376544
\(100\) 0 0
\(101\) −13.2765 −1.32106 −0.660529 0.750800i \(-0.729668\pi\)
−0.660529 + 0.750800i \(0.729668\pi\)
\(102\) 0 0
\(103\) 0.253432i 0.0249714i 0.999922 + 0.0124857i \(0.00397442\pi\)
−0.999922 + 0.0124857i \(0.996026\pi\)
\(104\) −8.11566 −0.795806
\(105\) 0 0
\(106\) −11.9706 −1.16268
\(107\) 2.23970i 0.216520i 0.994123 + 0.108260i \(0.0345280\pi\)
−0.994123 + 0.108260i \(0.965472\pi\)
\(108\) − 2.60147i − 0.250326i
\(109\) 1.20293 0.115220 0.0576100 0.998339i \(-0.481652\pi\)
0.0576100 + 0.998339i \(0.481652\pi\)
\(110\) 0 0
\(111\) 5.20293 0.493840
\(112\) − 6.68874i − 0.632027i
\(113\) 12.5436i 1.18001i 0.807401 + 0.590003i \(0.200873\pi\)
−0.807401 + 0.590003i \(0.799127\pi\)
\(114\) −2.14510 −0.200907
\(115\) 0 0
\(116\) 7.80440 0.724620
\(117\) 6.29021i 0.581530i
\(118\) − 11.2692i − 1.03741i
\(119\) 0 0
\(120\) 0 0
\(121\) 3.03677 0.276070
\(122\) − 18.2186i − 1.64944i
\(123\) 12.5299i 1.12978i
\(124\) −3.78868 −0.340233
\(125\) 0 0
\(126\) 5.89167 0.524872
\(127\) − 12.4426i − 1.10411i −0.833809 0.552053i \(-0.813845\pi\)
0.833809 0.552053i \(-0.186155\pi\)
\(128\) 9.85490i 0.871058i
\(129\) −8.00000 −0.704361
\(130\) 0 0
\(131\) 18.9495 1.65563 0.827813 0.561005i \(-0.189585\pi\)
0.827813 + 0.561005i \(0.189585\pi\)
\(132\) − 9.74657i − 0.848330i
\(133\) − 2.74657i − 0.238158i
\(134\) 6.07888 0.525136
\(135\) 0 0
\(136\) 0 0
\(137\) 21.3921i 1.82765i 0.406104 + 0.913827i \(0.366887\pi\)
−0.406104 + 0.913827i \(0.633113\pi\)
\(138\) − 1.16616i − 0.0992699i
\(139\) −20.3133 −1.72295 −0.861474 0.507802i \(-0.830458\pi\)
−0.861474 + 0.507802i \(0.830458\pi\)
\(140\) 0 0
\(141\) −11.7833 −0.992336
\(142\) 16.8044i 1.41019i
\(143\) 23.5667i 1.97075i
\(144\) 2.43531 0.202942
\(145\) 0 0
\(146\) 16.2608 1.34575
\(147\) 0.543637i 0.0448384i
\(148\) − 13.5352i − 1.11259i
\(149\) −4.69607 −0.384717 −0.192358 0.981325i \(-0.561614\pi\)
−0.192358 + 0.981325i \(0.561614\pi\)
\(150\) 0 0
\(151\) 1.59414 0.129729 0.0648645 0.997894i \(-0.479338\pi\)
0.0648645 + 0.997894i \(0.479338\pi\)
\(152\) 1.29021i 0.104649i
\(153\) 0 0
\(154\) 22.0735 1.77874
\(155\) 0 0
\(156\) 16.3638 1.31015
\(157\) − 13.1103i − 1.04632i −0.852235 0.523159i \(-0.824753\pi\)
0.852235 0.523159i \(-0.175247\pi\)
\(158\) 16.1524i 1.28502i
\(159\) 5.58041 0.442555
\(160\) 0 0
\(161\) 1.49314 0.117676
\(162\) 2.14510i 0.168535i
\(163\) 7.73284i 0.605683i 0.953041 + 0.302841i \(0.0979353\pi\)
−0.953041 + 0.302841i \(0.902065\pi\)
\(164\) 32.5961 2.54533
\(165\) 0 0
\(166\) −4.83384 −0.375179
\(167\) − 9.32698i − 0.721743i −0.932615 0.360872i \(-0.882479\pi\)
0.932615 0.360872i \(-0.117521\pi\)
\(168\) − 3.54364i − 0.273398i
\(169\) −26.5667 −2.04359
\(170\) 0 0
\(171\) 1.00000 0.0764719
\(172\) 20.8117i 1.58688i
\(173\) 5.17455i 0.393414i 0.980462 + 0.196707i \(0.0630247\pi\)
−0.980462 + 0.196707i \(0.936975\pi\)
\(174\) −6.43531 −0.487859
\(175\) 0 0
\(176\) 9.12405 0.687751
\(177\) 5.25343i 0.394872i
\(178\) − 9.63824i − 0.722417i
\(179\) −15.3270 −1.14559 −0.572796 0.819698i \(-0.694141\pi\)
−0.572796 + 0.819698i \(0.694141\pi\)
\(180\) 0 0
\(181\) −10.4059 −0.773462 −0.386731 0.922193i \(-0.626396\pi\)
−0.386731 + 0.922193i \(0.626396\pi\)
\(182\) 37.0598i 2.74706i
\(183\) 8.49314i 0.627831i
\(184\) −0.701404 −0.0517082
\(185\) 0 0
\(186\) 3.12405 0.229066
\(187\) 0 0
\(188\) 30.6540i 2.23567i
\(189\) −2.74657 −0.199783
\(190\) 0 0
\(191\) −6.54364 −0.473481 −0.236740 0.971573i \(-0.576079\pi\)
−0.236740 + 0.971573i \(0.576079\pi\)
\(192\) − 11.8706i − 0.856688i
\(193\) 24.9863i 1.79855i 0.437382 + 0.899276i \(0.355906\pi\)
−0.437382 + 0.899276i \(0.644094\pi\)
\(194\) 36.1892 2.59823
\(195\) 0 0
\(196\) 1.41425 0.101018
\(197\) 8.79707i 0.626765i 0.949627 + 0.313383i \(0.101462\pi\)
−0.949627 + 0.313383i \(0.898538\pi\)
\(198\) 8.03677i 0.571149i
\(199\) −8.74657 −0.620028 −0.310014 0.950732i \(-0.600334\pi\)
−0.310014 + 0.950732i \(0.600334\pi\)
\(200\) 0 0
\(201\) −2.83384 −0.199884
\(202\) − 28.4794i − 2.00380i
\(203\) − 8.23970i − 0.578314i
\(204\) 0 0
\(205\) 0 0
\(206\) −0.543637 −0.0378770
