Properties

Label 1404.2.cj.a.125.9
Level $1404$
Weight $2$
Character 1404.125
Analytic conductor $11.211$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1404,2,Mod(125,1404)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1404, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 10, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1404.125"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1404 = 2^{2} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1404.cj (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.2109964438\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 468)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 125.9
Character \(\chi\) \(=\) 1404.125
Dual form 1404.2.cj.a.629.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.154104 + 0.575123i) q^{5} +(0.0907757 + 0.0243233i) q^{7} +(0.116136 - 0.433424i) q^{11} +(-3.43468 - 1.09680i) q^{13} -5.51273 q^{17} +(-4.88963 - 4.88963i) q^{19} +(-4.18646 + 7.25117i) q^{23} +(4.02311 - 2.32274i) q^{25} +(-5.25947 + 3.03656i) q^{29} +(1.67875 - 0.449819i) q^{31} +0.0559555i q^{35} +(6.26928 - 6.26928i) q^{37} +(1.52195 + 5.68000i) q^{41} +(-3.22894 + 1.86423i) q^{43} +(3.27565 - 12.2249i) q^{47} +(-6.05453 - 3.49558i) q^{49} -0.788507i q^{53} +0.267169 q^{55} +(-7.07279 + 1.89515i) q^{59} +(-0.455275 - 0.788559i) q^{61} +(0.101500 - 2.14439i) q^{65} +(-9.59938 + 2.57215i) q^{67} +(-0.624421 + 0.624421i) q^{71} +(-3.61085 + 3.61085i) q^{73} +(0.0210846 - 0.0365196i) q^{77} +(-4.09126 - 7.08627i) q^{79} +(-9.78070 - 2.62073i) q^{83} +(-0.849533 - 3.17050i) q^{85} +(4.46678 + 4.46678i) q^{89} +(-0.285108 - 0.183106i) q^{91} +(2.05863 - 3.56565i) q^{95} +(-4.07242 + 15.1985i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 2 q^{7} + 12 q^{11} + 4 q^{19} - 4 q^{31} - 4 q^{37} - 24 q^{41} - 66 q^{47} + 78 q^{65} - 14 q^{67} + 28 q^{73} - 24 q^{79} + 78 q^{83} + 36 q^{85} - 8 q^{91} + 26 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1404\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(703\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.154104 + 0.575123i 0.0689173 + 0.257203i 0.991785 0.127913i \(-0.0408280\pi\)
−0.922868 + 0.385116i \(0.874161\pi\)
\(6\) 0 0
\(7\) 0.0907757 + 0.0243233i 0.0343100 + 0.00919334i 0.275933 0.961177i \(-0.411013\pi\)
−0.241623 + 0.970370i \(0.577680\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.116136 0.433424i 0.0350162 0.130682i −0.946205 0.323567i \(-0.895118\pi\)
0.981221 + 0.192885i \(0.0617845\pi\)
\(12\) 0 0
\(13\) −3.43468 1.09680i −0.952609 0.304199i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.51273 −1.33703 −0.668517 0.743697i \(-0.733071\pi\)
−0.668517 + 0.743697i \(0.733071\pi\)
\(18\) 0 0
\(19\) −4.88963 4.88963i −1.12176 1.12176i −0.991477 0.130282i \(-0.958412\pi\)
−0.130282 0.991477i \(-0.541588\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.18646 + 7.25117i −0.872938 + 1.51197i −0.0139952 + 0.999902i \(0.504455\pi\)
−0.858943 + 0.512071i \(0.828878\pi\)
\(24\) 0 0
\(25\) 4.02311 2.32274i 0.804622 0.464549i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.25947 + 3.03656i −0.976660 + 0.563875i −0.901260 0.433279i \(-0.857357\pi\)
−0.0753996 + 0.997153i \(0.524023\pi\)
\(30\) 0 0
\(31\) 1.67875 0.449819i 0.301512 0.0807899i −0.104891 0.994484i \(-0.533449\pi\)
0.406403 + 0.913694i \(0.366783\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.0559555i 0.00945821i
\(36\) 0 0
\(37\) 6.26928 6.26928i 1.03066 1.03066i 0.0311493 0.999515i \(-0.490083\pi\)
0.999515 0.0311493i \(-0.00991673\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.52195 + 5.68000i 0.237689 + 0.887067i 0.976918 + 0.213613i \(0.0685233\pi\)
−0.739229 + 0.673454i \(0.764810\pi\)
\(42\) 0 0
\(43\) −3.22894 + 1.86423i −0.492409 + 0.284292i −0.725573 0.688145i \(-0.758425\pi\)
0.233164 + 0.972437i \(0.425092\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.27565 12.2249i 0.477803 1.78318i −0.132684 0.991158i \(-0.542359\pi\)
0.610487 0.792027i \(-0.290974\pi\)
\(48\) 0 0
\(49\) −6.05453 3.49558i −0.864933 0.499369i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.788507i 0.108310i −0.998533 0.0541549i \(-0.982754\pi\)
0.998533 0.0541549i \(-0.0172465\pi\)
\(54\) 0 0
\(55\) 0.267169 0.0360251
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −7.07279 + 1.89515i −0.920799 + 0.246727i −0.687927 0.725780i \(-0.741479\pi\)
−0.232872 + 0.972507i \(0.574812\pi\)
\(60\) 0 0
\(61\) −0.455275 0.788559i −0.0582919 0.100965i 0.835407 0.549632i \(-0.185232\pi\)
−0.893699 + 0.448667i \(0.851899\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.101500 2.14439i 0.0125895 0.265978i
\(66\) 0 0
\(67\) −9.59938 + 2.57215i −1.17275 + 0.314238i −0.792047 0.610460i \(-0.790985\pi\)
−0.380703 + 0.924697i \(0.624318\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.624421 + 0.624421i −0.0741051 + 0.0741051i −0.743188 0.669083i \(-0.766687\pi\)
