Properties

Label 1425.2.c.p.799.4
Level $1425$
Weight $2$
Character 1425.799
Analytic conductor $11.379$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1425,2,Mod(799,1425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1425, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1425.799"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1425.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-12,0,0,0,0,-6,0,-6,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3786822880\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.24681024.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 12x^{4} + 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.4
Root \(0.523976i\) of defining polynomial
Character \(\chi\) \(=\) 1425.799
Dual form 1425.2.c.p.799.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.523976i q^{2} -1.00000i q^{3} +1.72545 q^{4} +0.523976 q^{6} -3.20147i q^{7} +1.95205i q^{8} -1.00000 q^{9} +2.20147 q^{11} -1.72545i q^{12} -3.04795i q^{13} +1.67750 q^{14} +2.42807 q^{16} -0.523976i q^{18} -1.00000 q^{19} -3.20147 q^{21} +1.15352i q^{22} -3.24943i q^{23} +1.95205 q^{24} +1.59706 q^{26} +1.00000i q^{27} -5.52398i q^{28} -3.00000 q^{29} -1.24943 q^{31} +5.17635i q^{32} -2.20147i q^{33} -1.72545 q^{36} -3.45090i q^{37} -0.523976i q^{38} -3.04795 q^{39} +8.55646 q^{41} -1.67750i q^{42} -8.00000i q^{43} +3.79853 q^{44} +1.70262 q^{46} +3.35499i q^{47} -2.42807i q^{48} -3.24943 q^{49} -5.25909i q^{52} -0.904094i q^{53} -0.523976 q^{54} +6.24943 q^{56} +1.00000i q^{57} -1.57193i q^{58} -11.2015 q^{59} +3.40294 q^{61} -0.654669i q^{62} +3.20147i q^{63} +2.14386 q^{64} +1.15352 q^{66} -2.29738i q^{67} -3.24943 q^{69} +7.29738 q^{71} -1.95205i q^{72} -1.09591i q^{73} +1.80819 q^{74} -1.72545 q^{76} -7.04795i q^{77} -1.59706i q^{78} -13.5565 q^{79} +1.00000 q^{81} +4.48339i q^{82} +8.20147i q^{83} -5.52398 q^{84} +4.19181 q^{86} +3.00000i q^{87} +4.29738i q^{88} +7.40294 q^{89} -9.75794 q^{91} -5.60672i q^{92} +1.24943i q^{93} -1.75794 q^{94} +5.17635 q^{96} -7.14386i q^{97} -1.70262i q^{98} -2.20147 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{4} - 6 q^{9} - 6 q^{11} - 6 q^{14} + 24 q^{16} - 6 q^{19} + 18 q^{24} + 48 q^{26} - 18 q^{29} + 18 q^{31} + 12 q^{36} - 12 q^{39} + 42 q^{44} + 42 q^{46} + 6 q^{49} + 12 q^{56} - 48 q^{59} - 18 q^{61}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1425\mathbb{Z}\right)^\times\).

\(n\) \(476\) \(1027\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.523976i 0.370507i 0.982691 + 0.185254i \(0.0593107\pi\)
−0.982691 + 0.185254i \(0.940689\pi\)
\(3\) − 1.00000i − 0.577350i
\(4\) 1.72545 0.862724
\(5\) 0 0
\(6\) 0.523976 0.213912
\(7\) − 3.20147i − 1.21004i −0.796209 0.605021i \(-0.793165\pi\)
0.796209 0.605021i \(-0.206835\pi\)
\(8\) 1.95205i 0.690153i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 2.20147 0.663769 0.331884 0.943320i \(-0.392316\pi\)
0.331884 + 0.943320i \(0.392316\pi\)
\(12\) − 1.72545i − 0.498094i
\(13\) − 3.04795i − 0.845350i −0.906281 0.422675i \(-0.861091\pi\)
0.906281 0.422675i \(-0.138909\pi\)
\(14\) 1.67750 0.448330
\(15\) 0 0
\(16\) 2.42807 0.607018
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) − 0.523976i − 0.123502i
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −3.20147 −0.698619
\(22\) 1.15352i 0.245931i
\(23\) − 3.24943i − 0.677552i −0.940867 0.338776i \(-0.889987\pi\)
0.940867 0.338776i \(-0.110013\pi\)
\(24\) 1.95205 0.398460
\(25\) 0 0
\(26\) 1.59706 0.313208
\(27\) 1.00000i 0.192450i
\(28\) − 5.52398i − 1.04393i
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) −1.24943 −0.224403 −0.112202 0.993685i \(-0.535790\pi\)
−0.112202 + 0.993685i \(0.535790\pi\)
\(32\) 5.17635i 0.915057i
\(33\) − 2.20147i − 0.383227i
\(34\) 0 0
\(35\) 0 0
\(36\) −1.72545 −0.287575
\(37\) − 3.45090i − 0.567324i −0.958924 0.283662i \(-0.908451\pi\)
0.958924 0.283662i \(-0.0915494\pi\)
\(38\) − 0.523976i − 0.0850002i
\(39\) −3.04795 −0.488063
\(40\) 0 0
\(41\) 8.55646 1.33630 0.668148 0.744029i \(-0.267087\pi\)
0.668148 + 0.744029i \(0.267087\pi\)
\(42\) − 1.67750i − 0.258843i
\(43\) − 8.00000i − 1.21999i −0.792406 0.609994i \(-0.791172\pi\)
0.792406 0.609994i \(-0.208828\pi\)
\(44\) 3.79853 0.572650
\(45\) 0 0
\(46\) 1.70262 0.251038
\(47\) 3.35499i 0.489376i 0.969602 + 0.244688i \(0.0786855\pi\)
−0.969602 + 0.244688i \(0.921314\pi\)
\(48\) − 2.42807i − 0.350462i
\(49\) −3.24943 −0.464204
\(50\) 0 0
\(51\) 0 0
\(52\) − 5.25909i − 0.729304i
\(53\) − 0.904094i − 0.124187i −0.998070 0.0620935i \(-0.980222\pi\)
0.998070 0.0620935i \(-0.0197777\pi\)
\(54\) −0.523976 −0.0713042
\(55\) 0 0
\(56\) 6.24943 0.835115
\(57\) 1.00000i 0.132453i
\(58\) − 1.57193i − 0.206404i
\(59\) −11.2015 −1.45831 −0.729154 0.684350i \(-0.760086\pi\)
−0.729154 + 0.684350i \(0.760086\pi\)
\(60\) 0 0
\(61\) 3.40294 0.435702 0.217851 0.975982i \(-0.430095\pi\)
0.217851 + 0.975982i \(0.430095\pi\)