\(207\) 0.543637i 0.0377854i
\(208\) 15.3186i 1.06215i
\(209\) 3.74657 0.259156
\(210\) 0 0
\(211\) −12.7182 −0.875556 −0.437778 0.899083i \(-0.644234\pi\)
−0.437778 + 0.899083i \(0.644234\pi\)
\(212\) − 14.5172i − 0.997049i
\(213\) − 7.83384i − 0.536766i
\(214\) −4.80440 −0.328422
\(215\) 0 0
\(216\) 1.29021 0.0877874
\(217\) 4.00000i 0.271538i
\(218\) 2.58041i 0.174767i
\(219\) −7.58041 −0.512237
\(220\) 0 0
\(221\) 0 0
\(222\) 11.1608i 0.749065i
\(223\) 10.5436i 0.706054i 0.935613 + 0.353027i \(0.114848\pi\)
−0.935613 + 0.353027i \(0.885152\pi\)
\(224\) 21.4353 1.43221
\(225\) 0 0
\(226\) −26.9074 −1.78985
\(227\) 7.83384i 0.519950i 0.965615 + 0.259975i \(0.0837144\pi\)
−0.965615 + 0.259975i \(0.916286\pi\)
\(228\) − 2.60147i − 0.172286i
\(229\) 23.6035 1.55976 0.779880 0.625929i \(-0.215280\pi\)
0.779880 + 0.625929i \(0.215280\pi\)
\(230\) 0 0
\(231\) −10.2902 −0.677046
\(232\) 3.87062i 0.254118i
\(233\) 23.7833i 1.55810i 0.626963 + 0.779049i \(0.284298\pi\)
−0.626963 + 0.779049i \(0.715702\pi\)
\(234\) −13.4931 −0.882074
\(235\) 0 0
\(236\) 13.6666 0.889621
\(237\) − 7.52991i − 0.489120i
\(238\) 0 0
\(239\) 1.27648 0.0825685 0.0412843 0.999147i \(-0.486855\pi\)
0.0412843 + 0.999147i \(0.486855\pi\)
\(240\) 0 0
\(241\) 21.4931 1.38449 0.692247 0.721660i \(-0.256621\pi\)
0.692247 + 0.721660i \(0.256621\pi\)
\(242\) 6.51419i 0.418748i
\(243\) − 1.00000i − 0.0641500i
\(244\) 22.0946 1.41446
\(245\) 0 0
\(246\) −26.8779 −1.71368
\(247\) 6.29021i 0.400236i
\(248\) − 1.87901i − 0.119317i
\(249\) 2.25343 0.142805
\(250\) 0 0
\(251\) −29.9725 −1.89185 −0.945925 0.324385i \(-0.894843\pi\)
−0.945925 + 0.324385i \(0.894843\pi\)
\(252\) 7.14510i 0.450099i
\(253\) 2.03677i 0.128051i
\(254\) 26.6907 1.67473
\(255\) 0 0
\(256\) 2.60147 0.162592
\(257\) 19.0735i 1.18978i 0.803809 + 0.594888i \(0.202803\pi\)
−0.803809 + 0.594888i \(0.797197\pi\)
\(258\) − 17.1608i − 1.06839i
\(259\) −14.2902 −0.887950
\(260\) 0 0
\(261\) 3.00000 0.185695
\(262\) 40.6486i 2.51128i
\(263\) − 11.6456i − 0.718096i −0.933319 0.359048i \(-0.883101\pi\)
0.933319 0.359048i \(-0.116899\pi\)
\(264\) 4.83384 0.297502
\(265\) 0 0
\(266\) 5.89167 0.361242
\(267\) 4.49314i 0.274975i
\(268\) 7.37214i 0.450325i
\(269\) −26.1471 −1.59422 −0.797108 0.603836i \(-0.793638\pi\)
−0.797108 + 0.603836i \(0.793638\pi\)
\(270\) 0 0
\(271\) 15.8338 0.961837 0.480919 0.876765i \(-0.340303\pi\)
0.480919 + 0.876765i \(0.340303\pi\)
\(272\) 0 0
\(273\) − 17.2765i − 1.04562i
\(274\) −45.8883 −2.77222
\(275\) 0 0
\(276\) 1.41425 0.0851280
\(277\) 20.6677i 1.24180i 0.783889 + 0.620900i \(0.213233\pi\)
−0.783889 + 0.620900i \(0.786767\pi\)
\(278\) − 43.5740i − 2.61340i
\(279\) −1.45636 −0.0871902
\(280\) 0 0
\(281\) 1.35536 0.0808541 0.0404270 0.999182i \(-0.487128\pi\)
0.0404270 + 0.999182i \(0.487128\pi\)
\(282\) − 25.2765i − 1.50519i
\(283\) − 28.1471i − 1.67317i −0.547836 0.836586i \(-0.684548\pi\)
0.547836 0.836586i \(-0.315452\pi\)
\(284\) −20.3795 −1.20930
\(285\) 0 0
\(286\) −50.5530 −2.98926
\(287\) − 34.4143i − 2.03141i
\(288\) 7.80440i 0.459878i
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) −16.8706 −0.988973
\(292\) 19.7202i 1.15404i
\(293\) 8.47009i 0.494828i 0.968910 + 0.247414i \(0.0795808\pi\)
−0.968910 + 0.247414i \(0.920419\pi\)
\(294\) −1.16616 −0.0680117
\(295\) 0 0
\(296\) 6.71285 0.390176
\(297\) − 3.74657i − 0.217398i
\(298\) − 10.0735i − 0.583545i
\(299\) −3.41959 −0.197760
\(300\) 0 0
\(301\) 21.9725 1.26648
\(302\) 3.41959i 0.196775i
\(303\) 13.2765i 0.762714i
\(304\) 2.43531 0.139674
\(305\) 0 0
\(306\) 0 0
\(307\) − 19.3133i − 1.10227i −0.834418 0.551133i \(-0.814196\pi\)
0.834418 0.551133i \(-0.185804\pi\)
\(308\) 26.7696i 1.52534i
\(309\) 0.253432 0.0144172
\(310\) 0 0
\(311\) 20.5804 1.16701 0.583504 0.812110i \(-0.301681\pi\)
0.583504 + 0.812110i \(0.301681\pi\)
\(312\) 8.11566i 0.459459i
\(313\) − 22.4426i − 1.26853i −0.773115 0.634266i \(-0.781302\pi\)
0.773115 0.634266i \(-0.218698\pi\)
\(314\) 28.1230 1.58707
\(315\) 0 0
\(316\) −19.5888 −1.10196
