Newspace parameters
Level: | \( N \) | \(=\) | \( 14 = 2 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 50 \) |
Character orbit: | \([\chi]\) | \(=\) | 14.c (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(212.892687139\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 | −8.38861e6 | + | 1.45295e7i | −4.27353e11 | − | 7.40198e11i | −1.40737e14 | − | 2.43764e14i | 1.32602e17 | − | 2.29673e17i | 1.43396e19 | 7.23922e19 | + | 5.01680e20i | 4.72237e21 | −2.45612e23 | + | 4.25412e23i | 2.22469e24 | + | 3.85327e24i | ||||
9.2 | −8.38861e6 | + | 1.45295e7i | −3.97856e11 | − | 6.89106e11i | −1.40737e14 | − | 2.43764e14i | −6.17949e16 | + | 1.07032e17i | 1.33498e19 | 5.06844e20 | − | 5.70075e18i | 4.72237e21 | −1.96928e23 | + | 3.41090e23i | −1.03675e24 | − | 1.79570e24i | ||||
9.3 | −8.38861e6 | + | 1.45295e7i | −3.69650e11 | − | 6.40252e11i | −1.40737e14 | − | 2.43764e14i | −6.61451e16 | + | 1.14567e17i | 1.24034e19 | −4.91791e20 | − | 1.22740e20i | 4.72237e21 | −1.53632e23 | + | 2.66099e23i | −1.10973e24 | − | 1.92211e24i | ||||
9.4 | −8.38861e6 | + | 1.45295e7i | −3.35575e11 | − | 5.81233e11i | −1.40737e14 | − | 2.43764e14i | 5.24436e16 | − | 9.08349e16i | 1.12600e19 | −2.84063e20 | − | 4.19800e20i | 4.72237e21 | −1.05572e23 | + | 1.82856e23i | 8.79857e23 | + | 1.52396e24i | ||||
9.5 | −8.38861e6 | + | 1.45295e7i | −2.66782e11 | − | 4.62081e11i | −1.40737e14 | − | 2.43764e14i | 1.37804e15 | − | 2.38684e15i | 8.95173e18 | −2.64114e19 | + | 5.06188e20i | 4.72237e21 | −2.26961e22 | + | 3.93108e22i | 2.31198e22 | + | 4.00446e22i | ||||
9.6 | −8.38861e6 | + | 1.45295e7i | −1.33415e11 | − | 2.31081e11i | −1.40737e14 | − | 2.43764e14i | 6.73220e16 | − | 1.16605e17i | 4.47666e18 | 2.30631e20 | − | 4.51368e20i | 4.72237e21 | 8.40506e22 | − | 1.45580e23i | 1.12948e24 | + | 1.95631e24i | ||||
9.7 | −8.38861e6 | + | 1.45295e7i | −3.47729e10 | − | 6.02285e10i | −1.40737e14 | − | 2.43764e14i | −1.02602e17 | + | 1.77713e17i | 1.16679e18 | −1.64679e20 | − | 4.79379e20i | 4.72237e21 | 1.17231e23 | − | 2.03051e23i | −1.72138e24 | − | 2.98152e24i | ||||
9.8 | −8.38861e6 | + | 1.45295e7i | −1.33330e10 | − | 2.30934e10i | −1.40737e14 | − | 2.43764e14i | −9.67735e16 | + | 1.67617e17i | 4.47380e17 | 4.52496e20 | − | 2.28409e20i | 4.72237e21 | 1.19294e23 | − | 2.06623e23i | −1.62359e24 | − | 2.81214e24i | ||||
9.9 | −8.38861e6 | + | 1.45295e7i | 1.34514e10 | + | 2.32986e10i | −1.40737e14 | − | 2.43764e14i | 2.86502e16 | − | 4.96236e16i | −4.51355e17 | −4.48250e20 | + | 2.36634e20i | 4.72237e21 | 1.19288e23 | − | 2.06612e23i | 4.80671e23 | + | 8.32547e23i | ||||
9.10 | −8.38861e6 | + | 1.45295e7i | 5.10941e10 | + | 8.84976e10i | −1.40737e14 | − | 2.43764e14i | −6.36376e16 | + | 1.10224e17i | −1.71443e18 | −7.33050e19 | + | 5.01548e20i | 4.72237e21 | 1.14428e23 | − | 1.98196e23i | −1.06766e24 | − | 1.84924e24i | ||||