0.669083 + 0.743188i \(0.266687\pi\)
\(72\) 0 0
\(73\) −3.61085 + 3.61085i −0.422618 + 0.422618i −0.886104 0.463486i \(-0.846598\pi\)
0.463486 + 0.886104i \(0.346598\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.0210846 0.0365196i 0.00240281 0.00416179i
\(78\) 0 0
\(79\) −4.09126 7.08627i −0.460303 0.797268i 0.538673 0.842515i \(-0.318926\pi\)
−0.998976 + 0.0452472i \(0.985592\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −9.78070 2.62073i −1.07357 0.287662i −0.321611 0.946872i \(-0.604224\pi\)
−0.751960 + 0.659209i \(0.770891\pi\)
\(84\) 0 0
\(85\) −0.849533 3.17050i −0.0921448 0.343889i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.46678 + 4.46678i 0.473478 + 0.473478i 0.903038 0.429560i \(-0.141331\pi\)
−0.429560 + 0.903038i \(0.641331\pi\)
\(90\) 0 0
\(91\) −0.285108 0.183106i −0.0298874 0.0191947i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.05863 3.56565i 0.211211 0.365828i
\(96\) 0 0
\(97\) −4.07242 + 15.1985i −0.413491 + 1.54317i 0.374347 + 0.927289i \(0.377867\pi\)
−0.787838 + 0.615882i \(0.788800\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.40675 4.16862i −0.239481 0.414793i 0.721084 0.692847i \(-0.243644\pi\)
−0.960565 + 0.278054i \(0.910311\pi\)
\(102\) 0 0
\(103\) −5.26666 3.04071i −0.518940 0.299610i 0.217561 0.976047i \(-0.430190\pi\)
−0.736501 + 0.676437i \(0.763523\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.16867i 0.596348i −0.954512 0.298174i \(-0.903622\pi\)
0.954512 0.298174i \(-0.0963775\pi\)
\(108\) 0 0
\(109\) 3.28996 + 3.28996i 0.315121 + 0.315121i 0.846890 0.531769i \(-0.178472\pi\)
−0.531769 + 0.846890i \(0.678472\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.843186 0.486814i −0.0793203 0.0457956i 0.459815 0.888015i \(-0.347916\pi\)
−0.539136 + 0.842219i \(0.681249\pi\)
\(114\) 0 0
\(115\) −4.81547 1.29030i −0.449045 0.120321i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.500422 0.134088i −0.0458736 0.0122918i
\(120\) 0 0
\(121\) 9.35191 + 5.39933i 0.850174 + 0.490848i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 4.06094 + 4.06094i 0.363221 + 0.363221i
\(126\) 0 0
\(127\) 5.76365i 0.511441i −0.966751 0.255721i \(-0.917687\pi\)
0.966751 0.255721i \(-0.0823127\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −0.554624 0.320212i −0.0484577 0.0279771i 0.475575 0.879675i \(-0.342240\pi\)
−0.524033 + 0.851698i \(0.675573\pi\)
\(132\) 0 0
\(133\) −0.324928 0.562792i −0.0281748 0.0488003i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.83310 6.84124i 0.156613 0.584486i −0.842349 0.538932i \(-0.818828\pi\)
0.998962 0.0455542i \(-0.0145054\pi\)
\(138\) 0 0
\(139\) 7.31643 12.6724i 0.620571 1.07486i −0.368808 0.929506i \(-0.620234\pi\)
0.989379 0.145355i \(-0.0464326\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.874269 + 1.36129i −0.0731101 + 0.113837i
\(144\) 0 0
\(145\) −2.55690 2.55690i −0.212339 0.212339i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.89656 + 18.2742i 0.401142 + 1.49708i 0.811061 + 0.584961i \(0.198890\pi\)
−0.409919 + 0.912122i \(0.634443\pi\)
\(150\) 0 0
\(151\) 6.61159 + 1.77157i 0.538043 + 0.144168i 0.517600 0.855623i \(-0.326826\pi\)
0.0204434 + 0.999791i \(0.493492\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.517403 + 0.896168i 0.0415588 + 0.0719820i
\(156\) 0 0
\(157\) −5.25770 + 9.10660i −0.419610 + 0.726786i −0.995900 0.0904592i \(-0.971167\pi\)
0.576290 + 0.817245i \(0.304500\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.556402 + 0.556402i −0.0438506 + 0.0438506i
\(162\) 0 0
\(163\) −7.35881 + 7.35881i −0.576387 + 0.576387i −0.933906 0.357519i \(-0.883623\pi\)
0.357519 + 0.933906i \(0.383623\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −21.6849 + 5.81045i −1.67803 + 0.449626i −0.967257 0.253799i \(-0.918320\pi\)
−0.710770 + 0.703425i \(0.751653\pi\)
\(168\) 0 0
\(169\) 10.5940 + 7.53434i 0.814927 + 0.579564i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.21662 14.2316i −0.624698 1.08201i −0.988599 0.150571i \(-0.951889\pi\)
0.363901 0.931438i \(-0.381445\pi\)
\(174\) 0 0
\(175\) 0.421697 0.112993i 0.0318773 0.00854150i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 17.4503 1.30430 0.652149 0.758090i \(-0.273867\pi\)
0.652149 + 0.758090i \(0.273867\pi\)
\(180\) 0 0
\(181\) 13.2331i 0.983608i −0.870706 0.491804i \(-0.836338\pi\)
0.870706 0.491804i \(-0.163662\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.57173 + 2.63949i 0.336120 + 0.194059i
\(186\) 0 0
\(187\) −0.640224 + 2.38935i −0.0468178 + 0.174727i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.2787 + 6.51178i −0.816100 + 0.471176i −0.849070 0.528281i \(-0.822837\pi\)
0.0329696 + 0.999456i \(0.489504\pi\)
\(192\) 0 0
\(193\) 0.663942 + 2.47786i 0.0477916 + 0.178361i 0.985696 0.168533i \(-0.0539031\pi\)