\(62\) − 0.654669i − 0.0831431i
\(63\) 3.20147i 0.403348i
\(64\) 2.14386 0.267982
\(65\) 0 0
\(66\) 1.15352 0.141988
\(67\) − 2.29738i − 0.280669i −0.990104 0.140335i \(-0.955182\pi\)
0.990104 0.140335i \(-0.0448179\pi\)
\(68\) 0 0
\(69\) −3.24943 −0.391185
\(70\) 0 0
\(71\) 7.29738 0.866039 0.433020 0.901384i \(-0.357448\pi\)
0.433020 + 0.901384i \(0.357448\pi\)
\(72\) − 1.95205i − 0.230051i
\(73\) − 1.09591i − 0.128266i −0.997941 0.0641330i \(-0.979572\pi\)
0.997941 0.0641330i \(-0.0204282\pi\)
\(74\) 1.80819 0.210198
\(75\) 0 0
\(76\) −1.72545 −0.197923
\(77\) − 7.04795i − 0.803189i
\(78\) − 1.59706i − 0.180831i
\(79\) −13.5565 −1.52522 −0.762611 0.646858i \(-0.776083\pi\)
−0.762611 + 0.646858i \(0.776083\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 4.48339i 0.495107i
\(83\) 8.20147i 0.900229i 0.892971 + 0.450114i \(0.148617\pi\)
−0.892971 + 0.450114i \(0.851383\pi\)
\(84\) −5.52398 −0.602715
\(85\) 0 0
\(86\) 4.19181 0.452015
\(87\) 3.00000i 0.321634i
\(88\) 4.29738i 0.458102i
\(89\) 7.40294 0.784711 0.392355 0.919814i \(-0.371660\pi\)
0.392355 + 0.919814i \(0.371660\pi\)
\(90\) 0 0
\(91\) −9.75794 −1.02291
\(92\) − 5.60672i − 0.584541i
\(93\) 1.24943i 0.129559i
\(94\) −1.75794 −0.181317
\(95\) 0 0
\(96\) 5.17635 0.528309
\(97\) − 7.14386i − 0.725349i −0.931916 0.362674i \(-0.881864\pi\)
0.931916 0.362674i \(-0.118136\pi\)
\(98\) − 1.70262i − 0.171991i
\(99\) −2.20147 −0.221256
\(100\) 0 0
\(101\) 13.7579 1.36897 0.684483 0.729029i \(-0.260028\pi\)
0.684483 + 0.729029i \(0.260028\pi\)
\(102\) 0 0
\(103\) 6.20147i 0.611049i 0.952184 + 0.305525i \(0.0988318\pi\)
−0.952184 + 0.305525i \(0.901168\pi\)
\(104\) 5.94975 0.583421
\(105\) 0 0
\(106\) 0.473724 0.0460122
\(107\) − 15.6044i − 1.50854i −0.656567 0.754268i \(-0.727992\pi\)
0.656567 0.754268i \(-0.272008\pi\)
\(108\) 1.72545i 0.166031i
\(109\) −7.45090 −0.713667 −0.356833 0.934168i \(-0.616144\pi\)
−0.356833 + 0.934168i \(0.616144\pi\)
\(110\) 0 0
\(111\) −3.45090 −0.327545
\(112\) − 7.77340i − 0.734517i
\(113\) 15.2494i 1.43455i 0.696793 + 0.717273i \(0.254610\pi\)
−0.696793 + 0.717273i \(0.745390\pi\)
\(114\) −0.523976 −0.0490749
\(115\) 0 0
\(116\) −5.17635 −0.480612
\(117\) 3.04795i 0.281783i
\(118\) − 5.86931i − 0.540314i
\(119\) 0 0
\(120\) 0 0
\(121\) −6.15352 −0.559411
\(122\) 1.78306i 0.161431i
\(123\) − 8.55646i − 0.771510i
\(124\) −2.15582 −0.193598
\(125\) 0 0
\(126\) −1.67750 −0.149443
\(127\) 14.0553i 1.24721i 0.781741 + 0.623604i \(0.214332\pi\)
−0.781741 + 0.623604i \(0.785668\pi\)
\(128\) 11.4760i 1.01435i
\(129\) −8.00000 −0.704361
\(130\) 0 0
\(131\) 4.34763 0.379854 0.189927 0.981798i \(-0.439175\pi\)
0.189927 + 0.981798i \(0.439175\pi\)
\(132\) − 3.79853i − 0.330619i
\(133\) 3.20147i 0.277603i
\(134\) 1.20377 0.103990
\(135\) 0 0
\(136\) 0 0
\(137\) − 19.7077i − 1.68374i −0.539680 0.841871i \(-0.681455\pi\)
0.539680 0.841871i \(-0.318545\pi\)
\(138\) − 1.70262i − 0.144937i
\(139\) 15.9115 1.34959 0.674796 0.738004i \(-0.264232\pi\)
0.674796 + 0.738004i \(0.264232\pi\)
\(140\) 0 0
\(141\) 3.35499 0.282541
\(142\) 3.82365i 0.320874i
\(143\) − 6.70998i − 0.561117i
\(144\) −2.42807 −0.202339
\(145\) 0 0
\(146\) 0.574229 0.0475235
\(147\) 3.24943i 0.268008i
\(148\) − 5.95435i − 0.489444i
\(149\) 15.8538 1.29880 0.649399 0.760448i \(-0.275021\pi\)
0.649399 + 0.760448i \(0.275021\pi\)
\(150\) 0 0
\(151\) 18.9018 1.53821 0.769103 0.639125i \(-0.220703\pi\)
0.769103 + 0.639125i \(0.220703\pi\)
\(152\) − 1.95205i − 0.158332i
\(153\) 0 0
\(154\) 3.69296 0.297587
\(155\) 0 0
\(156\) −5.25909 −0.421064
\(157\) 14.4606i 1.15408i 0.816717 + 0.577039i \(0.195792\pi\)
−0.816717 + 0.577039i \(0.804208\pi\)
\(158\) − 7.10327i − 0.565106i
\(159\) −0.904094 −0.0716994
\(160\) 0 0
\(161\) −10.4029 −0.819867
\(162\) 0.523976i 0.0411675i
\(163\) − 22.0074i − 1.72375i −0.507121 0.861875i \(-0.669290\pi\)
0.507121 0.861875i \(-0.330710\pi\)
\(164\) 14.7637 1.15285
\(165\) 0 0
\(166\) −4.29738 −0.333541
\(167\) 3.10557i 0.240316i 0.992755 + 0.120158i \(0.0383401\pi\)
−0.992755 + 0.120158i \(0.961660\pi\)
\(168\) − 6.24943i − 0.482154i
\(169\) 3.70998 0.285383
\(170\) 0 0
\(171\) 1.00000 0.0764719
\(172\) − 13.8036i − 1.05251i
\(173\) 15.9977i 1.21628i 0.793829 + 0.608141i \(0.208085\pi\)
−0.793829 + 0.608141i \(0.791915\pi\)
\(174\) −1.57193 −0.119168
\(175\) 0 0
\(176\) 5.34533 0.402919
\(177\) 11.2015i 0.841954i
\(178\) 3.87897i 0.290741i
\(179\) −2.89443 −0.216340 −0.108170 0.994132i \(-0.534499\pi\)
−0.108170 + 0.994132i \(0.534499\pi\)
\(180\) 0 0
\(181\) 6.90179 0.513006 0.256503 0.966543i \(-0.417430\pi\)
0.256503 + 0.966543i \(0.417430\pi\)
\(182\) − 5.11293i − 0.378995i
\(183\) − 3.40294i − 0.251553i
\(184\) 6.34303 0.467614
\(185\) 0 0
\(186\) −0.654669 −0.0480027
\(187\) 0 0
\(188\) 5.78887i 0.422196i
\(189\) 3.20147 0.232873
\(190\) 0 0
\(191\) −9.24943 −0.669265 −0.334632 0.942349i \(-0.608612\pi\)
