Properties

Label 1404.2.cj.a.1097.9
Level $1404$
Weight $2$
Character 1404.1097
Analytic conductor $11.211$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1404,2,Mod(125,1404)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1404, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 10, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1404.125"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1404 = 2^{2} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1404.cj (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.2109964438\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 468)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 1097.9
Character \(\chi\) \(=\) 1404.1097
Dual form 1404.2.cj.a.1061.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.575123 - 0.154104i) q^{5} +(-0.0243233 + 0.0907757i) q^{7} +(0.433424 + 0.116136i) q^{11} +(2.66720 + 2.42612i) q^{13} +5.51273 q^{17} +(-4.88963 + 4.88963i) q^{19} +(4.18646 - 7.25117i) q^{23} +(-4.02311 + 2.32274i) q^{25} +(-5.25947 + 3.03656i) q^{29} +(-0.449819 - 1.67875i) q^{31} +0.0559555i q^{35} +(6.26928 + 6.26928i) q^{37} +(5.68000 - 1.52195i) q^{41} +(3.22894 - 1.86423i) q^{43} +(12.2249 + 3.27565i) q^{47} +(6.05453 + 3.49558i) q^{49} -0.788507i q^{53} +0.267169 q^{55} +(-1.89515 - 7.07279i) q^{59} +(-0.455275 - 0.788559i) q^{61} +(1.90784 + 0.984291i) q^{65} +(2.57215 + 9.59938i) q^{67} +(0.624421 + 0.624421i) q^{71} +(-3.61085 - 3.61085i) q^{73} +(-0.0210846 + 0.0365196i) q^{77} +(-4.09126 - 7.08627i) q^{79} +(-2.62073 + 9.78070i) q^{83} +(3.17050 - 0.849533i) q^{85} +(-4.46678 + 4.46678i) q^{89} +(-0.285108 + 0.183106i) q^{91} +(-2.05863 + 3.56565i) q^{95} +(15.1985 + 4.07242i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 2 q^{7} + 12 q^{11} + 4 q^{19} - 4 q^{31} - 4 q^{37} - 24 q^{41} - 66 q^{47} + 78 q^{65} - 14 q^{67} + 28 q^{73} - 24 q^{79} + 78 q^{83} + 36 q^{85} - 8 q^{91} + 26 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1404\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(703\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.575123 0.154104i 0.257203 0.0689173i −0.127913 0.991785i \(-0.540828\pi\)
0.385116 + 0.922868i \(0.374161\pi\)
\(6\) 0 0
\(7\) −0.0243233 + 0.0907757i −0.00919334 + 0.0343100i −0.970370 0.241623i \(-0.922320\pi\)
0.961177 + 0.275933i \(0.0889869\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.433424 + 0.116136i 0.130682 + 0.0350162i 0.323567 0.946205i \(-0.395118\pi\)
−0.192885 + 0.981221i \(0.561784\pi\)
\(12\) 0 0
\(13\) 2.66720 + 2.42612i 0.739748 + 0.672884i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.51273 1.33703 0.668517 0.743697i \(-0.266929\pi\)
0.668517 + 0.743697i \(0.266929\pi\)
\(18\) 0 0
\(19\) −4.88963 + 4.88963i −1.12176 + 1.12176i −0.130282 + 0.991477i \(0.541588\pi\)
−0.991477 + 0.130282i \(0.958412\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.18646 7.25117i 0.872938 1.51197i 0.0139952 0.999902i \(-0.495545\pi\)
0.858943 0.512071i \(-0.171122\pi\)
\(24\) 0 0
\(25\) −4.02311 + 2.32274i −0.804622 + 0.464549i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.25947 + 3.03656i −0.976660 + 0.563875i −0.901260 0.433279i \(-0.857357\pi\)
−0.0753996 + 0.997153i \(0.524023\pi\)
\(30\) 0 0
\(31\) −0.449819 1.67875i −0.0807899 0.301512i 0.913694 0.406403i \(-0.133217\pi\)
−0.994484 + 0.104891i \(0.966551\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.0559555i 0.00945821i
\(36\) 0 0
\(37\) 6.26928 + 6.26928i 1.03066 + 1.03066i 0.999515 + 0.0311493i \(0.00991673\pi\)
0.0311493 + 0.999515i \(0.490083\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.68000 1.52195i 0.887067 0.237689i 0.213613 0.976918i \(-0.431477\pi\)
0.673454 + 0.739229i \(0.264810\pi\)
\(42\) 0 0
\(43\) 3.22894 1.86423i 0.492409 0.284292i −0.233164 0.972437i \(-0.574908\pi\)
0.725573 + 0.688145i \(0.241575\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12.2249 + 3.27565i 1.78318 + 0.477803i 0.991158 0.132684i \(-0.0423594\pi\)
0.792027 + 0.610487i \(0.209026\pi\)
\(48\) 0 0
\(49\) 6.05453 + 3.49558i 0.864933 + 0.499369i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.788507i 0.108310i −0.998533 0.0541549i \(-0.982754\pi\)
0.998533 0.0541549i \(-0.0172465\pi\)
\(54\) 0 0
\(55\) 0.267169 0.0360251
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.89515 7.07279i −0.246727 0.920799i −0.972507 0.232872i \(-0.925188\pi\)
0.725780 0.687927i \(-0.241479\pi\)
\(60\) 0 0
\(61\) −0.455275 0.788559i −0.0582919 0.100965i 0.835407 0.549632i \(-0.185232\pi\)
−0.893699 + 0.448667i \(0.851899\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.90784 + 0.984291i 0.236639 + 0.122086i
\(66\) 0 0
\(67\) 2.57215 + 9.59938i 0.314238 + 1.17275i 0.924697 + 0.380703i \(0.124318\pi\)
−0.610460 + 0.792047i \(0.709015\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.624421 + 0.624421i 0.0741051 + 0.0741051i 0.743188 0.669083i \(-0.233313\pi\)