−0.937904 + 0.346894i \(0.887236\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.0351 14.0351i 0.999960 0.999960i −4.02191e−5 1.00000i \(-0.500013\pi\)
1.00000 4.02191e-5i \(1.28021e-5\pi\)
\(198\) 0 0
\(199\) 17.2254i 1.22108i 0.791986 + 0.610539i \(0.209047\pi\)
−0.791986 + 0.610539i \(0.790953\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.551291 + 0.147718i −0.0386931 + 0.0103678i
\(204\) 0 0
\(205\) −3.03216 + 1.75062i −0.211775 + 0.122269i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.68715 + 1.55142i −0.185874 + 0.107314i
\(210\) 0 0
\(211\) 10.2869 17.8175i 0.708181 1.22660i −0.257351 0.966318i \(-0.582850\pi\)
0.965531 0.260287i \(-0.0838171\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.56975 1.56975i −0.107056 0.107056i
\(216\) 0 0
\(217\) 0.163331 0.0110876
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 18.9345 + 6.04638i 1.27367 + 0.406724i
\(222\) 0 0
\(223\) 7.37990 27.5422i 0.494195 1.84436i −0.0402997 0.999188i \(-0.512831\pi\)
0.534494 0.845172i \(-0.320502\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.6985 + 4.20639i 1.04194 + 0.279188i 0.738919 0.673794i \(-0.235337\pi\)
0.303026 + 0.952982i \(0.402003\pi\)
\(228\) 0 0
\(229\) 4.60954 + 17.2030i 0.304607 + 1.13681i 0.933283 + 0.359141i \(0.116930\pi\)
−0.628677 + 0.777667i \(0.716403\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 17.9589 1.17653 0.588263 0.808669i \(-0.299812\pi\)
0.588263 + 0.808669i \(0.299812\pi\)
\(234\) 0 0
\(235\) 7.53562 0.491569
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.04851 7.64515i −0.132507 0.494523i 0.867489 0.497457i \(-0.165733\pi\)
−0.999996 + 0.00293378i \(0.999066\pi\)
\(240\) 0 0
\(241\) −11.3575 3.04324i −0.731603 0.196032i −0.126260 0.991997i \(-0.540297\pi\)
−0.605343 + 0.795965i \(0.706964\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.07737 4.02078i 0.0688304 0.256878i
\(246\) 0 0
\(247\) 11.4314 + 22.1573i 0.727360 + 1.40983i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.78689 0.428385 0.214192 0.976792i \(-0.431288\pi\)
0.214192 + 0.976792i \(0.431288\pi\)
\(252\) 0 0
\(253\) 2.65663 + 2.65663i 0.167021 + 0.167021i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.74724 + 13.4186i −0.483259 + 0.837030i −0.999815 0.0192238i \(-0.993881\pi\)
0.516556 + 0.856253i \(0.327214\pi\)
\(258\) 0 0
\(259\) 0.721588 0.416609i 0.0448373 0.0258868i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −18.8929 + 10.9078i −1.16499 + 0.672606i −0.952494 0.304556i \(-0.901492\pi\)
−0.212494 + 0.977162i \(0.568159\pi\)
\(264\) 0 0
\(265\) 0.453489 0.121512i 0.0278576 0.00746442i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.62378i 0.0990035i −0.998774 0.0495017i \(-0.984237\pi\)
0.998774 0.0495017i \(-0.0157633\pi\)
\(270\) 0 0
\(271\) 3.57292 3.57292i 0.217039 0.217039i −0.590210 0.807250i \(-0.700955\pi\)
0.807250 + 0.590210i \(0.200955\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.539506 2.01346i −0.0325334 0.121416i
\(276\) 0 0
\(277\) 9.52727 5.50057i 0.572438 0.330497i −0.185684 0.982609i \(-0.559450\pi\)
0.758123 + 0.652112i \(0.226117\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.52855 + 9.43668i −0.150841 + 0.562945i 0.848585 + 0.529059i \(0.177455\pi\)
−0.999426 + 0.0338861i \(0.989212\pi\)
\(282\) 0 0
\(283\) −3.28632 1.89736i −0.195351 0.112786i 0.399134 0.916893i \(-0.369311\pi\)
−0.594485 + 0.804106i \(0.702644\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.552625i 0.0326204i
\(288\) 0 0
\(289\) 13.3902 0.787659
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −12.1275 + 3.24954i −0.708494 + 0.189840i −0.595032 0.803702i \(-0.702861\pi\)
−0.113462 + 0.993542i \(0.536194\pi\)
\(294\) 0 0
\(295\) −2.17989 3.77568i −0.126918 0.219829i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 22.3323 20.3137i 1.29151 1.17477i
\(300\) 0 0
\(301\) −0.338454 + 0.0906884i −0.0195081 + 0.00522719i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.383359 0.383359i 0.0219511 0.0219511i
\(306\) 0 0
\(307\) −3.99494 + 3.99494i −0.228003 + 0.228003i −0.811858 0.583855i \(-0.801544\pi\)
0.583855 + 0.811858i \(0.301544\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.11900 15.7946i 0.517091 0.895628i −0.482712 0.875779i \(-0.660348\pi\)
0.999803 0.0198485i \(-0.00631838\pi\)
\(312\) 0 0
\(313\) 2.02810 + 3.51277i 0.114635 + 0.198553i 0.917634 0.397427i \(-0.130097\pi\)
−0.802999 + 0.595980i \(0.796764\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.81239 + 2.36127i 0.494953 + 0.132622i 0.497657 0.867374i \(-0.334194\pi\)
−0.00270356 + 0.999996i \(0.500861\pi\)
\(318\) 0 0
\(319\) 0.705305 + 2.63223i 0.0394895 + 0.147377i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 26.9552 + 26.9552i 1.49983 + 1.49983i
\(324\) 0 0
\(325\) −16.3657 + 3.56532i −0.907804 + 0.197768i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.594699 1.03005i 0.0327868 0.0567885i
\(330\) 0 0