\(317\) 11.1745i 0.627625i 0.949485 + 0.313813i \(0.101606\pi\)
−0.949485 + 0.313813i \(0.898394\pi\)
\(318\) 11.9706i 0.671275i
\(319\) 11.2397 0.629303
\(320\) 0 0
\(321\) 2.23970 0.125008
\(322\) 3.20293i 0.178492i
\(323\) 0 0
\(324\) −2.60147 −0.144526
\(325\) 0 0
\(326\) −16.5877 −0.918710
\(327\) − 1.20293i − 0.0665222i
\(328\) 16.1662i 0.892627i
\(329\) 32.3638 1.78427
\(330\) 0 0
\(331\) −25.9358 −1.42556 −0.712779 0.701388i \(-0.752564\pi\)
−0.712779 + 0.701388i \(0.752564\pi\)
\(332\) − 5.86223i − 0.321731i
\(333\) − 5.20293i − 0.285119i
\(334\) 20.0073 1.09475
\(335\) 0 0
\(336\) −6.68874 −0.364901
\(337\) 15.0873i 0.821856i 0.911668 + 0.410928i \(0.134795\pi\)
−0.911668 + 0.410928i \(0.865205\pi\)
\(338\) − 56.9883i − 3.09975i
\(339\) 12.5436 0.681277
\(340\) 0 0
\(341\) −5.45636 −0.295479
\(342\) 2.14510i 0.115994i
\(343\) 17.7328i 0.957483i
\(344\) −10.3216 −0.556506
\(345\) 0 0
\(346\) −11.0999 −0.596736
\(347\) − 6.62252i − 0.355516i −0.984074 0.177758i \(-0.943116\pi\)
0.984074 0.177758i \(-0.0568843\pi\)
\(348\) − 7.80440i − 0.418360i
\(349\) −9.07355 −0.485696 −0.242848 0.970064i \(-0.578082\pi\)
−0.242848 + 0.970064i \(0.578082\pi\)
\(350\) 0 0
\(351\) 6.29021 0.335746
\(352\) 29.2397i 1.55848i
\(353\) − 20.1471i − 1.07232i −0.844116 0.536161i \(-0.819874\pi\)
0.844116 0.536161i \(-0.180126\pi\)
\(354\) −11.2692 −0.598949
\(355\) 0 0
\(356\) 11.6887 0.619502
\(357\) 0 0
\(358\) − 32.8779i − 1.73765i
\(359\) −15.8843 −0.838344 −0.419172 0.907907i \(-0.637679\pi\)
−0.419172 + 0.907907i \(0.637679\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) − 22.3216i − 1.17320i
\(363\) − 3.03677i − 0.159389i
\(364\) −44.9442 −2.35571
\(365\) 0 0
\(366\) −18.2186 −0.952304
\(367\) 24.8853i 1.29900i 0.760361 + 0.649500i \(0.225022\pi\)
−0.760361 + 0.649500i \(0.774978\pi\)
\(368\) 1.32392i 0.0690143i
\(369\) 12.5299 0.652281
\(370\) 0 0
\(371\) −15.3270 −0.795737
\(372\) 3.78868i 0.196434i
\(373\) − 11.6677i − 0.604130i −0.953287 0.302065i \(-0.902324\pi\)
0.953287 0.302065i \(-0.0976759\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −15.2029 −0.784031
\(377\) 18.8706i 0.971886i
\(378\) − 5.89167i − 0.303035i
\(379\) −6.29021 −0.323106 −0.161553 0.986864i \(-0.551650\pi\)
−0.161553 + 0.986864i \(0.551650\pi\)
\(380\) 0 0
\(381\) −12.4426 −0.637456
\(382\) − 14.0368i − 0.718184i
\(383\) − 12.0652i − 0.616501i −0.951305 0.308250i \(-0.900257\pi\)
0.951305 0.308250i \(-0.0997434\pi\)
\(384\) 9.85490 0.502906
\(385\) 0 0
\(386\) −53.5981 −2.72807
\(387\) 8.00000i 0.406663i
\(388\) 43.8883i 2.22809i
\(389\) 14.3638 0.728271 0.364136 0.931346i \(-0.381364\pi\)
0.364136 + 0.931346i \(0.381364\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.701404i 0.0354262i
\(393\) − 18.9495i − 0.955876i
\(394\) −18.8706 −0.950688
\(395\) 0 0
\(396\) −9.74657 −0.489783
\(397\) − 31.0966i − 1.56069i −0.625347 0.780347i \(-0.715043\pi\)
0.625347 0.780347i \(-0.284957\pi\)
\(398\) − 18.7623i − 0.940468i
\(399\) −2.74657 −0.137500
\(400\) 0 0
\(401\) −0.543637 −0.0271479 −0.0135740 0.999908i \(-0.504321\pi\)
−0.0135740 + 0.999908i \(0.504321\pi\)
\(402\) − 6.07888i − 0.303187i
\(403\) − 9.16082i − 0.456333i
\(404\) 34.5383 1.71834
\(405\) 0 0
\(406\) 17.6750 0.877196
\(407\) − 19.4931i − 0.966239i
\(408\) 0 0
\(409\) −26.4648 −1.30860 −0.654299 0.756236i \(-0.727036\pi\)
−0.654299 + 0.756236i \(0.727036\pi\)
\(410\) 0 0
\(411\) 21.3921 1.05520
\(412\) − 0.659294i − 0.0324811i
\(413\) − 14.4289i − 0.710000i
\(414\) −1.16616 −0.0573135
\(415\) 0 0
\(416\) −49.0913 −2.40690
\(417\) 20.3133i 0.994744i
\(418\) 8.03677i 0.393091i
\(419\) 6.18920 0.302362 0.151181 0.988506i \(-0.451692\pi\)
0.151181 + 0.988506i \(0.451692\pi\)
\(420\) 0 0
\(421\) 15.2765 0.744530 0.372265 0.928126i \(-0.378581\pi\)
0.372265 + 0.928126i \(0.378581\pi\)
\(422\) − 27.2818i − 1.32806i
\(423\) 11.7833i 0.572926i
\(424\) 7.19988 0.349657
\(425\) 0 0
\(426\) 16.8044 0.814176
\(427\) − 23.3270i − 1.12887i
\(428\) − 5.82651i − 0.281635i
\(429\) 23.5667 1.13781
\(430\) 0 0
\(431\) 13.5583 0.653080 0.326540 0.945183i \(-0.394117\pi\)