−0.334632 + 0.942349i \(0.608612\pi\)
\(192\) − 2.14386i − 0.154720i
\(193\) 1.19411i 0.0859540i 0.999076 + 0.0429770i \(0.0136842\pi\)
−0.999076 + 0.0429770i \(0.986316\pi\)
\(194\) 3.74321 0.268747
\(195\) 0 0
\(196\) −5.60672 −0.400480
\(197\) 17.4509i 1.24332i 0.783285 + 0.621662i \(0.213542\pi\)
−0.783285 + 0.621662i \(0.786458\pi\)
\(198\) − 1.15352i − 0.0819771i
\(199\) −2.79853 −0.198382 −0.0991912 0.995068i \(-0.531626\pi\)
−0.0991912 + 0.995068i \(0.531626\pi\)
\(200\) 0 0
\(201\) −2.29738 −0.162045
\(202\) 7.20883i 0.507212i
\(203\) 9.60442i 0.674098i
\(204\) 0 0
\(205\) 0 0
\(206\) −3.24943 −0.226398
\(207\) 3.24943i 0.225851i
\(208\) − 7.40065i − 0.513142i
\(209\) −2.20147 −0.152279
\(210\) 0 0
\(211\) −26.2471 −1.80693 −0.903463 0.428665i \(-0.858984\pi\)
−0.903463 + 0.428665i \(0.858984\pi\)
\(212\) − 1.55997i − 0.107139i
\(213\) − 7.29738i − 0.500008i
\(214\) 8.17635 0.558924
\(215\) 0 0
\(216\) −1.95205 −0.132820
\(217\) 4.00000i 0.271538i
\(218\) − 3.90409i − 0.264419i
\(219\) −1.09591 −0.0740544
\(220\) 0 0
\(221\) 0 0
\(222\) − 1.80819i − 0.121358i
\(223\) 13.2494i 0.887247i 0.896213 + 0.443624i \(0.146307\pi\)
−0.896213 + 0.443624i \(0.853693\pi\)
\(224\) 16.5719 1.10726
\(225\) 0 0
\(226\) −7.99034 −0.531509
\(227\) 7.29738i 0.484344i 0.970233 + 0.242172i \(0.0778598\pi\)
−0.970233 + 0.242172i \(0.922140\pi\)
\(228\) 1.72545i 0.114271i
\(229\) −15.8635 −1.04829 −0.524145 0.851629i \(-0.675615\pi\)
−0.524145 + 0.851629i \(0.675615\pi\)
\(230\) 0 0
\(231\) −7.04795 −0.463721
\(232\) − 5.85614i − 0.384475i
\(233\) 8.64501i 0.566353i 0.959068 + 0.283177i \(0.0913883\pi\)
−0.959068 + 0.283177i \(0.908612\pi\)
\(234\) −1.59706 −0.104403
\(235\) 0 0
\(236\) −19.3276 −1.25812
\(237\) 13.5565i 0.880587i
\(238\) 0 0
\(239\) −25.7579 −1.66614 −0.833071 0.553166i \(-0.813420\pi\)
−0.833071 + 0.553166i \(0.813420\pi\)
\(240\) 0 0
\(241\) 9.59706 0.618201 0.309100 0.951029i \(-0.399972\pi\)
0.309100 + 0.951029i \(0.399972\pi\)
\(242\) − 3.22430i − 0.207266i
\(243\) − 1.00000i − 0.0641500i
\(244\) 5.87161 0.375891
\(245\) 0 0
\(246\) 4.48339 0.285850
\(247\) 3.04795i 0.193937i
\(248\) − 2.43894i − 0.154873i
\(249\) 8.20147 0.519747
\(250\) 0 0
\(251\) 17.6118 1.11165 0.555823 0.831301i \(-0.312403\pi\)
0.555823 + 0.831301i \(0.312403\pi\)
\(252\) 5.52398i 0.347978i
\(253\) − 7.15352i − 0.449738i
\(254\) −7.36465 −0.462099
\(255\) 0 0
\(256\) −1.72545 −0.107841
\(257\) 0.692961i 0.0432257i 0.999766 + 0.0216129i \(0.00688012\pi\)
−0.999766 + 0.0216129i \(0.993120\pi\)
\(258\) − 4.19181i − 0.260971i
\(259\) −11.0480 −0.686486
\(260\) 0 0
\(261\) 3.00000 0.185695
\(262\) 2.27806i 0.140739i
\(263\) 23.5062i 1.44946i 0.689036 + 0.724728i \(0.258034\pi\)
−0.689036 + 0.724728i \(0.741966\pi\)
\(264\) 4.29738 0.264485
\(265\) 0 0
\(266\) −1.67750 −0.102854
\(267\) − 7.40294i − 0.453053i
\(268\) − 3.96401i − 0.242140i
\(269\) 10.6141 0.647152 0.323576 0.946202i \(-0.395115\pi\)
0.323576 + 0.946202i \(0.395115\pi\)
\(270\) 0 0
\(271\) 15.2974 0.929250 0.464625 0.885508i \(-0.346189\pi\)
0.464625 + 0.885508i \(0.346189\pi\)
\(272\) 0 0
\(273\) 9.75794i 0.590577i
\(274\) 10.3264 0.623838
\(275\) 0 0
\(276\) −5.60672 −0.337485
\(277\) 19.5948i 1.17733i 0.808375 + 0.588667i \(0.200347\pi\)
−0.808375 + 0.588667i \(0.799653\pi\)
\(278\) 8.33723i 0.500034i
\(279\) 1.24943 0.0748011
\(280\) 0 0
\(281\) −30.5542 −1.82271 −0.911354 0.411623i \(-0.864962\pi\)
−0.911354 + 0.411623i \(0.864962\pi\)
\(282\) 1.75794i 0.104684i
\(283\) 8.61408i 0.512054i 0.966670 + 0.256027i \(0.0824136\pi\)
−0.966670 + 0.256027i \(0.917586\pi\)
\(284\) 12.5913 0.747153
\(285\) 0 0
\(286\) 3.51587 0.207898
\(287\) − 27.3933i − 1.61697i
\(288\) − 5.17635i − 0.305019i
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) −7.14386 −0.418780
\(292\) − 1.89093i − 0.110658i
\(293\) 29.5565i 1.72671i 0.504600 + 0.863354i \(0.331640\pi\)
−0.504600 + 0.863354i \(0.668360\pi\)
\(294\) −1.70262 −0.0992989
\(295\) 0 0
\(296\) 6.73631 0.391540
\(297\) 2.20147i 0.127742i
\(298\) 8.30704i 0.481214i
\(299\) −9.90409 −0.572769
\(300\) 0 0
\(301\) −25.6118 −1.47624
\(302\) 9.90409i 0.569917i
\(303\) − 13.7579i − 0.790373i
\(304\) −2.42807 −0.139259
\(305\) 0 0
\(306\) 0 0
\(307\) 16.9115i 0.965188i 0.875844 + 0.482594i \(0.160305\pi\)
−0.875844 + 0.482594i \(0.839695\pi\)
\(308\) − 12.1609i − 0.692931i
\(309\) 6.20147 0.352789
\(310\) 0 0
\(311\) 14.0959 0.799305 0.399653 0.916667i \(-0.369131\pi\)
0.399653 + 0.916667i \(0.369131\pi\)
\(312\) − 5.94975i − 0.336838i
\(313\) 4.05531i 0.229220i 0.993411 + 0.114610i \(0.0365618\pi\)
−0.993411 + 0.114610i \(0.963438\pi\)
\(314\) −7.57699 −0.427594
\(315\) 0 0
\(316\) −23.3910 −1.31585
\(317\) 21.9977i 1.23551i 0.786369 + 0.617757i \(0.211958\pi\)
−0.786369 + 0.617757i \(0.788042\pi\)
\(318\) − 0.473724i − 0.0265651i
\(319\) −6.60442 −0.369776
\(320\) 0 0
