Properties

Label 855.2.c.e
Level $855$
Weight $2$
Character orbit 855.c
Analytic conductor $6.827$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(514,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.514"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 285)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{2} + (\beta_{2} - \beta_1) q^{4} + ( - \beta_{4} - \beta_1) q^{5} + ( - \beta_{4} + 3 \beta_{3}) q^{7} + ( - \beta_{5} + \beta_{3}) q^{8} + (\beta_{4} - \beta_{3} + \beta_{2} + \cdots - 2) q^{10}+ \cdots + (5 \beta_{5} - 11 \beta_{3}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{4} - 14 q^{10} - 12 q^{11} - 8 q^{14} - 6 q^{16} + 6 q^{19} + 12 q^{20} + 2 q^{25} - 8 q^{26} - 4 q^{29} - 16 q^{31} + 12 q^{34} - 8 q^{35} - 2 q^{40} - 20 q^{41} + 16 q^{44} - 8 q^{46} - 14 q^{49}+ \cdots - 32 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{5} + 8\nu^{4} - 4\nu^{3} - \nu^{2} + 2\nu + 38 ) / 23 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -5\nu^{5} + 17\nu^{4} - 20\nu^{3} - 5\nu^{2} + 10\nu + 29 ) / 23 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 7\nu^{5} - 10\nu^{4} + 5\nu^{3} + 30\nu^{2} + 32\nu - 13 ) / 23 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -11\nu^{5} + 19\nu^{4} - 21\nu^{3} - 11\nu^{2} - 70\nu + 27 ) / 23 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -14\nu^{5} + 20\nu^{4} - 10\nu^{3} - 37\nu^{2} - 64\nu + 26 ) / 23 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} - \beta_{4} + \beta_{3} + \beta_{2} - \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + 2\beta_{3} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{5} - \beta_{4} + 2\beta_{3} - \beta_{2} + 2\beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{2} + 5\beta _1 - 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -8\beta_{5} + 3\beta_{4} - 9\beta_{3} - 3\beta_{2} + 8\beta _1 - 9 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
514.1
−0.854638 0.854638i
0.403032 0.403032i
1.45161 + 1.45161i
1.45161 1.45161i
0.403032 + 0.403032i
−0.854638 + 0.854638i
2.17009i 0 −2.70928 −0.539189 2.17009i 0 0.829914i 1.53919i 0 −4.70928 + 1.17009i
514.2 1.48119i 0 −0.193937 −1.67513 1.48119i 0 4.48119i 2.67513i 0 −2.19394 + 2.48119i
514.3 0.311108i 0 1.90321 2.21432 0.311108i 0 2.68889i 1.21432i 0 −0.0967881 0.688892i
514.4 0.311108i 0 1.90321 2.21432 + 0.311108i 0 2.68889i 1.21432i 0 −0.0967881 + 0.688892i
514.5 1.48119i 0 −0.193937 −1.67513 + 1.48119i 0 4.48119i 2.67513i 0 −2.19394 2.48119i
514.6 2.17009i 0 −2.70928 −0.539189 + 2.17009i 0 0.829914i 1.53919i 0 −4.70928 1.17009i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 514.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 855.2.c.e 6
3.b odd 2 1 285.2.c.a 6
5.b even 2 1 inner 855.2.c.e 6
5.c odd 4 1 4275.2.a.bd 3
5.c odd 4 1 4275.2.a.bi 3
15.d odd 2 1 285.2.c.a 6
15.e even 4 1 1425.2.a.s 3
15.e even 4 1 1425.2.a.x 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
285.2.c.a 6 3.b odd 2 1
285.2.c.a 6 15.d odd 2 1
855.2.c.e 6 1.a even 1 1 trivial
855.2.c.e 6 5.b even 2 1 inner
1425.2.a.s 3 15.e even 4 1
1425.2.a.x 3 15.e even 4 1
4275.2.a.bd 3 5.c odd 4 1
4275.2.a.bi 3 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(855, [\chi])\):

\( T_{2}^{6} + 7T_{2}^{4} + 11T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{11}^{3} + 6T_{11}^{2} + 8T_{11} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 7 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - T^{4} + \cdots + 125 \) Copy content Toggle raw display
$7$ \( T^{6} + 28 T^{4} + \cdots + 100 \) Copy content Toggle raw display
$11$ \( (T^{3} + 6 T^{2} + 8 T - 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + 36 T^{4} + \cdots + 1444 \) Copy content Toggle raw display
$17$ \( T^{6} + 40 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$19$ \( (T - 1)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} + 84 T^{4} + \cdots + 4624 \) Copy content Toggle raw display
$29$ \( (T^{3} + 2 T^{2} - 20 T - 50)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + 8 T^{2} + 16 T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + 72 T^{4} + \cdots + 2500 \) Copy content Toggle raw display
$41$ \( (T^{3} + 10 T^{2} + \cdots - 310)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + 248 T^{4} + \cdots + 343396 \) Copy content Toggle raw display
$47$ \( T^{6} + 180 T^{4} + \cdots + 99856 \) Copy content Toggle raw display
$53$ \( T^{6} + 208 T^{4} + \cdots + 10000 \) Copy content Toggle raw display
$59$ \( (T^{3} + 6 T^{2} + \cdots - 632)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + 10 T^{2} + \cdots - 604)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 140 T^{4} + \cdots + 61504 \) Copy content Toggle raw display
$71$ \( (T - 2)^{6} \) Copy content Toggle raw display
$73$ \( T^{6} + 300 T^{4} + \cdots + 33856 \) Copy content Toggle raw display
$79$ \( (T^{3} + 4 T^{2} - 8 T - 16)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 156 T^{4} + \cdots + 13456 \) Copy content Toggle raw display
$89$ \( (T^{3} - 16 T^{2} + \cdots + 2294)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 524 T^{4} + \cdots + 2656900 \) Copy content Toggle raw display
show more
show less