−0.669083 + 0.743188i \(0.733313\pi\)
\(72\) 0 0
\(73\) −3.61085 3.61085i −0.422618 0.422618i 0.463486 0.886104i \(-0.346598\pi\)
−0.886104 + 0.463486i \(0.846598\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.0210846 + 0.0365196i −0.00240281 + 0.00416179i
\(78\) 0 0
\(79\) −4.09126 7.08627i −0.460303 0.797268i 0.538673 0.842515i \(-0.318926\pi\)
−0.998976 + 0.0452472i \(0.985592\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.62073 + 9.78070i −0.287662 + 1.07357i 0.659209 + 0.751960i \(0.270891\pi\)
−0.946872 + 0.321611i \(0.895776\pi\)
\(84\) 0 0
\(85\) 3.17050 0.849533i 0.343889 0.0921448i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.46678 + 4.46678i −0.473478 + 0.473478i −0.903038 0.429560i \(-0.858669\pi\)
0.429560 + 0.903038i \(0.358669\pi\)
\(90\) 0 0
\(91\) −0.285108 + 0.183106i −0.0298874 + 0.0191947i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.05863 + 3.56565i −0.211211 + 0.365828i
\(96\) 0 0
\(97\) 15.1985 + 4.07242i 1.54317 + 0.413491i 0.927289 0.374347i \(-0.122133\pi\)
0.615882 + 0.787838i \(0.288800\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.40675 + 4.16862i 0.239481 + 0.414793i 0.960565 0.278054i \(-0.0896894\pi\)
−0.721084 + 0.692847i \(0.756356\pi\)
\(102\) 0 0
\(103\) 5.26666 + 3.04071i 0.518940 + 0.299610i 0.736501 0.676437i \(-0.236477\pi\)
−0.217561 + 0.976047i \(0.569810\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.16867i 0.596348i −0.954512 0.298174i \(-0.903622\pi\)
0.954512 0.298174i \(-0.0963775\pi\)
\(108\) 0 0
\(109\) 3.28996 3.28996i 0.315121 0.315121i −0.531769 0.846890i \(-0.678472\pi\)
0.846890 + 0.531769i \(0.178472\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.843186 0.486814i −0.0793203 0.0457956i 0.459815 0.888015i \(-0.347916\pi\)
−0.539136 + 0.842219i \(0.681249\pi\)
\(114\) 0 0
\(115\) 1.29030 4.81547i 0.120321 0.449045i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.134088 + 0.500422i −0.0122918 + 0.0458736i
\(120\) 0 0
\(121\) −9.35191 5.39933i −0.850174 0.490848i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −4.06094 + 4.06094i −0.363221 + 0.363221i
\(126\) 0 0
\(127\) 5.76365i 0.511441i 0.966751 + 0.255721i \(0.0823127\pi\)
−0.966751 + 0.255721i \(0.917687\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −0.554624 0.320212i −0.0484577 0.0279771i 0.475575 0.879675i \(-0.342240\pi\)
−0.524033 + 0.851698i \(0.675573\pi\)
\(132\) 0 0
\(133\) −0.324928 0.562792i −0.0281748 0.0488003i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.84124 + 1.83310i 0.584486 + 0.156613i 0.538932 0.842349i \(-0.318828\pi\)
0.0455542 + 0.998962i \(0.485495\pi\)
\(138\) 0 0
\(139\) 7.31643 12.6724i 0.620571 1.07486i −0.368808 0.929506i \(-0.620234\pi\)
0.989379 0.145355i \(-0.0464326\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.874269 + 1.36129i 0.0731101 + 0.113837i
\(144\) 0 0
\(145\) −2.55690 + 2.55690i −0.212339 + 0.212339i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 18.2742 4.89656i 1.49708 0.401142i 0.584961 0.811061i \(-0.301110\pi\)
0.912122 + 0.409919i \(0.134443\pi\)
\(150\) 0 0
\(151\) −1.77157 + 6.61159i −0.144168 + 0.538043i 0.855623 + 0.517600i \(0.173174\pi\)
−0.999791 + 0.0204434i \(0.993492\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.517403 0.896168i −0.0415588 0.0719820i
\(156\) 0 0
\(157\) −5.25770 + 9.10660i −0.419610 + 0.726786i −0.995900 0.0904592i \(-0.971167\pi\)
0.576290 + 0.817245i \(0.304500\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.556402 + 0.556402i 0.0438506 + 0.0438506i
\(162\) 0 0
\(163\) −7.35881 7.35881i −0.576387 0.576387i 0.357519 0.933906i \(-0.383623\pi\)
−0.933906 + 0.357519i \(0.883623\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.81045 21.6849i −0.449626 1.67803i −0.703425 0.710770i \(-0.748347\pi\)
0.253799 0.967257i \(-0.418320\pi\)
\(168\) 0 0
\(169\) 1.22790 + 12.9419i 0.0944541 + 0.995529i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.21662 + 14.2316i 0.624698 + 1.08201i 0.988599 + 0.150571i \(0.0481113\pi\)
−0.363901 + 0.931438i \(0.618555\pi\)
\(174\) 0 0
\(175\) −0.112993 0.421697i −0.00854150 0.0318773i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −17.4503 −1.30430 −0.652149 0.758090i \(-0.726133\pi\)
−0.652149 + 0.758090i \(0.726133\pi\)
\(180\) 0 0
\(181\) 13.2331i 0.983608i 0.870706 + 0.491804i \(0.163662\pi\)
−0.870706 + 0.491804i \(0.836338\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.57173 + 2.63949i 0.336120 + 0.194059i
\(186\) 0 0
\(187\) 2.38935 + 0.640224i 0.174727 + 0.0468178i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.2787 + 6.51178i −0.816100 + 0.471176i −0.849070 0.528281i \(-0.822837\pi\)
0.0329696 + 0.999456i \(0.489504\pi\)
\(192\) 0 0
\(193\) −2.47786 + 0.663942i −0.178361 + 0.0477916i −0.346894 0.937904i \(-0.612764\pi\)