\(321\) −15.6044 −0.870954
\(322\) − 5.45090i − 0.303767i
\(323\) 0 0
\(324\) 1.72545 0.0958583
\(325\) 0 0
\(326\) 11.5313 0.638662
\(327\) 7.45090i 0.412036i
\(328\) 16.7026i 0.922248i
\(329\) 10.7409 0.592166
\(330\) 0 0
\(331\) 12.4583 0.684768 0.342384 0.939560i \(-0.388766\pi\)
0.342384 + 0.939560i \(0.388766\pi\)
\(332\) 14.1512i 0.776649i
\(333\) 3.45090i 0.189108i
\(334\) −1.62724 −0.0890388
\(335\) 0 0
\(336\) −7.77340 −0.424074
\(337\) 20.4989i 1.11664i 0.829624 + 0.558322i \(0.188555\pi\)
−0.829624 + 0.558322i \(0.811445\pi\)
\(338\) 1.94394i 0.105737i
\(339\) 15.2494 0.828235
\(340\) 0 0
\(341\) −2.75057 −0.148952
\(342\) 0.523976i 0.0283334i
\(343\) − 12.0074i − 0.648337i
\(344\) 15.6164 0.841979
\(345\) 0 0
\(346\) −8.38242 −0.450642
\(347\) − 4.45320i − 0.239060i −0.992831 0.119530i \(-0.961861\pi\)
0.992831 0.119530i \(-0.0381388\pi\)
\(348\) 5.17635i 0.277481i
\(349\) 9.30704 0.498194 0.249097 0.968478i \(-0.419866\pi\)
0.249097 + 0.968478i \(0.419866\pi\)
\(350\) 0 0
\(351\) 3.04795 0.162688
\(352\) 11.3956i 0.607387i
\(353\) 16.6141i 0.884278i 0.896947 + 0.442139i \(0.145780\pi\)
−0.896947 + 0.442139i \(0.854220\pi\)
\(354\) −5.86931 −0.311950
\(355\) 0 0
\(356\) 12.7734 0.676989
\(357\) 0 0
\(358\) − 1.51661i − 0.0801556i
\(359\) −29.9497 −1.58069 −0.790344 0.612664i \(-0.790098\pi\)
−0.790344 + 0.612664i \(0.790098\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 3.61638i 0.190073i
\(363\) 6.15352i 0.322976i
\(364\) −16.8368 −0.882489
\(365\) 0 0
\(366\) 1.78306 0.0932022
\(367\) − 28.1106i − 1.46736i −0.679494 0.733681i \(-0.737800\pi\)
0.679494 0.733681i \(-0.262200\pi\)
\(368\) − 7.88983i − 0.411286i
\(369\) −8.55646 −0.445432
\(370\) 0 0
\(371\) −2.89443 −0.150271
\(372\) 2.15582i 0.111774i
\(373\) − 10.5948i − 0.548576i −0.961648 0.274288i \(-0.911558\pi\)
0.961648 0.274288i \(-0.0884421\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −6.54910 −0.337744
\(377\) 9.14386i 0.470933i
\(378\) 1.67750i 0.0862811i
\(379\) −3.04795 −0.156563 −0.0782814 0.996931i \(-0.524943\pi\)
−0.0782814 + 0.996931i \(0.524943\pi\)
\(380\) 0 0
\(381\) 14.0553 0.720076
\(382\) − 4.84648i − 0.247968i
\(383\) 16.6021i 0.848329i 0.905585 + 0.424164i \(0.139432\pi\)
−0.905585 + 0.424164i \(0.860568\pi\)
\(384\) 11.4760 0.585633
\(385\) 0 0
\(386\) −0.625686 −0.0318466
\(387\) 8.00000i 0.406663i
\(388\) − 12.3264i − 0.625776i
\(389\) −7.25909 −0.368050 −0.184025 0.982922i \(-0.558913\pi\)
−0.184025 + 0.982922i \(0.558913\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 6.34303i − 0.320371i
\(393\) − 4.34763i − 0.219309i
\(394\) −9.14386 −0.460661
\(395\) 0 0
\(396\) −3.79853 −0.190883
\(397\) 20.2664i 1.01714i 0.861020 + 0.508572i \(0.169826\pi\)
−0.861020 + 0.508572i \(0.830174\pi\)
\(398\) − 1.46636i − 0.0735021i
\(399\) 3.20147 0.160274
\(400\) 0 0
\(401\) −3.24943 −0.162269 −0.0811343 0.996703i \(-0.525854\pi\)
−0.0811343 + 0.996703i \(0.525854\pi\)
\(402\) − 1.20377i − 0.0600387i
\(403\) 3.80819i 0.189699i
\(404\) 23.7386 1.18104
\(405\) 0 0
\(406\) −5.03249 −0.249758
\(407\) − 7.59706i − 0.376572i
\(408\) 0 0
\(409\) −34.0457 −1.68345 −0.841725 0.539907i \(-0.818459\pi\)
−0.841725 + 0.539907i \(0.818459\pi\)
\(410\) 0 0
\(411\) −19.7077 −0.972108
\(412\) 10.7003i 0.527167i
\(413\) 35.8612i 1.76461i
\(414\) −1.70262 −0.0836793
\(415\) 0 0
\(416\) 15.7773 0.773544
\(417\) − 15.9115i − 0.779187i
\(418\) − 1.15352i − 0.0564205i
\(419\) −26.2568 −1.28273 −0.641364 0.767237i \(-0.721631\pi\)
−0.641364 + 0.767237i \(0.721631\pi\)
\(420\) 0 0
\(421\) −11.7579 −0.573047 −0.286523 0.958073i \(-0.592500\pi\)
−0.286523 + 0.958073i \(0.592500\pi\)
\(422\) − 13.7529i − 0.669479i
\(423\) − 3.35499i − 0.163125i
\(424\) 1.76483 0.0857080
\(425\) 0 0
\(426\) 3.82365 0.185257
\(427\) − 10.8944i − 0.527219i
\(428\) − 26.9246i − 1.30145i
\(429\) −6.70998 −0.323961
\(430\) 0 0
\(431\) −27.0051 −1.30079 −0.650394 0.759597i \(-0.725396\pi\)
−0.650394 + 0.759597i \(0.725396\pi\)
\(432\) 2.42807i 0.116821i
\(433\) − 14.6597i − 0.704502i −0.935906 0.352251i \(-0.885416\pi\)
0.935906 0.352251i \(-0.114584\pi\)
\(434\) −2.09591 −0.100607
\(435\) 0 0
\(436\) −12.8561 −0.615698
\(437\) 3.24943i 0.155441i
\(438\) − 0.574229i − 0.0274377i
\(439\) 22.7653 1.08653 0.543264 0.839562i \(-0.317188\pi\)
0.543264 + 0.839562i \(0.317188\pi\)
\(440\) 0 0
\(441\) 3.24943 0.154735
\(442\) 0 0
\(443\) − 39.3601i − 1.87005i −0.354578 0.935026i \(-0.615376\pi\)
0.354578 0.935026i \(-0.384624\pi\)
\(444\) −5.95435 −0.282581
\(445\) 0 0
\(446\) −6.94239 −0.328732
\(447\) − 15.8538i − 0.749861i
\(448\) − 6.86350i − 0.324270i
\(449\) 12.3047 0.580697 0.290348 0.956921i \(-0.406229\pi\)
0.290348 + 0.956921i \(0.406229\pi\)
\(450\) 0 0
\(451\) 18.8368 0.886991
\(452\) 26.3121i 1.23762i
\(453\) − 18.9018i − 0.888084i
\(454\) −3.82365 −0.179453
\(455\) 0 0
\(456\) −1.95205 −0.0914130