0.326540 + 0.945183i \(0.394117\pi\)
\(432\) − 2.43531i − 0.117169i
\(433\) 29.6823i 1.42644i 0.700939 + 0.713221i \(0.252764\pi\)
−0.700939 + 0.713221i \(0.747236\pi\)
\(434\) −8.58041 −0.411873
\(435\) 0 0
\(436\) −3.12938 −0.149870
\(437\) 0.543637i 0.0260057i
\(438\) − 16.2608i − 0.776969i
\(439\) −34.0093 −1.62318 −0.811588 0.584230i \(-0.801397\pi\)
−0.811588 + 0.584230i \(0.801397\pi\)
\(440\) 0 0
\(441\) 0.543637 0.0258875
\(442\) 0 0
\(443\) 16.3416i 0.776414i 0.921572 + 0.388207i \(0.126906\pi\)
−0.921572 + 0.388207i \(0.873094\pi\)
\(444\) −13.5352 −0.642354
\(445\) 0 0
\(446\) −22.6172 −1.07095
\(447\) 4.69607i 0.222116i
\(448\) 32.6035i 1.54037i
\(449\) −16.8990 −0.797513 −0.398757 0.917057i \(-0.630558\pi\)
−0.398757 + 0.917057i \(0.630558\pi\)
\(450\) 0 0
\(451\) 46.9442 2.21051
\(452\) − 32.6318i − 1.53487i
\(453\) − 1.59414i − 0.0748991i
\(454\) −16.8044 −0.788669
\(455\) 0 0
\(456\) 1.29021 0.0604194
\(457\) 16.8622i 0.788782i 0.918943 + 0.394391i \(0.129044\pi\)
−0.918943 + 0.394391i \(0.870956\pi\)
\(458\) 50.6318i 2.36587i
\(459\) 0 0
\(460\) 0 0
\(461\) −24.4648 −1.13944 −0.569719 0.821840i \(-0.692948\pi\)
−0.569719 + 0.821840i \(0.692948\pi\)
\(462\) − 22.0735i − 1.02695i
\(463\) 14.7550i 0.685721i 0.939386 + 0.342861i \(0.111396\pi\)
−0.939386 + 0.342861i \(0.888604\pi\)
\(464\) 7.30592 0.339169
\(465\) 0 0
\(466\) −51.0177 −2.36335
\(467\) 12.3270i 0.570425i 0.958464 + 0.285212i \(0.0920641\pi\)
−0.958464 + 0.285212i \(0.907936\pi\)
\(468\) − 16.3638i − 0.756415i
\(469\) 7.78334 0.359401
\(470\) 0 0
\(471\) −13.1103 −0.604092
\(472\) 6.77801i 0.311983i
\(473\) 29.9725i 1.37814i
\(474\) 16.1524 0.741906
\(475\) 0 0
\(476\) 0 0
\(477\) − 5.58041i − 0.255509i
\(478\) 2.73818i 0.125241i
\(479\) 19.0084 0.868516 0.434258 0.900789i \(-0.357011\pi\)
0.434258 + 0.900789i \(0.357011\pi\)
\(480\) 0 0
\(481\) 32.7275 1.49225
\(482\) 46.1050i 2.10002i
\(483\) − 1.49314i − 0.0679401i
\(484\) −7.90006 −0.359094
\(485\) 0 0
\(486\) 2.14510 0.0973038
\(487\) 33.2765i 1.50790i 0.656931 + 0.753951i \(0.271854\pi\)
−0.656931 + 0.753951i \(0.728146\pi\)
\(488\) 10.9579i 0.496040i
\(489\) 7.73284 0.349691
\(490\) 0 0
\(491\) 28.7275 1.29645 0.648227 0.761447i \(-0.275511\pi\)
0.648227 + 0.761447i \(0.275511\pi\)
\(492\) − 32.5961i − 1.46955i
\(493\) 0 0
\(494\) −13.4931 −0.607085
\(495\) 0 0
\(496\) −3.54669 −0.159251
\(497\) 21.5162i 0.965133i
\(498\) 4.83384i 0.216610i
\(499\) 24.4878 1.09622 0.548112 0.836405i \(-0.315347\pi\)
0.548112 + 0.836405i \(0.315347\pi\)
\(500\) 0 0
\(501\) −9.32698 −0.416699
\(502\) − 64.2942i − 2.86959i
\(503\) 7.30393i 0.325666i 0.986654 + 0.162833i \(0.0520632\pi\)
−0.986654 + 0.162833i \(0.947937\pi\)
\(504\) −3.54364 −0.157846
\(505\) 0 0
\(506\) −4.36909 −0.194230
\(507\) 26.5667i 1.17987i
\(508\) 32.3691i 1.43615i
\(509\) −33.3784 −1.47947 −0.739736 0.672897i \(-0.765050\pi\)
−0.739736 + 0.672897i \(0.765050\pi\)
\(510\) 0 0
\(511\) 20.8201 0.921028
\(512\) 25.2902i 1.11768i
\(513\) − 1.00000i − 0.0441511i
\(514\) −40.9147 −1.80467
\(515\) 0 0
\(516\) 20.8117 0.916185
\(517\) 44.1471i 1.94159i
\(518\) − 30.6540i − 1.34686i
\(519\) 5.17455 0.227137
\(520\) 0 0
\(521\) −4.08727 −0.179067 −0.0895334 0.995984i \(-0.528538\pi\)
−0.0895334 + 0.995984i \(0.528538\pi\)
\(522\) 6.43531i 0.281666i
\(523\) − 27.9304i − 1.22131i −0.791896 0.610656i \(-0.790906\pi\)
0.791896 0.610656i \(-0.209094\pi\)
\(524\) −49.2965 −2.15353
\(525\) 0 0
\(526\) 24.9809 1.08922
\(527\) 0 0
\(528\) − 9.12405i − 0.397073i
\(529\) 22.7045 0.987150
\(530\) 0 0
\(531\) 5.25343 0.227980
\(532\) 7.14510i 0.309779i
\(533\) 78.8157i 3.41389i
\(534\) −9.63824 −0.417087
\(535\) 0 0
\(536\) −3.65624 −0.157925
\(537\) 15.3270i 0.661408i
\(538\) − 56.0882i − 2.41813i
\(539\) 2.03677 0.0877301
\(540\) 0 0
\(541\) 26.7917 1.15187 0.575933 0.817497i \(-0.304639\pi\)
0.575933 + 0.817497i \(0.304639\pi\)
\(542\) 33.9652i 1.45893i
\(543\) 10.4059i 0.446558i
\(544\) 0 0
\(545\) 0 0
\(546\) 37.0598 1.58601
\(547\) − 9.26716i − 0.396235i −0.980178 0.198118i \(-0.936517\pi\)