0.168533 + 0.985696i \(0.446097\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.0351 14.0351i −0.999960 0.999960i 4.02191e−5 1.00000i \(-0.499987\pi\)
−1.00000 4.02191e-5i \(0.999987\pi\)
\(198\) 0 0
\(199\) 17.2254i 1.22108i −0.791986 0.610539i \(-0.790953\pi\)
0.791986 0.610539i \(-0.209047\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.147718 0.551291i −0.0103678 0.0386931i
\(204\) 0 0
\(205\) 3.03216 1.75062i 0.211775 0.122269i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.68715 + 1.55142i −0.185874 + 0.107314i
\(210\) 0 0
\(211\) 10.2869 17.8175i 0.708181 1.22660i −0.257351 0.966318i \(-0.582850\pi\)
0.965531 0.260287i \(-0.0838171\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.56975 1.56975i 0.107056 0.107056i
\(216\) 0 0
\(217\) 0.163331 0.0110876
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 14.7036 + 13.3745i 0.989068 + 0.899669i
\(222\) 0 0
\(223\) −27.5422 7.37990i −1.84436 0.494195i −0.845172 0.534494i \(-0.820502\pi\)
−0.999188 + 0.0402997i \(0.987169\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.20639 15.6985i 0.279188 1.04194i −0.673794 0.738919i \(-0.735337\pi\)
0.952982 0.303026i \(-0.0979968\pi\)
\(228\) 0 0
\(229\) −17.2030 + 4.60954i −1.13681 + 0.304607i −0.777667 0.628677i \(-0.783597\pi\)
−0.359141 + 0.933283i \(0.616930\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −17.9589 −1.17653 −0.588263 0.808669i \(-0.700188\pi\)
−0.588263 + 0.808669i \(0.700188\pi\)
\(234\) 0 0
\(235\) 7.53562 0.491569
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −7.64515 + 2.04851i −0.494523 + 0.132507i −0.497457 0.867489i \(-0.665733\pi\)
0.00293378 + 0.999996i \(0.499066\pi\)
\(240\) 0 0
\(241\) 3.04324 11.3575i 0.196032 0.731603i −0.795965 0.605343i \(-0.793036\pi\)
0.991997 0.126260i \(-0.0402973\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.02078 + 1.07737i 0.256878 + 0.0688304i
\(246\) 0 0
\(247\) −24.9045 + 1.17880i −1.58463 + 0.0750052i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6.78689 −0.428385 −0.214192 0.976792i \(-0.568712\pi\)
−0.214192 + 0.976792i \(0.568712\pi\)
\(252\) 0 0
\(253\) 2.65663 2.65663i 0.167021 0.167021i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.74724 13.4186i 0.483259 0.837030i −0.516556 0.856253i \(-0.672786\pi\)
0.999815 + 0.0192238i \(0.00611950\pi\)
\(258\) 0 0
\(259\) −0.721588 + 0.416609i −0.0448373 + 0.0258868i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −18.8929 + 10.9078i −1.16499 + 0.672606i −0.952494 0.304556i \(-0.901492\pi\)
−0.212494 + 0.977162i \(0.568159\pi\)
\(264\) 0 0
\(265\) −0.121512 0.453489i −0.00746442 0.0278576i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.62378i 0.0990035i −0.998774 0.0495017i \(-0.984237\pi\)
0.998774 0.0495017i \(-0.0157633\pi\)
\(270\) 0 0
\(271\) 3.57292 + 3.57292i 0.217039 + 0.217039i 0.807250 0.590210i \(-0.200955\pi\)
−0.590210 + 0.807250i \(0.700955\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.01346 + 0.539506i −0.121416 + 0.0325334i
\(276\) 0 0
\(277\) −9.52727 + 5.50057i −0.572438 + 0.330497i −0.758123 0.652112i \(-0.773883\pi\)
0.185684 + 0.982609i \(0.440550\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −9.43668 2.52855i −0.562945 0.150841i −0.0338861 0.999426i \(-0.510788\pi\)
−0.529059 + 0.848585i \(0.677455\pi\)
\(282\) 0 0
\(283\) 3.28632 + 1.89736i 0.195351 + 0.112786i 0.594485 0.804106i \(-0.297356\pi\)
−0.399134 + 0.916893i \(0.630689\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.552625i 0.0326204i
\(288\) 0 0
\(289\) 13.3902 0.787659
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.24954 12.1275i −0.189840 0.708494i −0.993542 0.113462i \(-0.963806\pi\)
0.803702 0.595032i \(-0.202861\pi\)
\(294\) 0 0
\(295\) −2.17989 3.77568i −0.126918 0.219829i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 28.7583 9.18346i 1.66314 0.531093i
\(300\) 0 0
\(301\) 0.0906884 + 0.338454i 0.00522719 + 0.0195081i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.383359 0.383359i −0.0219511 0.0219511i
\(306\) 0 0
\(307\) −3.99494 3.99494i −0.228003 0.228003i 0.583855 0.811858i \(-0.301544\pi\)
−0.811858 + 0.583855i \(0.801544\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.11900 + 15.7946i −0.517091 + 0.895628i 0.482712 + 0.875779i \(0.339652\pi\)
−0.999803 + 0.0198485i \(0.993682\pi\)
\(312\) 0 0
\(313\) 2.02810 + 3.51277i 0.114635 + 0.198553i 0.917634 0.397427i \(-0.130097\pi\)
−0.802999 + 0.595980i \(0.796764\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.36127 8.81239i 0.132622 0.494953i −0.867374 0.497657i \(-0.834194\pi\)
0.999996 + 0.00270356i \(0.000860570\pi\)
\(318\) 0 0
\(319\) −2.63223 + 0.705305i −0.147377 + 0.0394895i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −26.9552 + 26.9552i −1.49983 + 1.49983i
\(324\) 0 0
\(325\) −16.3657 3.56532i −0.907804 0.197768i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.594699 + 1.03005i −0.0327868 + 0.0567885i