\(457\) − 3.15122i − 0.147408i −0.997280 0.0737039i \(-0.976518\pi\)
0.997280 0.0737039i \(-0.0234820\pi\)
\(458\) − 8.31210i − 0.388399i
\(459\) 0 0
\(460\) 0 0
\(461\) −32.0457 −1.49251 −0.746257 0.665657i \(-0.768151\pi\)
−0.746257 + 0.665657i \(0.768151\pi\)
\(462\) − 3.69296i − 0.171812i
\(463\) 19.0936i 0.887355i 0.896186 + 0.443678i \(0.146326\pi\)
−0.896186 + 0.443678i \(0.853674\pi\)
\(464\) −7.28421 −0.338161
\(465\) 0 0
\(466\) −4.52978 −0.209838
\(467\) − 0.105567i − 0.00488505i −0.999997 0.00244252i \(-0.999223\pi\)
0.999997 0.00244252i \(-0.000777480\pi\)
\(468\) 5.25909i 0.243101i
\(469\) −7.35499 −0.339622
\(470\) 0 0
\(471\) 14.4606 0.666307
\(472\) − 21.8658i − 1.00646i
\(473\) − 17.6118i − 0.809790i
\(474\) −7.10327 −0.326264
\(475\) 0 0
\(476\) 0 0
\(477\) 0.904094i 0.0413956i
\(478\) − 13.4966i − 0.617318i
\(479\) 29.2951 1.33853 0.669263 0.743025i \(-0.266610\pi\)
0.669263 + 0.743025i \(0.266610\pi\)
\(480\) 0 0
\(481\) −10.5182 −0.479587
\(482\) 5.02863i 0.229048i
\(483\) 10.4029i 0.473350i
\(484\) −10.6176 −0.482617
\(485\) 0 0
\(486\) 0.523976 0.0237681
\(487\) 6.24206i 0.282855i 0.989949 + 0.141427i \(0.0451692\pi\)
−0.989949 + 0.141427i \(0.954831\pi\)
\(488\) 6.64271i 0.300701i
\(489\) −22.0074 −0.995207
\(490\) 0 0
\(491\) −14.5182 −0.655196 −0.327598 0.944817i \(-0.606239\pi\)
−0.327598 + 0.944817i \(0.606239\pi\)
\(492\) − 14.7637i − 0.665601i
\(493\) 0 0
\(494\) −1.59706 −0.0718549
\(495\) 0 0
\(496\) −3.03369 −0.136217
\(497\) − 23.3624i − 1.04794i
\(498\) 4.29738i 0.192570i
\(499\) −0.913756 −0.0409053 −0.0204527 0.999791i \(-0.506511\pi\)
−0.0204527 + 0.999791i \(0.506511\pi\)
\(500\) 0 0
\(501\) 3.10557 0.138746
\(502\) 9.22816i 0.411873i
\(503\) 27.8538i 1.24194i 0.783834 + 0.620971i \(0.213261\pi\)
−0.783834 + 0.620971i \(0.786739\pi\)
\(504\) −6.24943 −0.278372
\(505\) 0 0
\(506\) 3.74828 0.166631
\(507\) − 3.70998i − 0.164766i
\(508\) 24.2517i 1.07600i
\(509\) 31.5136 1.39681 0.698407 0.715701i \(-0.253892\pi\)
0.698407 + 0.715701i \(0.253892\pi\)
\(510\) 0 0
\(511\) −3.50851 −0.155207
\(512\) 22.0480i 0.974391i
\(513\) − 1.00000i − 0.0441511i
\(514\) −0.363095 −0.0160154
\(515\) 0 0
\(516\) −13.8036 −0.607669
\(517\) 7.38592i 0.324832i
\(518\) − 5.78887i − 0.254348i
\(519\) 15.9977 0.702221
\(520\) 0 0
\(521\) −9.49885 −0.416152 −0.208076 0.978113i \(-0.566720\pi\)
−0.208076 + 0.978113i \(0.566720\pi\)
\(522\) 1.57193i 0.0688015i
\(523\) 23.9691i 1.04809i 0.851689 + 0.524047i \(0.175578\pi\)
−0.851689 + 0.524047i \(0.824422\pi\)
\(524\) 7.50161 0.327709
\(525\) 0 0
\(526\) −12.3167 −0.537034
\(527\) 0 0
\(528\) − 5.34533i − 0.232626i
\(529\) 12.4412 0.540923
\(530\) 0 0
\(531\) 11.2015 0.486102
\(532\) 5.52398i 0.239495i
\(533\) − 26.0797i − 1.12964i
\(534\) 3.87897 0.167859
\(535\) 0 0
\(536\) 4.48459 0.193705
\(537\) 2.89443i 0.124904i
\(538\) 5.56153i 0.239774i
\(539\) −7.15352 −0.308124
\(540\) 0 0
\(541\) 21.9401 0.943278 0.471639 0.881792i \(-0.343663\pi\)
0.471639 + 0.881792i \(0.343663\pi\)
\(542\) 8.01546i 0.344294i
\(543\) − 6.90179i − 0.296184i
\(544\) 0 0
\(545\) 0 0
\(546\) −5.11293 −0.218813
\(547\) − 39.0074i − 1.66783i −0.551890 0.833917i \(-0.686093\pi\)
0.551890 0.833917i \(-0.313907\pi\)
\(548\) − 34.0046i − 1.45260i
\(549\) −3.40294 −0.145234
\(550\) 0 0
\(551\) 3.00000 0.127804
\(552\) − 6.34303i − 0.269977i
\(553\) 43.4006i 1.84558i
\(554\) −10.2672 −0.436211
\(555\) 0 0
\(556\) 27.4544 1.16433
\(557\) − 26.0959i − 1.10572i −0.833274 0.552860i \(-0.813537\pi\)
0.833274 0.552860i \(-0.186463\pi\)
\(558\) 0.654669i 0.0277144i
\(559\) −24.3836 −1.03132
\(560\) 0 0
\(561\) 0 0
\(562\) − 16.0097i − 0.675327i
\(563\) − 20.8944i − 0.880595i −0.897852 0.440298i \(-0.854873\pi\)
0.897852 0.440298i \(-0.145127\pi\)
\(564\) 5.78887 0.243755
\(565\) 0 0
\(566\) −4.51357 −0.189720
\(567\) − 3.20147i − 0.134449i
\(568\) 14.2448i 0.597700i
\(569\) 39.8419 1.67026 0.835129 0.550054i \(-0.185393\pi\)
0.835129 + 0.550054i \(0.185393\pi\)
\(570\) 0 0
\(571\) 16.7173 0.699599 0.349800 0.936825i \(-0.386250\pi\)
0.349800 + 0.936825i \(0.386250\pi\)
\(572\) − 11.5777i − 0.484089i
\(573\) 9.24943i 0.386400i
\(574\) 14.3534 0.599101
\(575\) 0 0
\(576\) −2.14386 −0.0893274
\(577\) 36.0360i 1.50020i 0.661326 + 0.750099i \(0.269994\pi\)
−0.661326 + 0.750099i \(0.730006\pi\)
\(578\) 8.90760i 0.370507i
\(579\) 1.19411 0.0496255
\(580\) 0 0
\(581\) 26.2568 1.08932
\(582\) − 3.74321i − 0.155161i
\(583\) − 1.99034i − 0.0824314i
\(584\) 2.13926 0.0885232
\(585\) 0 0
\(586\) −15.4869 −0.639758
\(587\) 3.95941i 0.163422i 0.996656 + 0.0817111i \(0.0260385\pi\)
−0.996656 + 0.0817111i \(0.973962\pi\)
\(588\) 5.60672i 0.231217i
\(589\) 1.24943 0.0514817
\(590\) 0 0
\(591\) 17.4509 0.717834
\(592\) − 8.37902i − 0.344376i
\(593\) − 21.1439i − 0.868274i −0.900847 0.434137i \(-0.857053\pi\)
0.900847 0.434137i \(-0.142947\pi\)
\(594\) −1.15352 −0.0473295
\(595\) 0 0