0.980178 0.198118i \(-0.0634828\pi\)
\(548\) − 55.6509i − 2.37729i
\(549\) 8.49314 0.362478
\(550\) 0 0
\(551\) 3.00000 0.127804
\(552\) 0.701404i 0.0298537i
\(553\) 20.6814i 0.879463i
\(554\) −44.3343 −1.88358
\(555\) 0 0
\(556\) 52.8442 2.24109
\(557\) − 32.5804i − 1.38048i −0.723582 0.690238i \(-0.757506\pi\)
0.723582 0.690238i \(-0.242494\pi\)
\(558\) − 3.12405i − 0.132251i
\(559\) −50.3216 −2.12838
\(560\) 0 0
\(561\) 0 0
\(562\) 2.90739i 0.122641i
\(563\) − 33.3270i − 1.40456i −0.711899 0.702282i \(-0.752164\pi\)
0.711899 0.702282i \(-0.247836\pi\)
\(564\) 30.6540 1.29076
\(565\) 0 0
\(566\) 60.3784 2.53789
\(567\) 2.74657i 0.115345i
\(568\) − 10.1073i − 0.424091i
\(569\) 27.3859 1.14808 0.574038 0.818829i \(-0.305376\pi\)
0.574038 + 0.818829i \(0.305376\pi\)
\(570\) 0 0
\(571\) −43.2995 −1.81203 −0.906014 0.423247i \(-0.860890\pi\)
−0.906014 + 0.423247i \(0.860890\pi\)
\(572\) − 61.3079i − 2.56341i
\(573\) 6.54364i 0.273364i
\(574\) 73.8221 3.08128
\(575\) 0 0
\(576\) −11.8706 −0.494609
\(577\) 47.3721i 1.97213i 0.166366 + 0.986064i \(0.446797\pi\)
−0.166366 + 0.986064i \(0.553203\pi\)
\(578\) 36.4667i 1.51682i
\(579\) 24.9863 1.03839
\(580\) 0 0
\(581\) −6.18920 −0.256771
\(582\) − 36.1892i − 1.50009i
\(583\) − 20.9074i − 0.865896i
\(584\) −9.78029 −0.404711
\(585\) 0 0
\(586\) −18.1692 −0.750563
\(587\) − 29.0230i − 1.19791i −0.800783 0.598955i \(-0.795583\pi\)
0.800783 0.598955i \(-0.204417\pi\)
\(588\) − 1.41425i − 0.0583228i
\(589\) −1.45636 −0.0600084
\(590\) 0 0
\(591\) 8.79707 0.361863
\(592\) − 12.6707i − 0.520764i
\(593\) − 30.8706i − 1.26770i −0.773454 0.633852i \(-0.781473\pi\)
0.773454 0.633852i \(-0.218527\pi\)
\(594\) 8.03677 0.329753
\(595\) 0 0
\(596\) 12.2167 0.500414
\(597\) 8.74657i 0.357973i
\(598\) − 7.33537i − 0.299966i
\(599\) −17.1608 −0.701172 −0.350586 0.936531i \(-0.614018\pi\)
−0.350586 + 0.936531i \(0.614018\pi\)
\(600\) 0 0
\(601\) −13.2029 −0.538559 −0.269279 0.963062i \(-0.586786\pi\)
−0.269279 + 0.963062i \(0.586786\pi\)
\(602\) 47.1334i 1.92101i
\(603\) 2.83384i 0.115403i
\(604\) −4.14709 −0.168743
\(605\) 0 0
\(606\) −28.4794 −1.15690
\(607\) − 16.7603i − 0.680279i −0.940375 0.340140i \(-0.889526\pi\)
0.940375 0.340140i \(-0.110474\pi\)
\(608\) 7.80440i 0.316510i
\(609\) −8.23970 −0.333890
\(610\) 0 0
\(611\) −74.1196 −2.99856
\(612\) 0 0
\(613\) − 32.7780i − 1.32389i −0.749552 0.661946i \(-0.769731\pi\)
0.749552 0.661946i \(-0.230269\pi\)
\(614\) 41.4289 1.67193
\(615\) 0 0
\(616\) −13.2765 −0.534925
\(617\) − 33.4510i − 1.34669i −0.739329 0.673344i \(-0.764857\pi\)
0.739329 0.673344i \(-0.235143\pi\)
\(618\) 0.543637i 0.0218683i
\(619\) −39.3731 −1.58254 −0.791269 0.611469i \(-0.790579\pi\)
−0.791269 + 0.611469i \(0.790579\pi\)
\(620\) 0 0
\(621\) 0.543637 0.0218154
\(622\) 44.1471i 1.77014i
\(623\) − 12.3407i − 0.494420i
\(624\) 15.3186 0.613234
\(625\) 0 0
\(626\) 48.1418 1.92413
\(627\) − 3.74657i − 0.149624i
\(628\) 34.1060i 1.36098i
\(629\) 0 0
\(630\) 0 0
\(631\) 40.5804 1.61548 0.807740 0.589538i \(-0.200690\pi\)
0.807740 + 0.589538i \(0.200690\pi\)
\(632\) − 9.71513i − 0.386447i
\(633\) 12.7182i 0.505502i
\(634\) −23.9706 −0.951992
\(635\) 0 0
\(636\) −14.5172 −0.575646
\(637\) 3.41959i 0.135489i
\(638\) 24.1103i 0.954537i
\(639\) −7.83384 −0.309902
\(640\) 0 0
\(641\) −6.81172 −0.269047 −0.134523 0.990910i \(-0.542950\pi\)
−0.134523 + 0.990910i \(0.542950\pi\)
\(642\) 4.80440i 0.189614i
\(643\) 14.3868i 0.567360i 0.958919 + 0.283680i \(0.0915553\pi\)
−0.958919 + 0.283680i \(0.908445\pi\)
\(644\) −3.88434 −0.153065
\(645\) 0 0
\(646\) 0 0
\(647\) 0.137775i 0.00541649i 0.999996 + 0.00270825i \(0.000862062\pi\)
−0.999996 + 0.00270825i \(0.999138\pi\)
\(648\) − 1.29021i − 0.0506841i
\(649\) 19.6823 0.772599
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) − 20.1167i − 0.787832i
\(653\) 11.1019i 0.434452i 0.976121 + 0.217226i \(0.0697009\pi\)
−0.976121 + 0.217226i \(0.930299\pi\)
\(654\) 2.58041 0.100902
\(655\) 0 0
\(656\) 30.5142 1.19138
\(657\) 7.58041i 0.295740i
\(658\) 69.4236i 2.70641i
