Properties

Label 285.2.a.d
Level $285$
Weight $2$
Character orbit 285.a
Self dual yes
Analytic conductor $2.276$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [285,2,Mod(1,285)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(285, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("285.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 285 = 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 285.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,10,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.27573645761\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{7}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} - q^{3} + 5 q^{4} + q^{5} - \beta q^{6} + ( - \beta - 1) q^{7} + 3 \beta q^{8} + q^{9} + \beta q^{10} + (\beta + 3) q^{11} - 5 q^{12} + ( - \beta - 3) q^{13} + ( - \beta - 7) q^{14} + \cdots + (\beta + 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 10 q^{4} + 2 q^{5} - 2 q^{7} + 2 q^{9} + 6 q^{11} - 10 q^{12} - 6 q^{13} - 14 q^{14} - 2 q^{15} + 22 q^{16} - 8 q^{17} - 2 q^{19} + 10 q^{20} + 2 q^{21} + 14 q^{22} + 8 q^{23} + 2 q^{25}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.64575
2.64575
−2.64575 −1.00000 5.00000 1.00000 2.64575 1.64575 −7.93725 1.00000 −2.64575
1.2 2.64575 −1.00000 5.00000 1.00000 −2.64575 −3.64575 7.93725 1.00000 2.64575
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 285.2.a.d 2
3.b odd 2 1 855.2.a.g 2
4.b odd 2 1 4560.2.a.bo 2
5.b even 2 1 1425.2.a.p 2
5.c odd 4 2 1425.2.c.i 4
15.d odd 2 1 4275.2.a.u 2
19.b odd 2 1 5415.2.a.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
285.2.a.d 2 1.a even 1 1 trivial
855.2.a.g 2 3.b odd 2 1
1425.2.a.p 2 5.b even 2 1
1425.2.c.i 4 5.c odd 4 2
4275.2.a.u 2 15.d odd 2 1
4560.2.a.bo 2 4.b odd 2 1
5415.2.a.s 2 19.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(285))\):

\( T_{2}^{2} - 7 \) Copy content Toggle raw display
\( T_{7}^{2} + 2T_{7} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 7 \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 2T - 6 \) Copy content Toggle raw display
$11$ \( T^{2} - 6T + 2 \) Copy content Toggle raw display
$13$ \( T^{2} + 6T + 2 \) Copy content Toggle raw display
$17$ \( (T + 4)^{2} \) Copy content Toggle raw display
$19$ \( (T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 8T - 12 \) Copy content Toggle raw display
$29$ \( T^{2} - 2T - 62 \) Copy content Toggle raw display
$31$ \( (T - 6)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 2T - 6 \) Copy content Toggle raw display
$41$ \( T^{2} + 14T + 42 \) Copy content Toggle raw display
$43$ \( T^{2} - 6T + 2 \) Copy content Toggle raw display
$47$ \( T^{2} - 8T - 12 \) Copy content Toggle raw display
$53$ \( T^{2} - 12T + 8 \) Copy content Toggle raw display
$59$ \( T^{2} - 12T + 8 \) Copy content Toggle raw display
$61$ \( T^{2} + 12T + 8 \) Copy content Toggle raw display
$67$ \( T^{2} - 8T - 96 \) Copy content Toggle raw display
$71$ \( T^{2} - 4T - 24 \) Copy content Toggle raw display
$73$ \( (T - 10)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 8T - 96 \) Copy content Toggle raw display
$83$ \( (T - 6)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 18T + 18 \) Copy content Toggle raw display
$97$ \( T^{2} - 10T - 38 \) Copy content Toggle raw display
show more
show less