\(331\) −2.75963 + 10.2991i −0.151683 + 0.566088i 0.847684 + 0.530502i \(0.177997\pi\)
−0.999367 + 0.0355863i \(0.988670\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.95860 5.12445i −0.161646 0.279979i
\(336\) 0 0
\(337\) 28.8295 + 16.6447i 1.57044 + 0.906694i 0.996115 + 0.0880675i \(0.0280691\pi\)
0.574326 + 0.818627i \(0.305264\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.779850i 0.0422312i
\(342\) 0 0
\(343\) −0.929747 0.929747i −0.0502016 0.0502016i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −26.5898 15.3516i −1.42742 0.824119i −0.430500 0.902591i \(-0.641663\pi\)
−0.996916 + 0.0784717i \(0.974996\pi\)
\(348\) 0 0
\(349\) 21.1835 + 5.67610i 1.13393 + 0.303835i 0.776506 0.630109i \(-0.216990\pi\)
0.357420 + 0.933944i \(0.383657\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 28.2274 + 7.56350i 1.50239 + 0.402565i 0.913900 0.405939i \(-0.133056\pi\)
0.588491 + 0.808504i \(0.299722\pi\)
\(354\) 0 0
\(355\) −0.455345 0.262893i −0.0241672 0.0139529i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.20779 9.20779i −0.485969 0.485969i 0.421063 0.907031i \(-0.361657\pi\)
−0.907031 + 0.421063i \(0.861657\pi\)
\(360\) 0 0
\(361\) 28.8171i 1.51669i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.63313 1.52024i −0.137824 0.0795729i
\(366\) 0 0
\(367\) −1.31371 2.27542i −0.0685752 0.118776i 0.829699 0.558211i \(-0.188512\pi\)
−0.898274 + 0.439435i \(0.855179\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.0191791 0.0715773i 0.000995728 0.00371611i
\(372\) 0 0
\(373\) 7.30630 12.6549i 0.378306 0.655245i −0.612510 0.790463i \(-0.709840\pi\)
0.990816 + 0.135218i \(0.0431734\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 21.3951 4.66100i 1.10190 0.240054i
\(378\) 0 0
\(379\) −0.202557 0.202557i −0.0104047 0.0104047i 0.701885 0.712290i \(-0.252342\pi\)
−0.712290 + 0.701885i \(0.752342\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.19302 + 11.9165i 0.163155 + 0.608904i 0.998268 + 0.0588257i \(0.0187356\pi\)
−0.835113 + 0.550079i \(0.814598\pi\)
\(384\) 0 0
\(385\) 0.0242525 + 0.00649843i 0.00123602 + 0.000331191i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10.0814 17.4615i −0.511148 0.885335i −0.999917 0.0129213i \(-0.995887\pi\)
0.488768 0.872414i \(-0.337446\pi\)
\(390\) 0 0
\(391\) 23.0789 39.9737i 1.16715 2.02156i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.44500 3.44500i 0.173337 0.173337i
\(396\) 0 0
\(397\) −10.1506 + 10.1506i −0.509444 + 0.509444i −0.914356 0.404912i \(-0.867302\pi\)
0.404912 + 0.914356i \(0.367302\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 34.1423 9.14839i 1.70498 0.456849i 0.730797 0.682595i \(-0.239149\pi\)
0.974186 + 0.225746i \(0.0724819\pi\)
\(402\) 0 0
\(403\) −6.25932 0.296272i −0.311799 0.0147583i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.98917 3.44534i −0.0985995 0.170779i
\(408\) 0 0
\(409\) −31.2053 + 8.36144i −1.54300 + 0.413447i −0.927235 0.374480i \(-0.877821\pi\)
−0.615769 + 0.787927i \(0.711155\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.688134 −0.0338609
\(414\) 0 0
\(415\) 6.02897i 0.295951i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −24.2744 14.0148i −1.18588 0.684668i −0.228512 0.973541i \(-0.573386\pi\)
−0.957367 + 0.288873i \(0.906719\pi\)
\(420\) 0 0
\(421\) −1.32618 + 4.94935i −0.0646338 + 0.241217i −0.990683 0.136185i \(-0.956516\pi\)
0.926050 + 0.377402i \(0.123182\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −22.1783 + 12.8047i −1.07581 + 0.621117i
\(426\) 0 0
\(427\) −0.0221475 0.0826558i −0.00107179 0.00399999i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7.88442 + 7.88442i −0.379779 + 0.379779i −0.871022 0.491243i \(-0.836543\pi\)
0.491243 + 0.871022i \(0.336543\pi\)
\(432\) 0 0
\(433\) 21.4637i 1.03148i 0.856746 + 0.515739i \(0.172483\pi\)
−0.856746 + 0.515739i \(0.827517\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 55.9259 14.9853i 2.67530 0.716843i
\(438\) 0 0
\(439\) −8.91004 + 5.14422i −0.425253 + 0.245520i −0.697322 0.716758i \(-0.745625\pi\)
0.272069 + 0.962278i \(0.412292\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −33.9414 + 19.5961i −1.61260 + 0.931037i −0.623840 + 0.781552i \(0.714428\pi\)
−0.988764 + 0.149486i \(0.952238\pi\)
\(444\) 0 0
\(445\) −1.88060 + 3.25730i −0.0891491 + 0.154411i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.87941 + 1.87941i 0.0886947 + 0.0886947i 0.750062 0.661367i \(-0.230024\pi\)
−0.661367 + 0.750062i \(0.730024\pi\)
\(450\) 0 0
\(451\) 2.63860 0.124247
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.0613722 0.192189i 0.00287717 0.00900998i
\(456\) 0 0
\(457\) −10.1980 + 38.0595i −0.477042 + 1.78035i 0.136451 + 0.990647i \(0.456430\pi\)
−0.613494 + 0.789700i \(0.710236\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4.06644 1.08960i −0.189393 0.0507477i 0.162876 0.986647i \(-0.447923\pi\)