\(659\) 29.9725 1.16756 0.583782 0.811910i \(-0.301572\pi\)
0.583782 + 0.811910i \(0.301572\pi\)
\(660\) 0 0
\(661\) −42.5530 −1.65512 −0.827559 0.561379i \(-0.810271\pi\)
−0.827559 + 0.561379i \(0.810271\pi\)
\(662\) − 55.6349i − 2.16231i
\(663\) 0 0
\(664\) 2.90739 0.112829
\(665\) 0 0
\(666\) 11.1608 0.432473
\(667\) 1.63091i 0.0631491i
\(668\) 24.2638i 0.938795i
\(669\) 10.5436 0.407641
\(670\) 0 0
\(671\) 31.8201 1.22840
\(672\) − 21.4353i − 0.826885i
\(673\) − 12.6961i − 0.489397i −0.969599 0.244699i \(-0.921311\pi\)
0.969599 0.244699i \(-0.0786891\pi\)
\(674\) −32.3638 −1.24661
\(675\) 0 0
\(676\) 69.1123 2.65817
\(677\) − 21.3784i − 0.821639i −0.911717 0.410819i \(-0.865243\pi\)
0.911717 0.410819i \(-0.134757\pi\)
\(678\) 26.9074i 1.03337i
\(679\) 46.3363 1.77822
\(680\) 0 0
\(681\) 7.83384 0.300193
\(682\) − 11.7045i − 0.448187i
\(683\) − 24.0652i − 0.920828i −0.887704 0.460414i \(-0.847701\pi\)
0.887704 0.460414i \(-0.152299\pi\)
\(684\) −2.60147 −0.0994695
\(685\) 0 0
\(686\) −38.0388 −1.45233
\(687\) − 23.6035i − 0.900528i
\(688\) 19.4825i 0.742762i
\(689\) 35.1019 1.33728
\(690\) 0 0
\(691\) 29.6677 1.12861 0.564306 0.825566i \(-0.309144\pi\)
0.564306 + 0.825566i \(0.309144\pi\)
\(692\) − 13.4614i − 0.511726i
\(693\) 10.2902i 0.390893i
\(694\) 14.2060 0.539252
\(695\) 0 0
\(696\) 3.87062 0.146715
\(697\) 0 0
\(698\) − 19.4637i − 0.736712i
\(699\) 23.7833 0.899569
\(700\) 0 0
\(701\) 6.65396 0.251317 0.125658 0.992074i \(-0.459896\pi\)
0.125658 + 0.992074i \(0.459896\pi\)
\(702\) 13.4931i 0.509266i
\(703\) − 5.20293i − 0.196232i
\(704\) −44.4741 −1.67618
\(705\) 0 0
\(706\) 43.2176 1.62652
\(707\) − 36.4648i − 1.37140i
\(708\) − 13.6666i − 0.513623i
\(709\) 29.0735 1.09188 0.545940 0.837824i \(-0.316173\pi\)
0.545940 + 0.837824i \(0.316173\pi\)
\(710\) 0 0
\(711\) −7.52991 −0.282394
\(712\) 5.79707i 0.217254i
\(713\) − 0.791733i − 0.0296506i
\(714\) 0 0
\(715\) 0 0
\(716\) 39.8726 1.49011
\(717\) − 1.27648i − 0.0476710i
\(718\) − 34.0735i − 1.27161i
\(719\) −12.6739 −0.472659 −0.236329 0.971673i \(-0.575944\pi\)
−0.236329 + 0.971673i \(0.575944\pi\)
\(720\) 0 0
\(721\) −0.696068 −0.0259229
\(722\) 2.14510i 0.0798325i
\(723\) − 21.4931i − 0.799338i
\(724\) 27.0705 1.00607
\(725\) 0 0
\(726\) 6.51419 0.241764
\(727\) 13.2260i 0.490524i 0.969457 + 0.245262i \(0.0788740\pi\)
−0.969457 + 0.245262i \(0.921126\pi\)
\(728\) − 22.2902i − 0.826130i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) − 22.0946i − 0.816640i
\(733\) − 33.0735i − 1.22160i −0.791785 0.610800i \(-0.790848\pi\)
0.791785 0.610800i \(-0.209152\pi\)
\(734\) −53.3815 −1.97035
\(735\) 0 0
\(736\) −4.24276 −0.156390
\(737\) 10.6172i 0.391089i
\(738\) 26.8779i 0.989391i
\(739\) 27.2260 1.00152 0.500762 0.865585i \(-0.333053\pi\)
0.500762 + 0.865585i \(0.333053\pi\)
\(740\) 0 0
\(741\) 6.29021 0.231076
\(742\) − 32.8779i − 1.20699i
\(743\) − 51.5751i − 1.89211i −0.324012 0.946053i \(-0.605032\pi\)
0.324012 0.946053i \(-0.394968\pi\)
\(744\) −1.87901 −0.0688877
\(745\) 0 0
\(746\) 25.0284 0.916354
\(747\) − 2.25343i − 0.0824488i
\(748\) 0 0
\(749\) −6.15150 −0.224771
\(750\) 0 0
\(751\) 16.7971 0.612934 0.306467 0.951881i \(-0.400853\pi\)
0.306467 + 0.951881i \(0.400853\pi\)
\(752\) 28.6961i 1.04644i
\(753\) 29.9725i 1.09226i
\(754\) −40.4794 −1.47417
\(755\) 0 0
\(756\) 7.14510 0.259865
\(757\) − 34.6402i − 1.25902i −0.776992 0.629510i \(-0.783256\pi\)
0.776992 0.629510i \(-0.216744\pi\)
\(758\) − 13.4931i − 0.490093i
\(759\) 2.03677 0.0739302
\(760\) 0 0
\(761\) 33.8294 1.22632 0.613158 0.789960i \(-0.289899\pi\)
0.613158 + 0.789960i \(0.289899\pi\)
\(762\) − 26.6907i − 0.966903i
\(763\) 3.30393i 0.119610i
\(764\) 17.0230 0.615872
\(765\) 0 0
\(766\) 25.8810 0.935119
\(767\) 33.0452i 1.19319i
\(768\) − 2.60147i − 0.0938723i
\(769\) −21.7550 −0.784504 −0.392252 0.919858i \(-0.628304\pi\)
−0.392252 + 0.919858i \(0.628304\pi\)
\(770\) 0 0
\(771\) 19.0735 0.686917
\(772\) − 65.0009i − 2.33943i
\(773\) 1.77495i 0.0638405i 0.999490 + 0.0319203i \(0.0101623\pi\)
−0.999490 + 0.0319203i \(0.989838\pi\)
\(774\) −17.1608 −0.616833