\(330\) 0 0
\(331\) 10.2991 + 2.75963i 0.566088 + 0.151683i 0.530502 0.847684i \(-0.322003\pi\)
0.0355863 + 0.999367i \(0.488670\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.95860 + 5.12445i 0.161646 + 0.279979i
\(336\) 0 0
\(337\) −28.8295 16.6447i −1.57044 0.906694i −0.996115 0.0880675i \(-0.971931\pi\)
−0.574326 0.818627i \(-0.694736\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.779850i 0.0422312i
\(342\) 0 0
\(343\) −0.929747 + 0.929747i −0.0502016 + 0.0502016i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −26.5898 15.3516i −1.42742 0.824119i −0.430500 0.902591i \(-0.641663\pi\)
−0.996916 + 0.0784717i \(0.974996\pi\)
\(348\) 0 0
\(349\) −5.67610 + 21.1835i −0.303835 + 1.13393i 0.630109 + 0.776506i \(0.283010\pi\)
−0.933944 + 0.357420i \(0.883657\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7.56350 28.2274i 0.402565 1.50239i −0.405939 0.913900i \(-0.633056\pi\)
0.808504 0.588491i \(-0.200278\pi\)
\(354\) 0 0
\(355\) 0.455345 + 0.262893i 0.0241672 + 0.0139529i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.20779 9.20779i 0.485969 0.485969i −0.421063 0.907031i \(-0.638343\pi\)
0.907031 + 0.421063i \(0.138343\pi\)
\(360\) 0 0
\(361\) 28.8171i 1.51669i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.63313 1.52024i −0.137824 0.0795729i
\(366\) 0 0
\(367\) −1.31371 2.27542i −0.0685752 0.118776i 0.829699 0.558211i \(-0.188512\pi\)
−0.898274 + 0.439435i \(0.855179\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.0715773 + 0.0191791i 0.00371611 + 0.000995728i
\(372\) 0 0
\(373\) 7.30630 12.6549i 0.378306 0.655245i −0.612510 0.790463i \(-0.709840\pi\)
0.990816 + 0.135218i \(0.0431734\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −21.3951 4.66100i −1.10190 0.240054i
\(378\) 0 0
\(379\) −0.202557 + 0.202557i −0.0104047 + 0.0104047i −0.712290 0.701885i \(-0.752342\pi\)
0.701885 + 0.712290i \(0.252342\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11.9165 3.19302i 0.608904 0.163155i 0.0588257 0.998268i \(-0.481264\pi\)
0.550079 + 0.835113i \(0.314598\pi\)
\(384\) 0 0
\(385\) −0.00649843 + 0.0242525i −0.000331191 + 0.00123602i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 10.0814 + 17.4615i 0.511148 + 0.885335i 0.999917 + 0.0129213i \(0.00411310\pi\)
−0.488768 + 0.872414i \(0.662554\pi\)
\(390\) 0 0
\(391\) 23.0789 39.9737i 1.16715 2.02156i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3.44500 3.44500i −0.173337 0.173337i
\(396\) 0 0
\(397\) −10.1506 10.1506i −0.509444 0.509444i 0.404912 0.914356i \(-0.367302\pi\)
−0.914356 + 0.404912i \(0.867302\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.14839 + 34.1423i 0.456849 + 1.70498i 0.682595 + 0.730797i \(0.260851\pi\)
−0.225746 + 0.974186i \(0.572482\pi\)
\(402\) 0 0
\(403\) 2.87308 5.56887i 0.143118 0.277405i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.98917 + 3.44534i 0.0985995 + 0.170779i
\(408\) 0 0
\(409\) 8.36144 + 31.2053i 0.413447 + 1.54300i 0.787927 + 0.615769i \(0.211155\pi\)
−0.374480 + 0.927235i \(0.622179\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.688134 0.0338609
\(414\) 0 0
\(415\) 6.02897i 0.295951i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −24.2744 14.0148i −1.18588 0.684668i −0.228512 0.973541i \(-0.573386\pi\)
−0.957367 + 0.288873i \(0.906719\pi\)
\(420\) 0 0
\(421\) 4.94935 + 1.32618i 0.241217 + 0.0646338i 0.377402 0.926050i \(-0.376818\pi\)
−0.136185 + 0.990683i \(0.543484\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −22.1783 + 12.8047i −1.07581 + 0.621117i
\(426\) 0 0
\(427\) 0.0826558 0.0221475i 0.00399999 0.00107179i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.88442 + 7.88442i 0.379779 + 0.379779i 0.871022 0.491243i \(-0.163457\pi\)
−0.491243 + 0.871022i \(0.663457\pi\)
\(432\) 0 0
\(433\) 21.4637i 1.03148i −0.856746 0.515739i \(-0.827517\pi\)
0.856746 0.515739i \(-0.172483\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 14.9853 + 55.9259i 0.716843 + 2.67530i
\(438\) 0 0
\(439\) 8.91004 5.14422i 0.425253 0.245520i −0.272069 0.962278i \(-0.587708\pi\)
0.697322 + 0.716758i \(0.254375\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −33.9414 + 19.5961i −1.61260 + 0.931037i −0.623840 + 0.781552i \(0.714428\pi\)
−0.988764 + 0.149486i \(0.952238\pi\)
\(444\) 0 0
\(445\) −1.88060 + 3.25730i −0.0891491 + 0.154411i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.87941 + 1.87941i −0.0886947 + 0.0886947i −0.750062 0.661367i \(-0.769976\pi\)
0.661367 + 0.750062i \(0.269976\pi\)
\(450\) 0 0
\(451\) 2.63860 0.124247
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.135755 + 0.149245i −0.00636428 + 0.00699669i
\(456\) 0 0
\(457\) 38.0595 + 10.1980i 1.78035 + 0.477042i 0.990647 0.136451i \(-0.0435698\pi\)
0.789700 + 0.613494i \(0.210236\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.08960 + 4.06644i −0.0507477 + 0.189393i −0.986647 0.162876i \(-0.947923\pi\)