−0.352269 + 0.935899i \(0.614590\pi\)
\(462\) 0 0
\(463\) 6.24235 + 23.2968i 0.290107 + 1.08269i 0.945026 + 0.326994i \(0.106036\pi\)
−0.654920 + 0.755698i \(0.727298\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.1608 1.11803 0.559013 0.829159i \(-0.311180\pi\)
0.559013 + 0.829159i \(0.311180\pi\)
\(468\) 0 0
\(469\) −0.933953 −0.0431260
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.433007 + 1.61600i 0.0199097 + 0.0743039i
\(474\) 0 0
\(475\) −31.0289 8.31417i −1.42370 0.381480i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.49787 9.32218i 0.114131 0.425941i −0.885090 0.465420i \(-0.845903\pi\)
0.999220 + 0.0394790i \(0.0125698\pi\)
\(480\) 0 0
\(481\) −28.4092 + 14.6568i −1.29535 + 0.668293i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −9.36857 −0.425405
\(486\) 0 0
\(487\) 15.4742 + 15.4742i 0.701205 + 0.701205i 0.964669 0.263464i \(-0.0848651\pi\)
−0.263464 + 0.964669i \(0.584865\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.89886 + 11.9492i −0.311341 + 0.539258i −0.978653 0.205520i \(-0.934111\pi\)
0.667312 + 0.744778i \(0.267445\pi\)
\(492\) 0 0
\(493\) 28.9941 16.7397i 1.30583 0.753919i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.0718702 + 0.0414943i −0.00322382 + 0.00186127i
\(498\) 0 0
\(499\) −0.634735 + 0.170077i −0.0284146 + 0.00761368i −0.272998 0.962014i \(-0.588015\pi\)
0.244584 + 0.969628i \(0.421349\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 20.4283i 0.910852i −0.890274 0.455426i \(-0.849487\pi\)
0.890274 0.455426i \(-0.150513\pi\)
\(504\) 0 0
\(505\) 2.02658 2.02658i 0.0901817 0.0901817i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.00431483 + 0.0161032i 0.000191252 + 0.000713760i 0.966021 0.258462i \(-0.0832157\pi\)
−0.965830 + 0.259176i \(0.916549\pi\)
\(510\) 0 0
\(511\) −0.415605 + 0.239950i −0.0183853 + 0.0106147i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.937170 3.49756i 0.0412966 0.154121i
\(516\) 0 0
\(517\) −4.91814 2.83949i −0.216300 0.124881i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 31.5428i 1.38191i −0.722896 0.690957i \(-0.757189\pi\)
0.722896 0.690957i \(-0.242811\pi\)
\(522\) 0 0
\(523\) 2.86422 0.125243 0.0626217 0.998037i \(-0.480054\pi\)
0.0626217 + 0.998037i \(0.480054\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.25449 + 2.47973i −0.403132 + 0.108019i
\(528\) 0 0
\(529\) −23.5530 40.7949i −1.02404 1.77369i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.00243 21.1783i 0.0434200 0.917333i
\(534\) 0 0
\(535\) 3.54774 0.950615i 0.153382 0.0410987i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.21822 + 2.21822i −0.0955453 + 0.0955453i
\(540\) 0 0
\(541\) 24.0790 24.0790i 1.03524 1.03524i 0.0358828 0.999356i \(-0.488576\pi\)
0.999356 0.0358828i \(-0.0114243\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.38514 + 2.39913i −0.0593327 + 0.102767i
\(546\) 0 0
\(547\) 3.28072 + 5.68237i 0.140273 + 0.242960i 0.927599 0.373576i \(-0.121869\pi\)
−0.787326 + 0.616537i \(0.788535\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 40.5646 + 10.8692i 1.72811 + 0.463045i
\(552\) 0 0
\(553\) −0.199026 0.742774i −0.00846343 0.0315860i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −31.2392 31.2392i −1.32365 1.32365i −0.910801 0.412846i \(-0.864535\pi\)
−0.412846 0.910801i \(-0.635465\pi\)
\(558\) 0 0
\(559\) 13.1351 2.86152i 0.555554 0.121029i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.67778 + 4.63804i −0.112855 + 0.195470i −0.916920 0.399071i \(-0.869333\pi\)
0.804065 + 0.594541i \(0.202666\pi\)
\(564\) 0 0
\(565\) 0.150040 0.559956i 0.00631222 0.0235575i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.91658 + 11.9799i 0.289958 + 0.502222i 0.973799 0.227408i \(-0.0730252\pi\)
−0.683841 + 0.729631i \(0.739692\pi\)
\(570\) 0 0
\(571\) −0.279180 0.161184i −0.0116833 0.00674536i 0.494147 0.869378i \(-0.335480\pi\)
−0.505830 + 0.862633i \(0.668814\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 38.8963i 1.62209i
\(576\) 0 0
\(577\) −14.4319 14.4319i −0.600807 0.600807i 0.339720 0.940527i \(-0.389668\pi\)
−0.940527 + 0.339720i \(0.889668\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.824105 0.475797i −0.0341896 0.0197394i
\(582\) 0 0
\(583\) −0.341758 0.0915738i −0.0141542 0.00379260i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −22.2892 5.97237i −0.919973 0.246506i −0.232399 0.972621i \(-0.574657\pi\)
−0.687574 + 0.726115i \(0.741324\pi\)
\(588\) 0 0
\(589\) −10.4079 6.00901i −0.428851 0.247597i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.94470 1.94470i −0.0798591 0.0798591i 0.666049 0.745908i \(-0.267984\pi\)
−0.745908 + 0.666049i \(0.767984\pi\)
\(594\) 0 0
\(595\) 0.308468i 0.0126460i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −11.1324 6.42730i −0.454858 0.262613i 0.255022 0.966935i \(-0.417917\pi\)
−0.709880 + 0.704323i \(0.751251\pi\)
\(600\) 0 0