9.11 | −8.38861e6 | + | 1.45295e7i | 1.18607e11 | + | 2.05434e11i | −1.40737e14 | − | 2.43764e14i | 1.24153e17 | − | 2.15040e17i | −3.97981e18 | −5.01750e20 | − | 7.19092e19i | 4.72237e21 | 9.15142e22 | − | 1.58507e23i | 2.08295e24 | + | 3.60777e24i | ||||
9.12 | −8.38861e6 | + | 1.45295e7i | 2.32940e11 | + | 4.03463e11i | −1.40737e14 | − | 2.43764e14i | 6.54039e16 | − | 1.13283e17i | −7.81616e18 | 3.98026e20 | + | 3.13846e20i | 4.72237e21 | 1.11279e22 | − | 1.92740e22i | 1.09730e24 | + | 1.90057e24i | ||||
9.13 | −8.38861e6 | + | 1.45295e7i | 2.75646e11 | + | 4.77432e11i | −1.40737e14 | − | 2.43764e14i | −6.53558e16 | + | 1.13200e17i | −9.24913e18 | −5.01005e20 | + | 7.69273e19i | 4.72237e21 | −3.23113e22 | + | 5.59647e22i | −1.09649e24 | − | 1.89917e24i | ||||
9.14 | −8.38861e6 | + | 1.45295e7i | 3.24593e11 | + | 5.62211e11i | −1.40737e14 | − | 2.43764e14i | 2.22157e16 | − | 3.84787e16i | −1.08915e19 | 3.26450e20 | − | 3.87755e20i | 4.72237e21 | −9.10710e22 | + | 1.57740e23i | 3.72717e23 | + | 6.45565e23i | ||||
9.15 | −8.38861e6 | + | 1.45295e7i | 3.73043e11 | + | 6.46130e11i | −1.40737e14 | − | 2.43764e14i | −1.13076e16 | + | 1.95854e16i | −1.25173e19 | −2.30279e20 | − | 4.51547e20i | 4.72237e21 | −1.58673e23 | + | 2.74830e23i | −1.89711e23 | − | 3.28589e23i | ||||
9.16 | −8.38861e6 | + | 1.45295e7i | 4.19567e11 | + | 7.26711e11i | −1.40737e14 | − | 2.43764e14i | −1.05072e17 | + | 1.81991e17i | −1.40783e19 | 2.32831e20 | + | 4.50237e20i | 4.72237e21 | −2.32423e23 | + | 4.02568e23i | −1.76282e24 | − | 3.05329e24i | ||||
11.1 | −8.38861e6 | − | 1.45295e7i | −4.27353e11 | + | 7.40198e11i | −1.40737e14 | + | 2.43764e14i | 1.32602e17 | + | 2.29673e17i | 1.43396e19 | 7.23922e19 | − | 5.01680e20i | 4.72237e21 | −2.45612e23 | − | 4.25412e23i | 2.22469e24 | − | 3.85327e24i | ||||
11.2 | −8.38861e6 | − | 1.45295e7i | −3.97856e11 | + | 6.89106e11i | −1.40737e14 | + | 2.43764e14i | −6.17949e16 | − | 1.07032e17i | 1.33498e19 | 5.06844e20 | + | 5.70075e18i | 4.72237e21 | −1.96928e23 | − | 3.41090e23i | −1.03675e24 | + | 1.79570e24i | ||||
11.3 | −8.38861e6 | − | 1.45295e7i | −3.69650e11 | + | 6.40252e11i | −1.40737e14 | + | 2.43764e14i | −6.61451e16 | − | 1.14567e17i | 1.24034e19 | −4.91791e20 | + | 1.22740e20i | 4.72237e21 | −1.53632e23 | − | 2.66099e23i | −1.10973e24 | + | 1.92211e24i | ||||
11.4 | −8.38861e6 | − | 1.45295e7i | −3.35575e11 | + | 5.81233e11i | −1.40737e14 | + | 2.43764e14i | 5.24436e16 | + | 9.08349e16i | 1.12600e19 | −2.84063e20 | + | 4.19800e20i | 4.72237e21 | −1.05572e23 | − | 1.82856e23i | 8.79857e23 | − | 1.52396e24i | ||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 14.50.c.a | ✓ | 32 |
7.c | even | 3 | 1 | inner | 14.50.c.a | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
14.50.c.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
14.50.c.a | ✓ | 32 | 7.c | even | 3 | 1 | inner |