0.935899 + 0.352269i \(0.114590\pi\)
\(462\) 0 0
\(463\) −23.2968 + 6.24235i −1.08269 + 0.290107i −0.755698 0.654920i \(-0.772702\pi\)
−0.326994 + 0.945026i \(0.606036\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −24.1608 −1.11803 −0.559013 0.829159i \(-0.688820\pi\)
−0.559013 + 0.829159i \(0.688820\pi\)
\(468\) 0 0
\(469\) −0.933953 −0.0431260
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.61600 0.433007i 0.0743039 0.0199097i
\(474\) 0 0
\(475\) 8.31417 31.0289i 0.381480 1.42370i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.32218 + 2.49787i 0.425941 + 0.114131i 0.465420 0.885090i \(-0.345903\pi\)
−0.0394790 + 0.999220i \(0.512570\pi\)
\(480\) 0 0
\(481\) 1.51141 + 31.9315i 0.0689142 + 1.45595i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.36857 0.425405
\(486\) 0 0
\(487\) 15.4742 15.4742i 0.701205 0.701205i −0.263464 0.964669i \(-0.584865\pi\)
0.964669 + 0.263464i \(0.0848651\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.89886 11.9492i 0.311341 0.539258i −0.667312 0.744778i \(-0.732555\pi\)
0.978653 + 0.205520i \(0.0658885\pi\)
\(492\) 0 0
\(493\) −28.9941 + 16.7397i −1.30583 + 0.753919i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.0718702 + 0.0414943i −0.00322382 + 0.00186127i
\(498\) 0 0
\(499\) 0.170077 + 0.634735i 0.00761368 + 0.0284146i 0.969628 0.244584i \(-0.0786513\pi\)
−0.962014 + 0.272998i \(0.911985\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 20.4283i 0.910852i −0.890274 0.455426i \(-0.849487\pi\)
0.890274 0.455426i \(-0.150513\pi\)
\(504\) 0 0
\(505\) 2.02658 + 2.02658i 0.0901817 + 0.0901817i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.0161032 0.00431483i 0.000713760 0.000191252i −0.258462 0.966021i \(-0.583216\pi\)
0.259176 + 0.965830i \(0.416549\pi\)
\(510\) 0 0
\(511\) 0.415605 0.239950i 0.0183853 0.0106147i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.49756 + 0.937170i 0.154121 + 0.0412966i
\(516\) 0 0
\(517\) 4.91814 + 2.83949i 0.216300 + 0.124881i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 31.5428i 1.38191i −0.722896 0.690957i \(-0.757189\pi\)
0.722896 0.690957i \(-0.242811\pi\)
\(522\) 0 0
\(523\) 2.86422 0.125243 0.0626217 0.998037i \(-0.480054\pi\)
0.0626217 + 0.998037i \(0.480054\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.47973 9.25449i −0.108019 0.403132i
\(528\) 0 0
\(529\) −23.5530 40.7949i −1.02404 1.77369i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 18.8421 + 9.72101i 0.816143 + 0.421064i
\(534\) 0 0
\(535\) −0.950615 3.54774i −0.0410987 0.153382i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.21822 + 2.21822i 0.0955453 + 0.0955453i
\(540\) 0 0
\(541\) 24.0790 + 24.0790i 1.03524 + 1.03524i 0.999356 + 0.0358828i \(0.0114243\pi\)
0.0358828 + 0.999356i \(0.488576\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.38514 2.39913i 0.0593327 0.102767i
\(546\) 0 0
\(547\) 3.28072 + 5.68237i 0.140273 + 0.242960i 0.927599 0.373576i \(-0.121869\pi\)
−0.787326 + 0.616537i \(0.788535\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 10.8692 40.5646i 0.463045 1.72811i
\(552\) 0 0
\(553\) 0.742774 0.199026i 0.0315860 0.00846343i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 31.2392 31.2392i 1.32365 1.32365i 0.412846 0.910801i \(-0.364535\pi\)
0.910801 0.412846i \(-0.135465\pi\)
\(558\) 0 0
\(559\) 13.1351 + 2.86152i 0.555554 + 0.121029i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.67778 4.63804i 0.112855 0.195470i −0.804065 0.594541i \(-0.797334\pi\)
0.916920 + 0.399071i \(0.130667\pi\)
\(564\) 0 0
\(565\) −0.559956 0.150040i −0.0235575 0.00631222i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.91658 11.9799i −0.289958 0.502222i 0.683841 0.729631i \(-0.260308\pi\)
−0.973799 + 0.227408i \(0.926975\pi\)
\(570\) 0 0
\(571\) 0.279180 + 0.161184i 0.0116833 + 0.00674536i 0.505830 0.862633i \(-0.331186\pi\)
−0.494147 + 0.869378i \(0.664520\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 38.8963i 1.62209i
\(576\) 0 0
\(577\) −14.4319 + 14.4319i −0.600807 + 0.600807i −0.940527 0.339720i \(-0.889668\pi\)
0.339720 + 0.940527i \(0.389668\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.824105 0.475797i −0.0341896 0.0197394i
\(582\) 0 0
\(583\) 0.0915738 0.341758i 0.00379260 0.0141542i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.97237 + 22.2892i −0.246506 + 0.919973i 0.726115 + 0.687574i \(0.241324\pi\)
−0.972621 + 0.232399i \(0.925343\pi\)
\(588\) 0 0
\(589\) 10.4079 + 6.00901i 0.428851 + 0.247597i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.94470 1.94470i 0.0798591 0.0798591i −0.666049 0.745908i \(-0.732016\pi\)
0.745908 + 0.666049i \(0.232016\pi\)
\(594\) 0 0
\(595\) 0.308468i 0.0126460i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −11.1324 6.42730i −0.454858 0.262613i 0.255022 0.966935i \(-0.417917\pi\)
−0.709880 + 0.704323i \(0.751251\pi\)
\(600\) 0 0