\(596\) 27.3550 1.12050
\(597\) 2.79853i 0.114536i
\(598\) − 5.18951i − 0.212215i
\(599\) −4.19181 −0.171273 −0.0856364 0.996326i \(-0.527292\pi\)
−0.0856364 + 0.996326i \(0.527292\pi\)
\(600\) 0 0
\(601\) −4.54910 −0.185562 −0.0927809 0.995687i \(-0.529576\pi\)
−0.0927809 + 0.995687i \(0.529576\pi\)
\(602\) − 13.4200i − 0.546957i
\(603\) 2.29738i 0.0935565i
\(604\) 32.6141 1.32705
\(605\) 0 0
\(606\) 7.20883 0.292839
\(607\) − 34.6044i − 1.40455i −0.711906 0.702275i \(-0.752168\pi\)
0.711906 0.702275i \(-0.247832\pi\)
\(608\) − 5.17635i − 0.209929i
\(609\) 9.60442 0.389191
\(610\) 0 0
\(611\) 10.2259 0.413694
\(612\) 0 0
\(613\) − 4.13420i − 0.166979i −0.996509 0.0834893i \(-0.973394\pi\)
0.996509 0.0834893i \(-0.0266064\pi\)
\(614\) −8.86120 −0.357609
\(615\) 0 0
\(616\) 13.7579 0.554323
\(617\) − 17.2398i − 0.694047i −0.937856 0.347023i \(-0.887192\pi\)
0.937856 0.347023i \(-0.112808\pi\)
\(618\) 3.24943i 0.130711i
\(619\) 39.0244 1.56852 0.784261 0.620431i \(-0.213042\pi\)
0.784261 + 0.620431i \(0.213042\pi\)
\(620\) 0 0
\(621\) 3.24943 0.130395
\(622\) 7.38592i 0.296148i
\(623\) − 23.7003i − 0.949533i
\(624\) −7.40065 −0.296263
\(625\) 0 0
\(626\) −2.12489 −0.0849276
\(627\) 2.20147i 0.0879183i
\(628\) 24.9510i 0.995651i
\(629\) 0 0
\(630\) 0 0
\(631\) 34.0959 1.35734 0.678668 0.734445i \(-0.262557\pi\)
0.678668 + 0.734445i \(0.262557\pi\)
\(632\) − 26.4629i − 1.05264i
\(633\) 26.2471i 1.04323i
\(634\) −11.5263 −0.457767
\(635\) 0 0
\(636\) −1.55997 −0.0618568
\(637\) 9.90409i 0.392415i
\(638\) − 3.46056i − 0.137005i
\(639\) −7.29738 −0.288680
\(640\) 0 0
\(641\) 27.8036 1.09818 0.549088 0.835765i \(-0.314975\pi\)
0.549088 + 0.835765i \(0.314975\pi\)
\(642\) − 8.17635i − 0.322695i
\(643\) − 40.2185i − 1.58606i −0.609181 0.793031i \(-0.708502\pi\)
0.609181 0.793031i \(-0.291498\pi\)
\(644\) −17.9497 −0.707319
\(645\) 0 0
\(646\) 0 0
\(647\) 20.1512i 0.792226i 0.918202 + 0.396113i \(0.129641\pi\)
−0.918202 + 0.396113i \(0.870359\pi\)
\(648\) 1.95205i 0.0766837i
\(649\) −24.6597 −0.967979
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) − 37.9726i − 1.48712i
\(653\) − 26.7556i − 1.04703i −0.852017 0.523514i \(-0.824621\pi\)
0.852017 0.523514i \(-0.175379\pi\)
\(654\) −3.90409 −0.152662
\(655\) 0 0
\(656\) 20.7757 0.811155
\(657\) 1.09591i 0.0427553i
\(658\) 5.62799i 0.219402i
\(659\) −17.6118 −0.686057 −0.343029 0.939325i \(-0.611453\pi\)
−0.343029 + 0.939325i \(0.611453\pi\)
\(660\) 0 0
\(661\) 11.5159 0.447916 0.223958 0.974599i \(-0.428102\pi\)
0.223958 + 0.974599i \(0.428102\pi\)
\(662\) 6.52783i 0.253711i
\(663\) 0 0
\(664\) −16.0097 −0.621295
\(665\) 0 0
\(666\) −1.80819 −0.0700659
\(667\) 9.74828i 0.377455i
\(668\) 5.35850i 0.207326i
\(669\) 13.2494 0.512252
\(670\) 0 0
\(671\) 7.49149 0.289206
\(672\) − 16.5719i − 0.639276i
\(673\) 7.85384i 0.302743i 0.988477 + 0.151372i \(0.0483690\pi\)
−0.988477 + 0.151372i \(0.951631\pi\)
\(674\) −10.7409 −0.413725
\(675\) 0 0
\(676\) 6.40139 0.246207
\(677\) 43.5136i 1.67236i 0.548453 + 0.836181i \(0.315217\pi\)
−0.548453 + 0.836181i \(0.684783\pi\)
\(678\) 7.99034i 0.306867i
\(679\) −22.8709 −0.877703
\(680\) 0 0
\(681\) 7.29738 0.279636
\(682\) − 1.44124i − 0.0551878i
\(683\) 4.60212i 0.176095i 0.996116 + 0.0880476i \(0.0280627\pi\)
−0.996116 + 0.0880476i \(0.971937\pi\)
\(684\) 1.72545 0.0659742
\(685\) 0 0
\(686\) 6.29157 0.240213
\(687\) 15.8635i 0.605230i
\(688\) − 19.4246i − 0.740555i
\(689\) −2.75564 −0.104981
\(690\) 0 0
\(691\) 28.5948 1.08780 0.543898 0.839151i \(-0.316948\pi\)
0.543898 + 0.839151i \(0.316948\pi\)
\(692\) 27.6032i 1.04932i
\(693\) 7.04795i 0.267730i
\(694\) 2.33337 0.0885735
\(695\) 0 0
\(696\) −5.85614 −0.221976
\(697\) 0 0
\(698\) 4.87667i 0.184585i
\(699\) 8.64501 0.326984
\(700\) 0 0
\(701\) −18.2111 −0.687825 −0.343913 0.939002i \(-0.611752\pi\)
−0.343913 + 0.939002i \(0.611752\pi\)
\(702\) 1.59706i 0.0602770i
\(703\) 3.45090i 0.130153i
\(704\) 4.71964 0.177878
\(705\) 0 0
\(706\) −8.70538 −0.327631
\(707\) − 44.0457i − 1.65651i
\(708\) 19.3276i 0.726374i
\(709\) 10.6930 0.401583 0.200791 0.979634i \(-0.435649\pi\)
0.200791 + 0.979634i \(0.435649\pi\)
\(710\) 0 0
\(711\) 13.5565 0.508407
\(712\) 14.4509i 0.541570i
\(713\) 4.05991i 0.152045i
\(714\) 0 0
\(715\) 0 0
\(716\) −4.99420 −0.186642
\(717\) 25.7579i 0.961948i
\(718\) − 15.6930i − 0.585656i
\(719\) 41.9548 1.56465 0.782325 0.622870i \(-0.214034\pi\)
0.782325 + 0.622870i \(0.214034\pi\)
\(720\) 0 0
\(721\) 19.8538 0.739396
\(722\) 0.523976i 0.0195004i
\(723\) − 9.59706i − 0.356918i
\(724\) 11.9087 0.442583
\(725\) 0 0
\(726\) −3.22430 −0.119665
\(727\) − 28.4103i − 1.05368i −0.849964 0.526840i \(-0.823377\pi\)
0.849964 0.526840i \(-0.176623\pi\)
\(728\) − 19.0480i − 0.705964i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) − 5.87161i − 0.217021i
\(733\) − 14.6930i − 0.542697i −0.962481 0.271348i \(-0.912530\pi\)
