Properties

Label 1425.2.a.s
Level $1425$
Weight $2$
Character orbit 1425.a
Self dual yes
Analytic conductor $11.379$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1425,2,Mod(1,1425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1425, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1425.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1425.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,3,1,0,-1,-8,-3,3,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.3786822880\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + q^{3} + (\beta_{2} + \beta_1) q^{4} - \beta_1 q^{6} + (\beta_1 - 3) q^{7} + ( - \beta_{2} - 1) q^{8} + q^{9} + (\beta_{2} + 2) q^{11} + (\beta_{2} + \beta_1) q^{12} + ( - 2 \beta_{2} - \beta_1 - 1) q^{13}+ \cdots + (\beta_{2} + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 3 q^{3} + q^{4} - q^{6} - 8 q^{7} - 3 q^{8} + 3 q^{9} + 6 q^{11} + q^{12} - 4 q^{13} - 4 q^{14} - 3 q^{16} - 8 q^{17} - q^{18} - 3 q^{19} - 8 q^{21} - 14 q^{23} - 3 q^{24} + 4 q^{26}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.17009
0.311108
−1.48119
−2.17009 1.00000 2.70928 0 −2.17009 −0.829914 −1.53919 1.00000 0
1.2 −0.311108 1.00000 −1.90321 0 −0.311108 −2.68889 1.21432 1.00000 0
1.3 1.48119 1.00000 0.193937 0 1.48119 −4.48119 −2.67513 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1425.2.a.s 3
3.b odd 2 1 4275.2.a.bi 3
5.b even 2 1 1425.2.a.x 3
5.c odd 4 2 285.2.c.a 6
15.d odd 2 1 4275.2.a.bd 3
15.e even 4 2 855.2.c.e 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
285.2.c.a 6 5.c odd 4 2
855.2.c.e 6 15.e even 4 2
1425.2.a.s 3 1.a even 1 1 trivial
1425.2.a.x 3 5.b even 2 1
4275.2.a.bd 3 15.d odd 2 1
4275.2.a.bi 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1425))\):

\( T_{2}^{3} + T_{2}^{2} - 3T_{2} - 1 \) Copy content Toggle raw display
\( T_{7}^{3} + 8T_{7}^{2} + 18T_{7} + 10 \) Copy content Toggle raw display
\( T_{11}^{3} - 6T_{11}^{2} + 8T_{11} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + T^{2} - 3T - 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 8 T^{2} + \cdots + 10 \) Copy content Toggle raw display
$11$ \( T^{3} - 6 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$13$ \( T^{3} + 4 T^{2} + \cdots - 38 \) Copy content Toggle raw display
$17$ \( T^{3} + 8 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$19$ \( (T + 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + 14 T^{2} + \cdots + 68 \) Copy content Toggle raw display
$29$ \( T^{3} + 2 T^{2} + \cdots - 50 \) Copy content Toggle raw display
$31$ \( T^{3} + 8 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$37$ \( T^{3} + 6 T^{2} + \cdots - 50 \) Copy content Toggle raw display
$41$ \( T^{3} - 10 T^{2} + \cdots + 310 \) Copy content Toggle raw display
$43$ \( T^{3} + 6 T^{2} + \cdots - 586 \) Copy content Toggle raw display
$47$ \( T^{3} + 22 T^{2} + \cdots + 316 \) Copy content Toggle raw display
$53$ \( T^{3} + 8 T^{2} + \cdots + 100 \) Copy content Toggle raw display
$59$ \( T^{3} + 6 T^{2} + \cdots - 632 \) Copy content Toggle raw display
$61$ \( T^{3} + 10 T^{2} + \cdots - 604 \) Copy content Toggle raw display
$67$ \( T^{3} + 6 T^{2} + \cdots - 248 \) Copy content Toggle raw display
$71$ \( (T + 2)^{3} \) Copy content Toggle raw display
$73$ \( T^{3} + 10 T^{2} + \cdots + 184 \) Copy content Toggle raw display
$79$ \( T^{3} - 4 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$83$ \( T^{3} - 2 T^{2} + \cdots - 116 \) Copy content Toggle raw display
$89$ \( T^{3} - 16 T^{2} + \cdots + 2294 \) Copy content Toggle raw display
$97$ \( T^{3} - 262T - 1630 \) Copy content Toggle raw display
show more
show less