\(601\) −7.22889 12.5208i −0.294873 0.510734i 0.680083 0.733135i \(-0.261944\pi\)
−0.974955 + 0.222401i \(0.928611\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.21056 1.66411i −0.252495 0.0676559i
\(606\) 0 0
\(607\) 2.33525 4.04478i 0.0947850 0.164172i −0.814734 0.579835i \(-0.803117\pi\)
0.909519 + 0.415663i \(0.136450\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 24.6591 + 38.3959i 0.997601 + 1.55333i
\(612\) 0 0
\(613\) −32.2764 + 32.2764i −1.30363 + 1.30363i −0.377709 + 0.925924i \(0.623288\pi\)
−0.925924 + 0.377709i \(0.876712\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 29.1612 7.81372i 1.17399 0.314569i 0.381448 0.924390i \(-0.375426\pi\)
0.792538 + 0.609822i \(0.208759\pi\)
\(618\) 0 0
\(619\) −7.87339 + 29.3839i −0.316458 + 1.18104i 0.606166 + 0.795338i \(0.292707\pi\)
−0.922624 + 0.385700i \(0.873960\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −0.296829 0.514122i −0.0118922 0.0205979i
\(624\) 0 0
\(625\) 9.90398 17.1542i 0.396159 0.686168i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 34.5609 + 34.5609i 1.37803 + 1.37803i
\(630\) 0 0
\(631\) 18.0342 + 18.0342i 0.717931 + 0.717931i 0.968181 0.250251i \(-0.0805130\pi\)
−0.250251 + 0.968181i \(0.580513\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.888201 + 3.31481i 0.0352472 + 0.131544i
\(636\) 0 0
\(637\) 7.66794 + 24.0124i 0.303815 + 0.951407i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −18.9014 32.7382i −0.746562 1.29308i −0.949461 0.313884i \(-0.898370\pi\)
0.202900 0.979200i \(-0.434963\pi\)
\(642\) 0 0
\(643\) 10.0245 + 37.4118i 0.395326 + 1.47538i 0.821224 + 0.570606i \(0.193292\pi\)
−0.425898 + 0.904771i \(0.640042\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 37.4085 1.47068 0.735339 0.677699i \(-0.237023\pi\)
0.735339 + 0.677699i \(0.237023\pi\)
\(648\) 0 0
\(649\) 3.28561i 0.128972i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −22.3962 12.9304i −0.876431 0.506008i −0.00695093 0.999976i \(-0.502213\pi\)
−0.869480 + 0.493968i \(0.835546\pi\)
\(654\) 0 0
\(655\) −0.368323 0.0986919i −0.0143916 0.00385621i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 21.5416 12.4370i 0.839140 0.484478i −0.0178318 0.999841i \(-0.505676\pi\)
0.856972 + 0.515363i \(0.172343\pi\)
\(660\) 0 0
\(661\) −2.13017 + 0.570777i −0.0828540 + 0.0222007i −0.300008 0.953937i \(-0.596989\pi\)
0.217154 + 0.976137i \(0.430323\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.273602 0.273602i −0.0106098 0.0106098i
\(666\) 0 0
\(667\) 50.8498i 1.96891i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.105747 0.394654i −0.00408232 0.0152354i
\(672\) 0 0
\(673\) 19.8145 11.4399i 0.763795 0.440977i −0.0668619 0.997762i \(-0.521299\pi\)
0.830656 + 0.556785i \(0.187965\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8.77596 + 5.06680i −0.337287 + 0.194733i −0.659072 0.752080i \(-0.729051\pi\)
0.321784 + 0.946813i \(0.395717\pi\)
\(678\) 0 0
\(679\) −0.739353 + 1.28060i −0.0283738 + 0.0491448i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 17.0297 17.0297i 0.651622 0.651622i −0.301761 0.953384i \(-0.597575\pi\)
0.953384 + 0.301761i \(0.0975745\pi\)
\(684\) 0 0
\(685\) 4.21704 0.161125
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.91301 2.10311i 0.0728799 0.0801220i
\(690\) 0 0
\(691\) −22.1164 5.92606i −0.841346 0.225438i −0.187689 0.982229i \(-0.560100\pi\)
−0.653657 + 0.756791i \(0.726766\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.25498 8.41570i 0.0855362 0.319226i
\(696\) 0 0
\(697\) 31.3123 8.39011i 1.18604 0.317798i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 37.0143 1.39801 0.699005 0.715116i \(-0.253626\pi\)
0.699005 + 0.715116i \(0.253626\pi\)
\(702\) 0 0
\(703\) −61.3090 −2.31231
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −0.436950 + 0.117080i −0.0164332 + 0.00440326i
\(708\) 0 0
\(709\) −2.55799 + 9.54653i −0.0960672 + 0.358528i −0.997179 0.0750590i \(-0.976085\pi\)
0.901112 + 0.433587i \(0.142752\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −14.0560 3.76630i −0.526403 0.141049i
\(714\) 0 0
\(715\) 0.712593 + 0.648184i 0.0266495 + 0.0242407i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 15.8636 0.591613 0.295807 0.955248i \(-0.404412\pi\)
0.295807 + 0.955248i \(0.404412\pi\)
\(720\) 0 0
\(721\) −0.404125 + 0.404125i −0.0150504 + 0.0150504i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 14.1063 24.4328i 0.523894 0.907411i
\(726\) 0 0
\(727\) −28.3237 + 16.3527i −1.05047 + 0.606489i −0.922781 0.385325i \(-0.874089\pi\)
−0.127689 + 0.991814i \(0.540756\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 17.8003 10.2770i 0.658367 0.380109i
\(732\) 0 0
\(733\) −2.45680 9.16892i −0.0907442 0.338662i 0.905596 0.424142i \(-0.139424\pi\)
−0.996340 + 0.0854802i \(0.972758\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.45932i 0.164261i
\(738\) 0 0