0.962481 0.271348i \(-0.0874696\pi\)
\(734\) 14.7293 0.543669
\(735\) 0 0
\(736\) 16.8201 0.619999
\(737\) − 5.05761i − 0.186300i
\(738\) − 4.48339i − 0.165036i
\(739\) −14.4103 −0.530092 −0.265046 0.964236i \(-0.585387\pi\)
−0.265046 + 0.964236i \(0.585387\pi\)
\(740\) 0 0
\(741\) 3.04795 0.111969
\(742\) − 1.51661i − 0.0556767i
\(743\) − 31.5851i − 1.15874i −0.815063 0.579372i \(-0.803298\pi\)
0.815063 0.579372i \(-0.196702\pi\)
\(744\) −2.43894 −0.0894158
\(745\) 0 0
\(746\) 5.55140 0.203251
\(747\) − 8.20147i − 0.300076i
\(748\) 0 0
\(749\) −49.9571 −1.82539
\(750\) 0 0
\(751\) 25.4509 0.928716 0.464358 0.885647i \(-0.346285\pi\)
0.464358 + 0.885647i \(0.346285\pi\)
\(752\) 8.14616i 0.297060i
\(753\) − 17.6118i − 0.641809i
\(754\) −4.79117 −0.174484
\(755\) 0 0
\(756\) 5.52398 0.200905
\(757\) 14.0170i 0.509457i 0.967013 + 0.254729i \(0.0819862\pi\)
−0.967013 + 0.254729i \(0.918014\pi\)
\(758\) − 1.59706i − 0.0580077i
\(759\) −7.15352 −0.259656
\(760\) 0 0
\(761\) −47.2738 −1.71367 −0.856837 0.515587i \(-0.827574\pi\)
−0.856837 + 0.515587i \(0.827574\pi\)
\(762\) 7.36465i 0.266793i
\(763\) 23.8538i 0.863567i
\(764\) −15.9594 −0.577391
\(765\) 0 0
\(766\) −8.69912 −0.314312
\(767\) 34.1416i 1.23278i
\(768\) 1.72545i 0.0622618i
\(769\) −26.0936 −0.940960 −0.470480 0.882411i \(-0.655919\pi\)
−0.470480 + 0.882411i \(0.655919\pi\)
\(770\) 0 0
\(771\) 0.692961 0.0249564
\(772\) 2.06038i 0.0741546i
\(773\) − 23.6501i − 0.850634i −0.905044 0.425317i \(-0.860163\pi\)
0.905044 0.425317i \(-0.139837\pi\)
\(774\) −4.19181 −0.150672
\(775\) 0 0
\(776\) 13.9451 0.500602
\(777\) 11.0480i 0.396343i
\(778\) − 3.80359i − 0.136365i
\(779\) −8.55646 −0.306567
\(780\) 0 0
\(781\) 16.0650 0.574850
\(782\) 0 0
\(783\) − 3.00000i − 0.107211i
\(784\) −7.88983 −0.281780
\(785\) 0 0
\(786\) 2.27806 0.0812556
\(787\) − 22.8156i − 0.813287i −0.913587 0.406643i \(-0.866699\pi\)
0.913587 0.406643i \(-0.133301\pi\)
\(788\) 30.1106i 1.07265i
\(789\) 23.5062 0.836843
\(790\) 0 0
\(791\) 48.8206 1.73586
\(792\) − 4.29738i − 0.152701i
\(793\) − 10.3720i − 0.368321i
\(794\) −10.6191 −0.376859
\(795\) 0 0
\(796\) −4.82872 −0.171149
\(797\) 0.748275i 0.0265053i 0.999912 + 0.0132526i \(0.00421857\pi\)
−0.999912 + 0.0132526i \(0.995781\pi\)
\(798\) 1.67750i 0.0593827i
\(799\) 0 0
\(800\) 0 0
\(801\) −7.40294 −0.261570
\(802\) − 1.70262i − 0.0601217i
\(803\) − 2.41261i − 0.0851390i
\(804\) −3.96401 −0.139800
\(805\) 0 0
\(806\) −1.99540 −0.0702850
\(807\) − 10.6141i − 0.373633i
\(808\) 26.8561i 0.944796i
\(809\) −50.1563 −1.76340 −0.881700 0.471810i \(-0.843601\pi\)
−0.881700 + 0.471810i \(0.843601\pi\)
\(810\) 0 0
\(811\) 27.9903 0.982874 0.491437 0.870913i \(-0.336472\pi\)
0.491437 + 0.870913i \(0.336472\pi\)
\(812\) 16.5719i 0.581561i
\(813\) − 15.2974i − 0.536502i
\(814\) 3.98068 0.139523
\(815\) 0 0
\(816\) 0 0
\(817\) 8.00000i 0.279885i
\(818\) − 17.8391i − 0.623730i
\(819\) 9.75794 0.340970
\(820\) 0 0
\(821\) −42.3218 −1.47704 −0.738520 0.674232i \(-0.764475\pi\)
−0.738520 + 0.674232i \(0.764475\pi\)
\(822\) − 10.3264i − 0.360173i
\(823\) − 35.6044i − 1.24109i −0.784170 0.620546i \(-0.786911\pi\)
0.784170 0.620546i \(-0.213089\pi\)
\(824\) −12.1056 −0.421717
\(825\) 0 0
\(826\) −18.7904 −0.653802
\(827\) 51.4154i 1.78789i 0.448179 + 0.893944i \(0.352073\pi\)
−0.448179 + 0.893944i \(0.647927\pi\)
\(828\) 5.60672i 0.194847i
\(829\) 26.9520 0.936083 0.468042 0.883706i \(-0.344960\pi\)
0.468042 + 0.883706i \(0.344960\pi\)
\(830\) 0 0
\(831\) 19.5948 0.679735
\(832\) − 6.53438i − 0.226539i
\(833\) 0 0
\(834\) 8.33723 0.288695
\(835\) 0 0
\(836\) −3.79853 −0.131375
\(837\) − 1.24943i − 0.0431865i
\(838\) − 13.7579i − 0.475260i
\(839\) −34.7026 −1.19807 −0.599034 0.800724i \(-0.704448\pi\)
−0.599034 + 0.800724i \(0.704448\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) − 6.16088i − 0.212318i
\(843\) 30.5542i 1.05234i
\(844\) −45.2881 −1.55888
\(845\) 0 0
\(846\) 1.75794 0.0604391
\(847\) 19.7003i 0.676911i
\(848\) − 2.19521i − 0.0753837i
\(849\) 8.61408 0.295634
\(850\) 0 0
\(851\) −11.2134 −0.384392
\(852\) − 12.5913i − 0.431369i
\(853\) 0.134197i 0.00459483i 0.999997 + 0.00229741i \(0.000731290\pi\)
−0.999997 + 0.00229741i \(0.999269\pi\)
\(854\) 5.70843 0.195338
\(855\) 0 0
\(856\) 30.4606 1.04112
\(857\) − 30.5371i − 1.04313i −0.853212 0.521564i \(-0.825349\pi\)
0.853212 0.521564i \(-0.174651\pi\)
\(858\) − 3.51587i − 0.120030i
\(859\) 57.1010 1.94826 0.974130 0.225989i \(-0.0725612\pi\)
0.974130 + 0.225989i \(0.0725612\pi\)
\(860\) 0 0
\(861\) −27.3933 −0.933561
\(862\) − 14.1500i − 0.481951i
\(863\) − 0.376261i − 0.0128081i −0.999979 0.00640403i \(-0.997962\pi\)
0.999979 0.00640403i \(-0.00203848\pi\)
\(864\) −5.17635 −0.176103
\(865\) 0 0
\(866\) 7.68135 0.261023
\(867\) − 17.0000i − 0.577350i
\(868\) 6.90179i 0.234262i
\(869\) −29.8442 −1.01239
\(870\) 0 0
\(871\) −7.00230 −0.237264
\(872\) − 14.5445i − 0.492539i