\(775\) 0 0
\(776\) −21.7666 −0.781374
\(777\) 14.2902i 0.512658i
\(778\) 30.8117i 1.10465i
\(779\) 12.5299 0.448931
\(780\) 0 0
\(781\) −29.3500 −1.05023
\(782\) 0 0
\(783\) − 3.00000i − 0.107211i
\(784\) 1.32392 0.0472830
\(785\) 0 0
\(786\) 40.6486 1.44989
\(787\) 19.8937i 0.709132i 0.935031 + 0.354566i \(0.115371\pi\)
−0.935031 + 0.354566i \(0.884629\pi\)
\(788\) − 22.8853i − 0.815254i
\(789\) −11.6456 −0.414593
\(790\) 0 0
\(791\) −34.4520 −1.22497
\(792\) − 4.83384i − 0.171763i
\(793\) 53.4236i 1.89713i
\(794\) 66.7054 2.36729
\(795\) 0 0
\(796\) 22.7539 0.806490
\(797\) − 7.36909i − 0.261027i −0.991447 0.130513i \(-0.958337\pi\)
0.991447 0.130513i \(-0.0416625\pi\)
\(798\) − 5.89167i − 0.208563i
\(799\) 0 0
\(800\) 0 0
\(801\) 4.49314 0.158757
\(802\) − 1.16616i − 0.0411785i
\(803\) 28.4005i 1.00223i
\(804\) 7.37214 0.259995
\(805\) 0 0
\(806\) 19.6509 0.692174
\(807\) 26.1471i 0.920421i
\(808\) 17.1294i 0.602610i
\(809\) 10.4205 0.366366 0.183183 0.983079i \(-0.441360\pi\)
0.183183 + 0.983079i \(0.441360\pi\)
\(810\) 0 0
\(811\) 46.9074 1.64714 0.823571 0.567214i \(-0.191979\pi\)
0.823571 + 0.567214i \(0.191979\pi\)
\(812\) 21.4353i 0.752232i
\(813\) − 15.8338i − 0.555317i
\(814\) 41.8148 1.46561
\(815\) 0 0
\(816\) 0 0
\(817\) 8.00000i 0.279885i
\(818\) − 56.7696i − 1.98490i
\(819\) −17.2765 −0.603689
\(820\) 0 0
\(821\) 35.5392 1.24033 0.620164 0.784472i \(-0.287066\pi\)
0.620164 + 0.784472i \(0.287066\pi\)
\(822\) 45.8883i 1.60054i
\(823\) − 17.7603i − 0.619085i −0.950886 0.309542i \(-0.899824\pi\)
0.950886 0.309542i \(-0.100176\pi\)
\(824\) 0.326979 0.0113909
\(825\) 0 0
\(826\) 30.9515 1.07694
\(827\) − 30.7843i − 1.07047i −0.844702 0.535237i \(-0.820222\pi\)
0.844702 0.535237i \(-0.179778\pi\)
\(828\) − 1.41425i − 0.0491487i
\(829\) 23.7098 0.823475 0.411738 0.911302i \(-0.364922\pi\)
0.411738 + 0.911302i \(0.364922\pi\)
\(830\) 0 0
\(831\) 20.6677 0.716954
\(832\) − 74.6686i − 2.58867i
\(833\) 0 0
\(834\) −43.5740 −1.50884
\(835\) 0 0
\(836\) −9.74657 −0.337092
\(837\) 1.45636i 0.0503393i
\(838\) 13.2765i 0.458628i
\(839\) −34.1662 −1.17955 −0.589773 0.807569i \(-0.700783\pi\)
−0.589773 + 0.807569i \(0.700783\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 32.7696i 1.12932i
\(843\) − 1.35536i − 0.0466811i
\(844\) 33.0859 1.13886
\(845\) 0 0
\(846\) −25.2765 −0.869023
\(847\) 8.34071i 0.286590i
\(848\) − 13.5900i − 0.466683i
\(849\) −28.1471 −0.966006
\(850\) 0 0
\(851\) 2.82851 0.0969600
\(852\) 20.3795i 0.698189i
\(853\) 28.7780i 0.985340i 0.870216 + 0.492670i \(0.163979\pi\)
−0.870216 + 0.492670i \(0.836021\pi\)
\(854\) 50.0388 1.71229
\(855\) 0 0
\(856\) 2.88968 0.0987672
\(857\) − 47.2849i − 1.61522i −0.589717 0.807610i \(-0.700761\pi\)
0.589717 0.807610i \(-0.299239\pi\)
\(858\) 50.5530i 1.72585i
\(859\) 23.0221 0.785505 0.392752 0.919644i \(-0.371523\pi\)
0.392752 + 0.919644i \(0.371523\pi\)
\(860\) 0 0
\(861\) −34.4143 −1.17283
\(862\) 29.0839i 0.990603i
\(863\) − 56.0545i − 1.90812i −0.299621 0.954058i \(-0.596860\pi\)
0.299621 0.954058i \(-0.403140\pi\)
\(864\) 7.80440 0.265511
\(865\) 0 0
\(866\) −63.6717 −2.16365
\(867\) − 17.0000i − 0.577350i
\(868\) − 10.4059i − 0.353198i
\(869\) −28.2113 −0.957004
\(870\) 0 0
\(871\) −17.8255 −0.603992
\(872\) − 1.55203i − 0.0525583i
\(873\) 16.8706i 0.570984i
\(874\) −1.16616 −0.0394459
\(875\) 0 0
\(876\) 19.7202 0.666283
\(877\) − 3.37748i − 0.114049i −0.998373 0.0570247i \(-0.981839\pi\)
0.998373 0.0570247i \(-0.0181614\pi\)
\(878\) − 72.9535i − 2.46206i
\(879\) 8.47009 0.285689
\(880\) 0 0
\(881\) 36.0314 1.21393 0.606965 0.794729i \(-0.292387\pi\)
0.606965 + 0.794729i \(0.292387\pi\)
\(882\) 1.16616i 0.0392666i
\(883\) 6.23970i 0.209983i 0.994473 + 0.104991i \(0.0334815\pi\)
−0.994473 + 0.104991i \(0.966518\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −35.0545 −1.17768
\(887\) 40.2942i 1.35295i 0.736467 + 0.676473i \(0.236493\pi\)
−0.736467 + 0.676473i \(0.763507\pi\)
\(888\) − 6.71285i − 0.225268i
\(889\) 34.1745 1.14618
\(890\) 0 0
\(891\) −3.74657 −0.125515
\(892\) − 27.4289i − 0.918388i