\(739\) −15.9355 15.9355i −0.586198 0.586198i 0.350402 0.936599i \(-0.386045\pi\)
−0.936599 + 0.350402i \(0.886045\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −29.4945 + 7.90302i −1.08205 + 0.289934i −0.755434 0.655224i \(-0.772574\pi\)
−0.326613 + 0.945158i \(0.605907\pi\)
\(744\) 0 0
\(745\) 9.75535 5.63226i 0.357408 0.206350i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.559965 + 0.150042i 0.0204607 + 0.00548242i
\(750\) 0 0
\(751\) 27.5324 + 15.8958i 1.00467 + 0.580048i 0.909627 0.415425i \(-0.136367\pi\)
0.0950448 + 0.995473i \(0.469701\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.07548i 0.148322i
\(756\) 0 0
\(757\) 9.24174 0.335897 0.167948 0.985796i \(-0.446286\pi\)
0.167948 + 0.985796i \(0.446286\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −8.57104 31.9876i −0.310700 1.15955i −0.927927 0.372763i \(-0.878411\pi\)
0.617227 0.786785i \(-0.288256\pi\)
\(762\) 0 0
\(763\) 0.218626 + 0.378671i 0.00791478 + 0.0137088i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.1047 23.4624i 0.437075 0.847179i
\(768\) 0 0
\(769\) −2.63678 9.84061i −0.0950849 0.354862i 0.901947 0.431846i \(-0.142138\pi\)
−0.997032 + 0.0769842i \(0.975471\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 12.1060 + 12.1060i 0.435421 + 0.435421i 0.890468 0.455046i \(-0.150377\pi\)
−0.455046 + 0.890468i \(0.650377\pi\)
\(774\) 0 0
\(775\) 5.70897 + 5.70897i 0.205072 + 0.205072i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −20.3313 + 35.2149i −0.728446 + 1.26171i
\(780\) 0 0
\(781\) 0.198121 + 0.343156i 0.00708934 + 0.0122791i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.62046 + 6.04765i −0.0578368 + 0.215850i
\(786\) 0 0
\(787\) 28.9697 7.76240i 1.03266 0.276700i 0.297590 0.954694i \(-0.403817\pi\)
0.735067 + 0.677994i \(0.237151\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.0646999 0.0646999i 0.00230047 0.00230047i
\(792\) 0 0
\(793\) 0.698829 3.20779i 0.0248161 0.113912i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14.1855 + 24.5700i −0.502476 + 0.870314i 0.497520 + 0.867453i \(0.334244\pi\)
−0.999996 + 0.00286136i \(0.999089\pi\)
\(798\) 0 0
\(799\) 67.3926 + 18.0578i 2.38418 + 0.638839i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.14568 1.98438i −0.0404302 0.0700271i
\(804\) 0 0
\(805\) 0.405743 + 0.234256i 0.0143006 + 0.00825644i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 41.8676i 1.47199i −0.676989 0.735993i \(-0.736715\pi\)
0.676989 0.735993i \(-0.263285\pi\)
\(810\) 0 0
\(811\) 24.9544 24.9544i 0.876267 0.876267i −0.116879 0.993146i \(-0.537289\pi\)
0.993146 + 0.116879i \(0.0372890\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.36625 3.09820i −0.187971 0.108525i
\(816\) 0 0
\(817\) −6.67294 + 24.9037i −0.233457 + 0.871272i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4.93204 + 18.4066i −0.172129 + 0.642396i 0.824893 + 0.565288i \(0.191235\pi\)
−0.997023 + 0.0771075i \(0.975432\pi\)
\(822\) 0 0
\(823\) 8.28351 + 4.78249i 0.288745 + 0.166707i 0.637376 0.770553i \(-0.280020\pi\)
−0.348631 + 0.937260i \(0.613353\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.8587 13.8587i 0.481915 0.481915i −0.423828 0.905743i \(-0.639314\pi\)
0.905743 + 0.423828i \(0.139314\pi\)
\(828\) 0 0
\(829\) 45.6637i 1.58597i 0.609244 + 0.792983i \(0.291473\pi\)
−0.609244 + 0.792983i \(0.708527\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 33.3770 + 19.2702i 1.15644 + 0.667673i
\(834\) 0 0
\(835\) −6.68345 11.5761i −0.231290 0.400606i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −13.6275 3.65147i −0.470472 0.126063i 0.0157905 0.999875i \(-0.494974\pi\)
−0.486263 + 0.873813i \(0.661640\pi\)
\(840\) 0 0
\(841\) 3.94137 6.82665i 0.135909 0.235402i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.70059 + 7.25395i 0.0929031 + 0.249544i
\(846\) 0 0
\(847\) 0.717597 0.717597i 0.0246569 0.0246569i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 71.7058 19.2135i 2.45804 0.658631i
\(852\) 0 0
\(853\) 9.76933 36.4596i 0.334495 1.24835i −0.569920 0.821700i \(-0.693026\pi\)
0.904415 0.426653i \(-0.140308\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 4.38094 + 7.58800i 0.149650 + 0.259201i 0.931098 0.364769i \(-0.118852\pi\)
−0.781448 + 0.623970i \(0.785519\pi\)
\(858\) 0 0
\(859\) −17.2450 + 29.8692i −0.588391 + 1.01912i 0.406052 + 0.913850i \(0.366905\pi\)
−0.994443 + 0.105274i \(0.966428\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 27.1745 + 27.1745i 0.925029 + 0.925029i 0.997379 0.0723499i \(-0.0230498\pi\)
−0.0723499 + 0.997379i \(0.523050\pi\)
\(864\) 0 0
\(865\) 6.91872 + 6.91872i 0.235243 + 0.235243i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.950282 3.54650i −0.0322361 0.120307i
\(870\) 0 0
\(871\) −16.4288 + 31.8438i −0.556669 + 1.07899i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.269859 0.467410i −0.00912291 0.0158013i
\(876\) 0 0