\(873\) 7.14386i 0.241783i
\(874\) −1.70262 −0.0575921
\(875\) 0 0
\(876\) −1.89093 −0.0638886
\(877\) − 5.54680i − 0.187302i −0.995605 0.0936511i \(-0.970146\pi\)
0.995605 0.0936511i \(-0.0298538\pi\)
\(878\) 11.9285i 0.402567i
\(879\) 29.5565 0.996915
\(880\) 0 0
\(881\) 13.3357 0.449290 0.224645 0.974441i \(-0.427878\pi\)
0.224645 + 0.974441i \(0.427878\pi\)
\(882\) 1.70262i 0.0573303i
\(883\) − 11.6044i − 0.390520i −0.980752 0.195260i \(-0.937445\pi\)
0.980752 0.195260i \(-0.0625550\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 20.6237 0.692868
\(887\) − 33.2282i − 1.11569i −0.829944 0.557846i \(-0.811628\pi\)
0.829944 0.557846i \(-0.188372\pi\)
\(888\) − 6.73631i − 0.226056i
\(889\) 44.9977 1.50917
\(890\) 0 0
\(891\) 2.20147 0.0737521
\(892\) 22.8612i 0.765450i
\(893\) − 3.35499i − 0.112271i
\(894\) 8.30704 0.277829
\(895\) 0 0
\(896\) 36.7402 1.22740
\(897\) 9.90409i 0.330688i
\(898\) 6.44739i 0.215152i
\(899\) 3.74828 0.125012
\(900\) 0 0
\(901\) 0 0
\(902\) 9.87005i 0.328637i
\(903\) 25.6118i 0.852307i
\(904\) −29.7676 −0.990056
\(905\) 0 0
\(906\) 9.90409 0.329041
\(907\) 18.9018i 0.627624i 0.949485 + 0.313812i \(0.101606\pi\)
−0.949485 + 0.313812i \(0.898394\pi\)
\(908\) 12.5913i 0.417855i
\(909\) −13.7579 −0.456322
\(910\) 0 0
\(911\) −10.3910 −0.344269 −0.172134 0.985073i \(-0.555066\pi\)
−0.172134 + 0.985073i \(0.555066\pi\)
\(912\) 2.42807i 0.0804015i
\(913\) 18.0553i 0.597544i
\(914\) 1.65116 0.0546157
\(915\) 0 0
\(916\) −27.3717 −0.904385
\(917\) − 13.9188i − 0.459640i
\(918\) 0 0
\(919\) 0.894433 0.0295046 0.0147523 0.999891i \(-0.495304\pi\)
0.0147523 + 0.999891i \(0.495304\pi\)
\(920\) 0 0
\(921\) 16.9115 0.557251
\(922\) − 16.7912i − 0.552988i
\(923\) − 22.2421i − 0.732106i
\(924\) −12.1609 −0.400064
\(925\) 0 0
\(926\) −10.0046 −0.328772
\(927\) − 6.20147i − 0.203683i
\(928\) − 15.5290i − 0.509766i
\(929\) 3.69296 0.121162 0.0605811 0.998163i \(-0.480705\pi\)
0.0605811 + 0.998163i \(0.480705\pi\)
\(930\) 0 0
\(931\) 3.24943 0.106496
\(932\) 14.9165i 0.488607i
\(933\) − 14.0959i − 0.461479i
\(934\) 0.0553145 0.00180995
\(935\) 0 0
\(936\) −5.94975 −0.194474
\(937\) − 16.2494i − 0.530846i −0.964132 0.265423i \(-0.914488\pi\)
0.964132 0.265423i \(-0.0855115\pi\)
\(938\) − 3.85384i − 0.125832i
\(939\) 4.05531 0.132340
\(940\) 0 0
\(941\) 13.1535 0.428792 0.214396 0.976747i \(-0.431222\pi\)
0.214396 + 0.976747i \(0.431222\pi\)
\(942\) 7.57699i 0.246872i
\(943\) − 27.8036i − 0.905409i
\(944\) −27.1980 −0.885218
\(945\) 0 0
\(946\) 9.22816 0.300033
\(947\) − 40.5136i − 1.31651i −0.752793 0.658257i \(-0.771294\pi\)
0.752793 0.658257i \(-0.228706\pi\)
\(948\) 23.3910i 0.759704i
\(949\) −3.34027 −0.108430
\(950\) 0 0
\(951\) 21.9977 0.713324
\(952\) 0 0
\(953\) 44.6884i 1.44760i 0.690011 + 0.723799i \(0.257606\pi\)
−0.690011 + 0.723799i \(0.742394\pi\)
\(954\) −0.473724 −0.0153374
\(955\) 0 0
\(956\) −44.4440 −1.43742
\(957\) 6.60442i 0.213490i
\(958\) 15.3499i 0.495934i
\(959\) −63.0936 −2.03740
\(960\) 0 0
\(961\) −29.4389 −0.949643
\(962\) − 5.51127i − 0.177691i
\(963\) 15.6044i 0.502845i
\(964\) 16.5592 0.533337
\(965\) 0 0
\(966\) −5.45090 −0.175380
\(967\) − 38.3910i − 1.23457i −0.786739 0.617285i \(-0.788232\pi\)
0.786739 0.617285i \(-0.211768\pi\)
\(968\) − 12.0120i − 0.386079i
\(969\) 0 0
\(970\) 0 0
\(971\) −12.6980 −0.407499 −0.203749 0.979023i \(-0.565313\pi\)
−0.203749 + 0.979023i \(0.565313\pi\)
\(972\) − 1.72545i − 0.0553438i
\(973\) − 50.9401i − 1.63306i
\(974\) −3.27069 −0.104800
\(975\) 0 0
\(976\) 8.26259 0.264479
\(977\) − 3.48183i − 0.111394i −0.998448 0.0556968i \(-0.982262\pi\)
0.998448 0.0556968i \(-0.0177380\pi\)
\(978\) − 11.5313i − 0.368732i
\(979\) 16.2974 0.520866
\(980\) 0 0
\(981\) 7.45090 0.237889
\(982\) − 7.60718i − 0.242755i
\(983\) − 10.1152i − 0.322626i −0.986903 0.161313i \(-0.948427\pi\)
0.986903 0.161313i \(-0.0515728\pi\)
\(984\) 16.7026 0.532460
\(985\) 0 0
\(986\) 0 0
\(987\) − 10.7409i − 0.341887i
\(988\) 5.25909i 0.167314i
\(989\) −25.9954 −0.826606
\(990\) 0 0
\(991\) 23.7985 0.755985 0.377993 0.925809i \(-0.376614\pi\)
0.377993 + 0.925809i \(0.376614\pi\)
\(992\) − 6.46746i − 0.205342i
\(993\) − 12.4583i − 0.395351i
\(994\) 12.2413 0.388271
\(995\) 0 0
\(996\) 14.1512 0.448399
\(997\) − 38.9571i − 1.23378i −0.787048 0.616892i \(-0.788392\pi\)
0.787048 0.616892i \(-0.211608\pi\)
\(998\) − 0.478786i − 0.0151557i
\(999\) 3.45090 0.109182
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1425.2.c.p.799.4 6
5.2 odd 4 1425.2.a.u.1.2 3
5.3 odd 4 1425.2.a.v.1.2 yes 3
5.4 even 2 inner 1425.2.c.p.799.3 6
15.2 even 4 4275.2.a.be.1.2 3
15.8 even 4 4275.2.a.bh.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1425.2.a.u.1.2 3 5.2 odd 4
1425.2.a.v.1.2 yes 3 5.3 odd 4
1425.2.c.p.799.3 6 5.4 even 2 inner
1425.2.c.p.799.4 6 1.1 even 1 trivial
4275.2.a.be.1.2 3 15.2 even 4
4275.2.a.bh.1.2 3 15.8 even 4