\(601\) −7.22889 12.5208i −0.294873 0.510734i 0.680083 0.733135i \(-0.261944\pi\)
−0.974955 + 0.222401i \(0.928611\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.66411 + 6.21056i −0.0676559 + 0.252495i
\(606\) 0 0
\(607\) 2.33525 4.04478i 0.0947850 0.164172i −0.814734 0.579835i \(-0.803117\pi\)
0.909519 + 0.415663i \(0.136450\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −24.6591 + 38.3959i −0.997601 + 1.55333i
\(612\) 0 0
\(613\) −32.2764 32.2764i −1.30363 1.30363i −0.925924 0.377709i \(-0.876712\pi\)
−0.377709 0.925924i \(-0.623288\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.81372 + 29.1612i 0.314569 + 1.17399i 0.924390 + 0.381448i \(0.124574\pi\)
−0.609822 + 0.792538i \(0.708759\pi\)
\(618\) 0 0
\(619\) 29.3839 + 7.87339i 1.18104 + 0.316458i 0.795338 0.606166i \(-0.207293\pi\)
0.385700 + 0.922624i \(0.373960\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.296829 + 0.514122i 0.0118922 + 0.0205979i
\(624\) 0 0
\(625\) 9.90398 17.1542i 0.396159 0.686168i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −34.5609 + 34.5609i −1.37803 + 1.37803i
\(630\) 0 0
\(631\) 18.0342 18.0342i 0.717931 0.717931i −0.250251 0.968181i \(-0.580513\pi\)
0.968181 + 0.250251i \(0.0805130\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3.31481 0.888201i 0.131544 0.0352472i
\(636\) 0 0
\(637\) 16.9614 + 18.6468i 0.672035 + 0.738815i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 18.9014 + 32.7382i 0.746562 + 1.29308i 0.949461 + 0.313884i \(0.101630\pi\)
−0.202900 + 0.979200i \(0.565037\pi\)
\(642\) 0 0
\(643\) −37.4118 + 10.0245i −1.47538 + 0.395326i −0.904771 0.425898i \(-0.859958\pi\)
−0.570606 + 0.821224i \(0.693292\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −37.4085 −1.47068 −0.735339 0.677699i \(-0.762977\pi\)
−0.735339 + 0.677699i \(0.762977\pi\)
\(648\) 0 0
\(649\) 3.28561i 0.128972i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −22.3962 12.9304i −0.876431 0.506008i −0.00695093 0.999976i \(-0.502213\pi\)
−0.869480 + 0.493968i \(0.835546\pi\)
\(654\) 0 0
\(655\) 0.0986919 0.368323i 0.00385621 0.0143916i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 21.5416 12.4370i 0.839140 0.484478i −0.0178318 0.999841i \(-0.505676\pi\)
0.856972 + 0.515363i \(0.172343\pi\)
\(660\) 0 0
\(661\) 0.570777 + 2.13017i 0.0222007 + 0.0828540i 0.976137 0.217154i \(-0.0696773\pi\)
−0.953937 + 0.300008i \(0.903011\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.273602 0.273602i 0.0106098 0.0106098i
\(666\) 0 0
\(667\) 50.8498i 1.96891i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.394654 + 0.105747i −0.0152354 + 0.00408232i
\(672\) 0 0
\(673\) −19.8145 + 11.4399i −0.763795 + 0.440977i −0.830656 0.556785i \(-0.812035\pi\)
0.0668619 + 0.997762i \(0.478701\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8.77596 + 5.06680i −0.337287 + 0.194733i −0.659072 0.752080i \(-0.729051\pi\)
0.321784 + 0.946813i \(0.395717\pi\)
\(678\) 0 0
\(679\) −0.739353 + 1.28060i −0.0283738 + 0.0491448i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −17.0297 17.0297i −0.651622 0.651622i 0.301761 0.953384i \(-0.402425\pi\)
−0.953384 + 0.301761i \(0.902425\pi\)
\(684\) 0 0
\(685\) 4.21704 0.161125
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −0.864837 + 2.70827i −0.0329477 + 0.103177i
\(690\) 0 0
\(691\) 5.92606 22.1164i 0.225438 0.841346i −0.756791 0.653657i \(-0.773234\pi\)
0.982229 0.187689i \(-0.0600996\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.41570 + 2.25498i 0.319226 + 0.0855362i
\(696\) 0 0
\(697\) −8.39011 31.3123i −0.317798 1.18604i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −37.0143 −1.39801 −0.699005 0.715116i \(-0.746374\pi\)
−0.699005 + 0.715116i \(0.746374\pi\)
\(702\) 0 0
\(703\) −61.3090 −2.31231
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −0.117080 0.436950i −0.00440326 0.0164332i
\(708\) 0 0
\(709\) 9.54653 + 2.55799i 0.358528 + 0.0960672i 0.433587 0.901112i \(-0.357248\pi\)
−0.0750590 + 0.997179i \(0.523915\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.76630 + 14.0560i −0.141049 + 0.526403i
\(714\) 0 0
\(715\) −0.917640 0.293032i −0.0343178 0.0109588i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −15.8636 −0.591613 −0.295807 0.955248i \(-0.595588\pi\)
−0.295807 + 0.955248i \(0.595588\pi\)
\(720\) 0 0
\(721\) −0.404125 0.404125i −0.0150504 0.0150504i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −14.1063 + 24.4328i −0.523894 + 0.907411i
\(726\) 0 0
\(727\) 28.3237 16.3527i 1.05047 0.606489i 0.127689 0.991814i \(-0.459244\pi\)
0.922781 + 0.385325i \(0.125911\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 17.8003 10.2770i 0.658367 0.380109i
\(732\) 0 0
\(733\) 9.16892 2.45680i 0.338662 0.0907442i −0.0854802 0.996340i \(-0.527242\pi\)
0.424142 + 0.905596i \(0.360576\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.45932i 0.164261i
\(738\) 0 0