\(893\) 11.7833i 0.394315i
\(894\) −10.0735 −0.336910
\(895\) 0 0
\(896\) −27.0671 −0.904250
\(897\) 3.41959i 0.114177i
\(898\) − 36.2501i − 1.20968i
\(899\) −4.36909 −0.145717
\(900\) 0 0
\(901\) 0 0
\(902\) 100.700i 3.35294i
\(903\) − 21.9725i − 0.731201i
\(904\) 16.1839 0.538267
\(905\) 0 0
\(906\) 3.41959 0.113608
\(907\) 1.59414i 0.0529325i 0.999650 + 0.0264662i \(0.00842545\pi\)
−0.999650 + 0.0264662i \(0.991575\pi\)
\(908\) − 20.3795i − 0.676317i
\(909\) 13.2765 0.440353
\(910\) 0 0
\(911\) −6.58880 −0.218297 −0.109148 0.994025i \(-0.534812\pi\)
−0.109148 + 0.994025i \(0.534812\pi\)
\(912\) − 2.43531i − 0.0806411i
\(913\) − 8.44264i − 0.279410i
\(914\) −36.1712 −1.19644
\(915\) 0 0
\(916\) −61.4036 −2.02883
\(917\) 52.0461i 1.71871i
\(918\) 0 0
\(919\) 13.3270 0.439616 0.219808 0.975543i \(-0.429457\pi\)
0.219808 + 0.975543i \(0.429457\pi\)
\(920\) 0 0
\(921\) −19.3133 −0.636393
\(922\) − 52.4794i − 1.72832i
\(923\) − 49.2765i − 1.62196i
\(924\) 26.7696 0.880656
\(925\) 0 0
\(926\) −31.6509 −1.04011
\(927\) − 0.253432i − 0.00832379i
\(928\) 23.4132i 0.768576i
\(929\) 22.0735 0.724210 0.362105 0.932137i \(-0.382058\pi\)
0.362105 + 0.932137i \(0.382058\pi\)
\(930\) 0 0
\(931\) 0.543637 0.0178170
\(932\) − 61.8715i − 2.02667i
\(933\) − 20.5804i − 0.673772i
\(934\) −26.4426 −0.865229
\(935\) 0 0
\(936\) 8.11566 0.265269
\(937\) − 13.5436i − 0.442451i −0.975223 0.221226i \(-0.928994\pi\)
0.975223 0.221226i \(-0.0710057\pi\)
\(938\) 16.6961i 0.545146i
\(939\) −22.4426 −0.732388
\(940\) 0 0
\(941\) 3.96323 0.129197 0.0645987 0.997911i \(-0.479423\pi\)
0.0645987 + 0.997911i \(0.479423\pi\)
\(942\) − 28.1230i − 0.916296i
\(943\) 6.81172i 0.221820i
\(944\) 12.7937 0.416400
\(945\) 0 0
\(946\) −64.2942 −2.09038
\(947\) 24.3784i 0.792192i 0.918209 + 0.396096i \(0.129635\pi\)
−0.918209 + 0.396096i \(0.870365\pi\)
\(948\) 19.5888i 0.636215i
\(949\) −47.6823 −1.54783
\(950\) 0 0
\(951\) 11.1745 0.362360
\(952\) 0 0
\(953\) 41.4226i 1.34181i 0.741543 + 0.670906i \(0.234094\pi\)
−0.741543 + 0.670906i \(0.765906\pi\)
\(954\) 11.9706 0.387561
\(955\) 0 0
\(956\) −3.32071 −0.107400
\(957\) − 11.2397i − 0.363328i
\(958\) 40.7750i 1.31738i
\(959\) −58.7550 −1.89730
\(960\) 0 0
\(961\) −28.8790 −0.931581
\(962\) 70.2039i 2.26346i
\(963\) − 2.23970i − 0.0721735i
\(964\) −55.9137 −1.80086
\(965\) 0 0
\(966\) 3.20293 0.103053
\(967\) − 34.5888i − 1.11230i −0.831082 0.556150i \(-0.812278\pi\)
0.831082 0.556150i \(-0.187722\pi\)
\(968\) − 3.91806i − 0.125931i
\(969\) 0 0
\(970\) 0 0
\(971\) 9.48475 0.304380 0.152190 0.988351i \(-0.451367\pi\)
0.152190 + 0.988351i \(0.451367\pi\)
\(972\) 2.60147i 0.0834420i
\(973\) − 55.7917i − 1.78860i
\(974\) −71.3815 −2.28721
\(975\) 0 0
\(976\) 20.6834 0.662060
\(977\) − 46.7275i − 1.49495i −0.664293 0.747473i \(-0.731267\pi\)
0.664293 0.747473i \(-0.268733\pi\)
\(978\) 16.5877i 0.530417i
\(979\) 16.8338 0.538012
\(980\) 0 0
\(981\) −1.20293 −0.0384066
\(982\) 61.6234i 1.96648i
\(983\) 21.2344i 0.677271i 0.940918 + 0.338636i \(0.109965\pi\)
−0.940918 + 0.338636i \(0.890035\pi\)
\(984\) 16.1662 0.515358
\(985\) 0 0
\(986\) 0 0
\(987\) − 32.3638i − 1.03015i
\(988\) − 16.3638i − 0.520600i
\(989\) −4.34910 −0.138293
\(990\) 0 0
\(991\) 29.7466 0.944931 0.472465 0.881349i \(-0.343364\pi\)
0.472465 + 0.881349i \(0.343364\pi\)
\(992\) − 11.3660i − 0.360872i
\(993\) 25.9358i 0.823047i
\(994\) −46.1544 −1.46393
\(995\) 0 0
\(996\) −5.86223 −0.185752
\(997\) 4.84850i 0.153553i 0.997048 + 0.0767767i \(0.0244629\pi\)
−0.997048 + 0.0767767i \(0.975537\pi\)
\(998\) 52.5288i 1.66277i
\(999\) −5.20293 −0.164613
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1425.2.c.p.799.5 6
5.2 odd 4 1425.2.a.u.1.1 3
5.3 odd 4 1425.2.a.v.1.3 yes 3
5.4 even 2 inner 1425.2.c.p.799.2 6
15.2 even 4 4275.2.a.be.1.3 3
15.8 even 4 4275.2.a.bh.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1425.2.a.u.1.1 3 5.2 odd 4
1425.2.a.v.1.3 yes 3 5.3 odd 4
1425.2.c.p.799.2 6 5.4 even 2 inner
1425.2.c.p.799.5 6 1.1 even 1 trivial
4275.2.a.be.1.3 3 15.2 even 4
4275.2.a.bh.1.1 3 15.8 even 4