Properties

Label 2-14-7.4-c49-0-31
Degree $2$
Conductor $14$
Sign $0.857 + 0.514i$
Analytic cond. $212.892$
Root an. cond. $14.5908$
Motivic weight $49$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−8.38e6 − 1.45e7i)2-s + (4.19e11 − 7.26e11i)3-s + (−1.40e14 + 2.43e14i)4-s + (−1.05e17 − 1.81e17i)5-s − 1.40e19·6-s + (2.32e20 − 4.50e20i)7-s + (4.72e21 − 5.24e5i)8-s + (−2.32e23 − 4.02e23i)9-s + (−1.76e24 + 3.05e24i)10-s + (1.98e24 − 3.43e24i)11-s + (1.18e26 + 2.04e26i)12-s − 3.62e27·13-s + (−8.49e27 + 3.93e26i)14-s − 1.76e29·15-s + (−3.96e28 − 6.86e28i)16-s + (−1.26e30 + 2.19e30i)17-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (0.857 − 1.48i)3-s + (−0.249 + 0.433i)4-s + (−0.788 − 1.36i)5-s − 1.21·6-s + (0.459 − 0.888i)7-s + 0.353·8-s + (−0.971 − 1.68i)9-s + (−0.557 + 0.965i)10-s + (0.0607 − 0.105i)11-s + (0.428 + 0.742i)12-s − 1.85·13-s + (−0.706 + 0.0327i)14-s − 2.70·15-s + (−0.125 − 0.216i)16-s + (−0.906 + 1.57i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.857 + 0.514i)\, \overline{\Lambda}(50-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s+49/2) \, L(s)\cr =\mathstrut & (0.857 + 0.514i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14\)    =    \(2 \cdot 7\)
Sign: $0.857 + 0.514i$
Analytic conductor: \(212.892\)
Root analytic conductor: \(14.5908\)
Motivic weight: \(49\)
Rational: no
Arithmetic: yes
Character: $\chi_{14} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 14,\ (\ :49/2),\ 0.857 + 0.514i)\)

Particular Values

\(L(25)\) \(\approx\) \(0.2471306164\)
\(L(\frac12)\) \(\approx\) \(0.2471306164\)
\(L(\frac{51}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (8.38e6 + 1.45e7i)T \)
7 \( 1 + (-2.32e20 + 4.50e20i)T \)
good3 \( 1 + (-4.19e11 + 7.26e11i)T + (-1.19e23 - 2.07e23i)T^{2} \)
5 \( 1 + (1.05e17 + 1.81e17i)T + (-8.88e33 + 1.53e34i)T^{2} \)
11 \( 1 + (-1.98e24 + 3.43e24i)T + (-5.33e50 - 9.24e50i)T^{2} \)
13 \( 1 + 3.62e27T + 3.83e54T^{2} \)
17 \( 1 + (1.26e30 - 2.19e30i)T + (-9.79e59 - 1.69e60i)T^{2} \)
19 \( 1 + (9.11e30 + 1.57e31i)T + (-2.27e62 + 3.94e62i)T^{2} \)
23 \( 1 + (-1.12e33 - 1.94e33i)T + (-2.65e66 + 4.59e66i)T^{2} \)
29 \( 1 - 4.73e35T + 4.54e71T^{2} \)
31 \( 1 + (-1.58e36 + 2.75e36i)T + (-5.96e72 - 1.03e73i)T^{2} \)
37 \( 1 + (7.74e37 + 1.34e38i)T + (-3.47e76 + 6.01e76i)T^{2} \)
41 \( 1 - 1.61e39T + 1.06e79T^{2} \)
43 \( 1 - 5.84e39T + 1.09e80T^{2} \)
47 \( 1 + (4.18e40 + 7.24e40i)T + (-4.28e81 + 7.41e81i)T^{2} \)
53 \( 1 + (1.06e42 - 1.83e42i)T + (-1.54e84 - 2.67e84i)T^{2} \)
59 \( 1 + (-1.53e43 + 2.66e43i)T + (-2.95e86 - 5.12e86i)T^{2} \)
61 \( 1 + (3.88e43 + 6.73e43i)T + (-1.51e87 + 2.62e87i)T^{2} \)
67 \( 1 + (-3.27e44 + 5.66e44i)T + (-1.50e89 - 2.60e89i)T^{2} \)
71 \( 1 - 2.48e45T + 5.14e90T^{2} \)
73 \( 1 + (1.80e45 - 3.12e45i)T + (-1.00e91 - 1.73e91i)T^{2} \)
79 \( 1 + (-2.35e46 - 4.07e46i)T + (-4.81e92 + 8.34e92i)T^{2} \)
83 \( 1 + 1.08e47T + 1.08e94T^{2} \)
89 \( 1 + (-6.44e46 - 1.11e47i)T + (-1.65e95 + 2.86e95i)T^{2} \)
97 \( 1 + 2.95e48T + 2.24e97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.424856414868245930632353225839, −8.360604137353267880497835317338, −7.83156260225441744357176129247, −6.87890219528840055727539162550, −4.80277149458927838849601369542, −3.86075406078218985267723665665, −2.41851830298935658058141938213, −1.58371165204588633382120019955, −0.71809990949583776874875801302, −0.05800820848534458510767984734, 2.50524713666203510964595445645, 2.85605859425928866774036824881, 4.37515317813724494395380572609, 5.02744288206304917636066857668, 6.78691716371822502587891027185, 7.81394237839967549529416202946, 8.855622420597372015715488533040, 9.830943773919650742936020701545, 10.71942427994115228992326677561, 11.88092640763848032837983117476

Graph of the $Z$-function along the critical line