\(739\) −15.9355 + 15.9355i −0.586198 + 0.586198i −0.936599 0.350402i \(-0.886045\pi\)
0.350402 + 0.936599i \(0.386045\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −7.90302 29.4945i −0.289934 1.08205i −0.945158 0.326613i \(-0.894093\pi\)
0.655224 0.755434i \(-0.272574\pi\)
\(744\) 0 0
\(745\) −9.75535 + 5.63226i −0.357408 + 0.206350i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.150042 0.559965i 0.00548242 0.0204607i
\(750\) 0 0
\(751\) −27.5324 15.8958i −1.00467 0.580048i −0.0950448 0.995473i \(-0.530299\pi\)
−0.909627 + 0.415425i \(0.863633\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.07548i 0.148322i
\(756\) 0 0
\(757\) 9.24174 0.335897 0.167948 0.985796i \(-0.446286\pi\)
0.167948 + 0.985796i \(0.446286\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −31.9876 + 8.57104i −1.15955 + 0.310700i −0.786785 0.617227i \(-0.788256\pi\)
−0.372763 + 0.927927i \(0.621589\pi\)
\(762\) 0 0
\(763\) 0.218626 + 0.378671i 0.00791478 + 0.0137088i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 26.3714 + 1.24823i 0.952216 + 0.0450711i
\(768\) 0 0
\(769\) 9.84061 2.63678i 0.354862 0.0950849i −0.0769842 0.997032i \(-0.524529\pi\)
0.431846 + 0.901947i \(0.357862\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −12.1060 + 12.1060i −0.435421 + 0.435421i −0.890468 0.455046i \(-0.849623\pi\)
0.455046 + 0.890468i \(0.349623\pi\)
\(774\) 0 0
\(775\) 5.70897 5.70897i 0.205072 0.205072i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 20.3313 35.2149i 0.728446 1.26171i
\(780\) 0 0
\(781\) 0.198121 + 0.343156i 0.00708934 + 0.0122791i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6.04765 1.62046i −0.215850 0.0578368i
\(786\) 0 0
\(787\) −7.76240 28.9697i −0.276700 1.03266i −0.954694 0.297590i \(-0.903817\pi\)
0.677994 0.735067i \(-0.262849\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.0646999 0.0646999i −0.00230047 0.00230047i
\(792\) 0 0
\(793\) 0.698829 + 3.20779i 0.0248161 + 0.113912i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 14.1855 24.5700i 0.502476 0.870314i −0.497520 0.867453i \(-0.665756\pi\)
0.999996 0.00286136i \(-0.000910799\pi\)
\(798\) 0 0
\(799\) −18.0578 + 67.3926i −0.638839 + 2.38418i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.14568 + 1.98438i 0.0404302 + 0.0700271i
\(804\) 0 0
\(805\) −0.405743 0.234256i −0.0143006 0.00825644i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 41.8676i 1.47199i −0.676989 0.735993i \(-0.736715\pi\)
0.676989 0.735993i \(-0.263285\pi\)
\(810\) 0 0
\(811\) 24.9544 + 24.9544i 0.876267 + 0.876267i 0.993146 0.116879i \(-0.0372890\pi\)
−0.116879 + 0.993146i \(0.537289\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.36625 3.09820i −0.187971 0.108525i
\(816\) 0 0
\(817\) 24.9037 + 6.67294i 0.871272 + 0.233457i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −18.4066 4.93204i −0.642396 0.172129i −0.0771075 0.997023i \(-0.524568\pi\)
−0.565288 + 0.824893i \(0.691235\pi\)
\(822\) 0 0
\(823\) −8.28351 4.78249i −0.288745 0.166707i 0.348631 0.937260i \(-0.386647\pi\)
−0.637376 + 0.770553i \(0.719980\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −13.8587 13.8587i −0.481915 0.481915i 0.423828 0.905743i \(-0.360686\pi\)
−0.905743 + 0.423828i \(0.860686\pi\)
\(828\) 0 0
\(829\) 45.6637i 1.58597i −0.609244 0.792983i \(-0.708527\pi\)
0.609244 0.792983i \(-0.291473\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 33.3770 + 19.2702i 1.15644 + 0.667673i
\(834\) 0 0
\(835\) −6.68345 11.5761i −0.231290 0.400606i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −3.65147 + 13.6275i −0.126063 + 0.470472i −0.999875 0.0157905i \(-0.994974\pi\)
0.873813 + 0.486263i \(0.161640\pi\)
\(840\) 0 0
\(841\) 3.94137 6.82665i 0.135909 0.235402i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.70059 + 7.25395i −0.0929031 + 0.249544i
\(846\) 0 0
\(847\) 0.717597 + 0.717597i 0.0246569 + 0.0246569i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 19.2135 + 71.7058i 0.658631 + 2.45804i
\(852\) 0 0
\(853\) −36.4596 9.76933i −1.24835 0.334495i −0.426653 0.904415i \(-0.640308\pi\)
−0.821700 + 0.569920i \(0.806974\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.38094 7.58800i −0.149650 0.259201i 0.781448 0.623970i \(-0.214481\pi\)
−0.931098 + 0.364769i \(0.881148\pi\)
\(858\) 0 0
\(859\) −17.2450 + 29.8692i −0.588391 + 1.01912i 0.406052 + 0.913850i \(0.366905\pi\)
−0.994443 + 0.105274i \(0.966428\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −27.1745 + 27.1745i −0.925029 + 0.925029i −0.997379 0.0723499i \(-0.976950\pi\)
0.0723499 + 0.997379i \(0.476950\pi\)
\(864\) 0 0
\(865\) 6.91872 6.91872i 0.235243 0.235243i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.54650 + 0.950282i −0.120307 + 0.0322361i
\(870\) 0 0
\(871\) 35.7919 + 1.69413i 1.21276 + 0.0574035i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.269859 + 0.467410i 0.00912291 + 0.0158013i
\(876\) 0 0