\(877\) 1.12631 + 4.20346i 0.0380329 + 0.141941i 0.982332 0.187149i \(-0.0599248\pi\)
−0.944299 + 0.329090i \(0.893258\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −17.7491 −0.597983 −0.298992 0.954256i \(-0.596650\pi\)
−0.298992 + 0.954256i \(0.596650\pi\)
\(882\) 0 0
\(883\) 13.6618i 0.459757i 0.973219 + 0.229879i \(0.0738329\pi\)
−0.973219 + 0.229879i \(0.926167\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 27.8424 + 16.0748i 0.934858 + 0.539740i 0.888345 0.459177i \(-0.151856\pi\)
0.0465133 + 0.998918i \(0.485189\pi\)
\(888\) 0 0
\(889\) −0.523200 0.140191i −0.0175476 0.00470185i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −75.7920 + 43.7586i −2.53628 + 1.46432i
\(894\) 0 0
\(895\) −10.0361 + 2.68916i −0.335470 + 0.0898888i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7.46343 + 7.46343i 0.248919 + 0.248919i
\(900\) 0 0
\(901\) 4.34683i 0.144814i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.03927 + 7.61066i 0.0677877 + 0.252987i
\(906\) 0 0
\(907\) 22.2907 12.8695i 0.740149 0.427325i −0.0819746 0.996634i \(-0.526123\pi\)
0.822123 + 0.569309i \(0.192789\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 11.7787 6.80041i 0.390244 0.225308i −0.292022 0.956412i \(-0.594328\pi\)
0.682266 + 0.731104i \(0.260995\pi\)
\(912\) 0 0
\(913\) −2.27177 + 3.93483i −0.0751847 + 0.130224i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0.0425578 0.0425578i 0.00140538 0.00140538i
\(918\) 0 0
\(919\) 3.46854 0.114417 0.0572083 0.998362i \(-0.481780\pi\)
0.0572083 + 0.998362i \(0.481780\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0.150536 + 3.18037i 0.00495496 + 0.104683i
\(924\) 0 0
\(925\) −39.7839 10.6601i −1.30809 0.350501i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 7.03879 26.2691i 0.230935 0.861862i −0.749004 0.662565i \(-0.769468\pi\)
0.979939 0.199296i \(-0.0638657\pi\)
\(930\) 0 0
\(931\) −46.6966 + 12.5123i −1.53042 + 0.410074i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.47283 0.0481668
\(936\) 0 0
\(937\) 40.3459 1.31804 0.659022 0.752124i \(-0.270970\pi\)
0.659022 + 0.752124i \(0.270970\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −49.4561 + 13.2517i −1.61222 + 0.431994i −0.948704 0.316165i \(-0.897605\pi\)
−0.663520 + 0.748159i \(0.730938\pi\)
\(942\) 0 0
\(943\) 12.7432 47.5583i 0.414976 1.54871i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23.4567 + 6.28521i 0.762241 + 0.204242i 0.618941 0.785438i \(-0.287562\pi\)
0.143300 + 0.989679i \(0.454229\pi\)
\(948\) 0 0
\(949\) −0.870508 18.3912i −0.0282579 0.597003i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 35.8048 1.15983 0.579915 0.814677i \(-0.303086\pi\)
0.579915 + 0.814677i \(0.303086\pi\)
\(954\) 0 0
\(955\) −5.48317 + 5.48317i −0.177431 + 0.177431i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.332803 + 0.576431i −0.0107468 + 0.0186139i
\(960\) 0 0
\(961\) 24.2309 13.9897i 0.781643 0.451282i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.32276 + 0.763697i −0.0425812 + 0.0245843i
\(966\) 0 0
\(967\) 14.8327 + 55.3566i 0.476989 + 1.78015i 0.613703 + 0.789537i \(0.289679\pi\)
−0.136714 + 0.990611i \(0.543654\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 33.6934i 1.08127i −0.841257 0.540636i \(-0.818184\pi\)
0.841257 0.540636i \(-0.181816\pi\)
\(972\) 0 0
\(973\) 0.972389 + 0.972389i 0.0311734 + 0.0311734i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −48.6894 + 13.0463i −1.55771 + 0.417387i −0.931938 0.362618i \(-0.881883\pi\)
−0.625773 + 0.780006i \(0.715216\pi\)
\(978\) 0 0
\(979\) −2.45476 + 1.41726i −0.0784546 + 0.0452958i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −8.37401 2.24381i −0.267090 0.0715664i 0.122789 0.992433i \(-0.460816\pi\)
−0.389878 + 0.920866i \(0.627483\pi\)
\(984\) 0 0
\(985\) −10.2348 5.90905i −0.326107 0.188278i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 31.2181i 0.992679i
\(990\) 0 0
\(991\) −41.3299 −1.31289 −0.656443 0.754376i \(-0.727940\pi\)
−0.656443 + 0.754376i \(0.727940\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2.65450 9.90675i −0.0841535 0.314065i
\(996\) 0 0
\(997\) −21.3446 36.9700i −0.675991 1.17085i −0.976178 0.216970i \(-0.930383\pi\)
0.300187 0.953880i \(-0.402951\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1404.2.cj.a.1097.9 56
3.2 odd 2 468.2.cg.a.5.1 56
9.2 odd 6 inner 1404.2.cj.a.629.9 56
9.7 even 3 468.2.cg.a.317.1 yes 56
13.8 odd 4 inner 1404.2.cj.a.125.9 56
39.8 even 4 468.2.cg.a.437.1 yes 56
117.34 odd 12 468.2.cg.a.281.1 yes 56
117.47 even 12 inner 1404.2.cj.a.1061.9 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.cg.a.5.1 56 3.2 odd 2
468.2.cg.a.281.1 yes 56 117.34 odd 12
468.2.cg.a.317.1 yes 56 9.7 even 3
468.2.cg.a.437.1 yes 56 39.8 even 4
1404.2.cj.a.125.9 56 13.8 odd 4 inner
1404.2.cj.a.629.9 56 9.2 odd 6 inner
1404.2.cj.a.1061.9 56 117.47 even 12 inner
1404.2.cj.a.1097.9 56 1.1 even 1 trivial