Properties

Label 1425.2.c.i
Level $1425$
Weight $2$
Character orbit 1425.c
Analytic conductor $11.379$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1425,2,Mod(799,1425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1425, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1425.799"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1425.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-20,0,0,0,0,-4,0,12,0,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3786822880\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 3x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 285)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} - \beta_1 q^{3} - 5 q^{4} + \beta_{2} q^{6} + ( - \beta_{3} + \beta_1) q^{7} - 3 \beta_{3} q^{8} - q^{9} + ( - \beta_{2} + 3) q^{11} + 5 \beta_1 q^{12} + (\beta_{3} - 3 \beta_1) q^{13}+ \cdots + (\beta_{2} - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 20 q^{4} - 4 q^{9} + 12 q^{11} + 28 q^{14} + 44 q^{16} + 4 q^{19} + 4 q^{21} - 28 q^{26} - 4 q^{29} + 24 q^{31} + 20 q^{36} - 12 q^{39} - 28 q^{41} - 60 q^{44} - 56 q^{46} - 4 q^{49} + 16 q^{51} - 84 q^{56}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 3x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - \nu ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 5\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{2} + 5\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1425\mathbb{Z}\right)^\times\).

\(n\) \(476\) \(1027\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
799.1
−1.32288 + 0.500000i
1.32288 0.500000i
1.32288 + 0.500000i
−1.32288 0.500000i
2.64575i 1.00000i −5.00000 0 −2.64575 3.64575i 7.93725i −1.00000 0
799.2 2.64575i 1.00000i −5.00000 0 2.64575 1.64575i 7.93725i −1.00000 0
799.3 2.64575i 1.00000i −5.00000 0 2.64575 1.64575i 7.93725i −1.00000 0
799.4 2.64575i 1.00000i −5.00000 0 −2.64575 3.64575i 7.93725i −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1425.2.c.i 4
5.b even 2 1 inner 1425.2.c.i 4
5.c odd 4 1 285.2.a.d 2
5.c odd 4 1 1425.2.a.p 2
15.e even 4 1 855.2.a.g 2
15.e even 4 1 4275.2.a.u 2
20.e even 4 1 4560.2.a.bo 2
95.g even 4 1 5415.2.a.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
285.2.a.d 2 5.c odd 4 1
855.2.a.g 2 15.e even 4 1
1425.2.a.p 2 5.c odd 4 1
1425.2.c.i 4 1.a even 1 1 trivial
1425.2.c.i 4 5.b even 2 1 inner
4275.2.a.u 2 15.e even 4 1
4560.2.a.bo 2 20.e even 4 1
5415.2.a.s 2 95.g even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1425, [\chi])\):

\( T_{2}^{2} + 7 \) Copy content Toggle raw display
\( T_{7}^{4} + 16T_{7}^{2} + 36 \) Copy content Toggle raw display
\( T_{11}^{2} - 6T_{11} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 7)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 16T^{2} + 36 \) Copy content Toggle raw display
$11$ \( (T^{2} - 6 T + 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 32T^{2} + 4 \) Copy content Toggle raw display
$17$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$19$ \( (T - 1)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + 88T^{2} + 144 \) Copy content Toggle raw display
$29$ \( (T^{2} + 2 T - 62)^{2} \) Copy content Toggle raw display
$31$ \( (T - 6)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 16T^{2} + 36 \) Copy content Toggle raw display
$41$ \( (T^{2} + 14 T + 42)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 32T^{2} + 4 \) Copy content Toggle raw display
$47$ \( T^{4} + 88T^{2} + 144 \) Copy content Toggle raw display
$53$ \( T^{4} + 128T^{2} + 64 \) Copy content Toggle raw display
$59$ \( (T^{2} + 12 T + 8)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 12 T + 8)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 256T^{2} + 9216 \) Copy content Toggle raw display
$71$ \( (T^{2} - 4 T - 24)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 8 T - 96)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 18 T + 18)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 176T^{2} + 1444 \) Copy content Toggle raw display
show more
show less