\(877\) −4.20346 + 1.12631i −0.141941 + 0.0380329i −0.329090 0.944299i \(-0.606742\pi\)
0.187149 + 0.982332i \(0.440075\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 17.7491 0.597983 0.298992 0.954256i \(-0.403350\pi\)
0.298992 + 0.954256i \(0.403350\pi\)
\(882\) 0 0
\(883\) 13.6618i 0.459757i −0.973219 0.229879i \(-0.926167\pi\)
0.973219 0.229879i \(-0.0738329\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 27.8424 + 16.0748i 0.934858 + 0.539740i 0.888345 0.459177i \(-0.151856\pi\)
0.0465133 + 0.998918i \(0.485189\pi\)
\(888\) 0 0
\(889\) 0.140191 0.523200i 0.00470185 0.0175476i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −75.7920 + 43.7586i −2.53628 + 1.46432i
\(894\) 0 0
\(895\) 2.68916 + 10.0361i 0.0898888 + 0.335470i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −7.46343 + 7.46343i −0.248919 + 0.248919i
\(900\) 0 0
\(901\) 4.34683i 0.144814i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 7.61066 2.03927i 0.252987 0.0677877i
\(906\) 0 0
\(907\) −22.2907 + 12.8695i −0.740149 + 0.427325i −0.822123 0.569309i \(-0.807211\pi\)
0.0819746 + 0.996634i \(0.473877\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 11.7787 6.80041i 0.390244 0.225308i −0.292022 0.956412i \(-0.594328\pi\)
0.682266 + 0.731104i \(0.260995\pi\)
\(912\) 0 0
\(913\) −2.27177 + 3.93483i −0.0751847 + 0.130224i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.0425578 0.0425578i −0.00140538 0.00140538i
\(918\) 0 0
\(919\) 3.46854 0.114417 0.0572083 0.998362i \(-0.481780\pi\)
0.0572083 + 0.998362i \(0.481780\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.82955 1.45982i 0.0931358 0.0480505i
\(924\) 0 0
\(925\) 10.6601 39.7839i 0.350501 1.30809i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 26.2691 + 7.03879i 0.861862 + 0.230935i 0.662565 0.749004i \(-0.269468\pi\)
0.199296 + 0.979939i \(0.436134\pi\)
\(930\) 0 0
\(931\) 12.5123 + 46.6966i 0.410074 + 1.53042i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.47283 −0.0481668
\(936\) 0 0
\(937\) 40.3459 1.31804 0.659022 0.752124i \(-0.270970\pi\)
0.659022 + 0.752124i \(0.270970\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −13.2517 49.4561i −0.431994 1.61222i −0.748159 0.663520i \(-0.769062\pi\)
0.316165 0.948704i \(-0.397605\pi\)
\(942\) 0 0
\(943\) −47.5583 12.7432i −1.54871 0.414976i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 6.28521 23.4567i 0.204242 0.762241i −0.785438 0.618941i \(-0.787562\pi\)
0.989679 0.143300i \(-0.0457713\pi\)
\(948\) 0 0
\(949\) 16.3625 8.44172i 0.531149 0.274030i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −35.8048 −1.15983 −0.579915 0.814677i \(-0.696914\pi\)
−0.579915 + 0.814677i \(0.696914\pi\)
\(954\) 0 0
\(955\) −5.48317 5.48317i −0.177431 0.177431i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0.332803 0.576431i 0.0107468 0.0186139i
\(960\) 0 0
\(961\) −24.2309 + 13.9897i −0.781643 + 0.451282i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.32276 + 0.763697i −0.0425812 + 0.0245843i
\(966\) 0 0
\(967\) −55.3566 + 14.8327i −1.78015 + 0.476989i −0.990611 0.136714i \(-0.956346\pi\)
−0.789537 + 0.613703i \(0.789679\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 33.6934i 1.08127i −0.841257 0.540636i \(-0.818184\pi\)
0.841257 0.540636i \(-0.181816\pi\)
\(972\) 0 0
\(973\) 0.972389 0.972389i 0.0311734 0.0311734i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −13.0463 48.6894i −0.417387 1.55771i −0.780006 0.625773i \(-0.784784\pi\)
0.362618 0.931938i \(-0.381883\pi\)
\(978\) 0 0
\(979\) 2.45476 1.41726i 0.0784546 0.0452958i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −2.24381 + 8.37401i −0.0715664 + 0.267090i −0.992433 0.122789i \(-0.960816\pi\)
0.920866 + 0.389878i \(0.127483\pi\)
\(984\) 0 0
\(985\) 10.2348 + 5.90905i 0.326107 + 0.188278i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 31.2181i 0.992679i
\(990\) 0 0
\(991\) −41.3299 −1.31289 −0.656443 0.754376i \(-0.727940\pi\)
−0.656443 + 0.754376i \(0.727940\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −9.90675 + 2.65450i −0.314065 + 0.0841535i
\(996\) 0 0
\(997\) −21.3446 36.9700i −0.675991 1.17085i −0.976178 0.216970i \(-0.930383\pi\)
0.300187 0.953880i \(-0.402951\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1404.2.cj.a.125.9 56
3.2 odd 2 468.2.cg.a.437.1 yes 56
9.2 odd 6 inner 1404.2.cj.a.1061.9 56
9.7 even 3 468.2.cg.a.281.1 yes 56
13.5 odd 4 inner 1404.2.cj.a.1097.9 56
39.5 even 4 468.2.cg.a.5.1 56
117.70 odd 12 468.2.cg.a.317.1 yes 56
117.83 even 12 inner 1404.2.cj.a.629.9 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.cg.a.5.1 56 39.5 even 4
468.2.cg.a.281.1 yes 56 9.7 even 3
468.2.cg.a.317.1 yes 56 117.70 odd 12
468.2.cg.a.437.1 yes 56 3.2 odd 2
1404.2.cj.a.125.9 56 1.1 even 1 trivial
1404.2.cj.a.629.9 56 117.83 even 12 inner
1404.2.cj.a.1061.9 56 9.2 odd 6 inner
1404.2.cj.a.1097.9 56 13.5 odd 4 inner