Properties

Label 14.48.a.c.1.4
Level $14$
Weight $48$
Character 14.1
Self dual yes
Analytic conductor $195.871$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [14,48,Mod(1,14)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 48, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("14.1"); S:= CuspForms(chi, 48); N := Newforms(S);
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 48 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,50331648] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(195.870727717\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2 x^{5} + \cdots - 16\!\cdots\!84 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{36}\cdot 3^{15}\cdot 5^{6}\cdot 7^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.69579e9\) of defining polynomial
Character \(\chi\) \(=\) 14.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.38861e6 q^{2} +4.57489e10 q^{3} +7.03687e13 q^{4} +4.17176e16 q^{5} +3.83770e17 q^{6} -2.73687e19 q^{7} +5.90296e20 q^{8} -2.44958e22 q^{9} +3.49953e23 q^{10} -2.13199e24 q^{11} +3.21930e24 q^{12} -1.95138e25 q^{13} -2.29586e26 q^{14} +1.90854e27 q^{15} +4.95176e27 q^{16} -1.97729e28 q^{17} -2.05486e29 q^{18} +6.85888e29 q^{19} +2.93562e30 q^{20} -1.25209e30 q^{21} -1.78844e31 q^{22} -9.20825e31 q^{23} +2.70054e31 q^{24} +1.02982e33 q^{25} -1.63694e32 q^{26} -2.33707e33 q^{27} -1.92590e33 q^{28} +1.53180e34 q^{29} +1.60100e34 q^{30} -5.45750e34 q^{31} +4.15384e34 q^{32} -9.75364e34 q^{33} -1.65867e35 q^{34} -1.14176e36 q^{35} -1.72374e36 q^{36} -3.13590e36 q^{37} +5.75364e36 q^{38} -8.92737e35 q^{39} +2.46257e37 q^{40} -1.26888e38 q^{41} -1.05033e37 q^{42} -2.98527e38 q^{43} -1.50026e38 q^{44} -1.02191e39 q^{45} -7.72444e38 q^{46} -1.61389e39 q^{47} +2.26538e38 q^{48} +7.49048e38 q^{49} +8.63872e39 q^{50} -9.04588e38 q^{51} -1.37316e39 q^{52} +2.19473e39 q^{53} -1.96048e40 q^{54} -8.89416e40 q^{55} -1.61557e40 q^{56} +3.13786e40 q^{57} +1.28497e41 q^{58} -2.26203e41 q^{59} +1.34301e41 q^{60} +1.43967e42 q^{61} -4.57809e41 q^{62} +6.70421e41 q^{63} +3.48449e41 q^{64} -8.14071e41 q^{65} -8.18195e41 q^{66} -1.58039e43 q^{67} -1.39139e42 q^{68} -4.21268e42 q^{69} -9.57777e42 q^{70} -2.35793e42 q^{71} -1.44598e43 q^{72} +6.24780e43 q^{73} -2.63058e43 q^{74} +4.71130e43 q^{75} +4.82651e43 q^{76} +5.83500e43 q^{77} -7.48882e42 q^{78} -3.88095e44 q^{79} +2.06576e44 q^{80} +5.44397e44 q^{81} -1.06441e45 q^{82} +1.75777e45 q^{83} -8.81081e43 q^{84} -8.24877e44 q^{85} -2.50422e45 q^{86} +7.00784e44 q^{87} -1.25851e45 q^{88} -3.91769e45 q^{89} -8.57239e45 q^{90} +5.34069e44 q^{91} -6.47973e45 q^{92} -2.49675e45 q^{93} -1.35383e46 q^{94} +2.86136e46 q^{95} +1.90034e45 q^{96} +1.95504e45 q^{97} +6.28347e45 q^{98} +5.22250e46 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 50331648 q^{2} + 91348200216 q^{3} + 422212465065984 q^{4} - 30\!\cdots\!00 q^{5} + 76\!\cdots\!28 q^{6} - 16\!\cdots\!58 q^{7} + 35\!\cdots\!72 q^{8} + 23\!\cdots\!02 q^{9} - 25\!\cdots\!00 q^{10}+ \cdots - 22\!\cdots\!76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.38861e6 0.707107
\(3\) 4.57489e10 0.280564 0.140282 0.990112i \(-0.455199\pi\)
0.140282 + 0.990112i \(0.455199\pi\)
\(4\) 7.03687e13 0.500000
\(5\) 4.17176e16 1.56504 0.782518 0.622628i \(-0.213935\pi\)
0.782518 + 0.622628i \(0.213935\pi\)
\(6\) 3.83770e17 0.198389
\(7\) −2.73687e19 −0.377964
\(8\) 5.90296e20 0.353553
\(9\) −2.44958e22 −0.921284
\(10\) 3.49953e23 1.10665
\(11\) −2.13199e24 −0.717889 −0.358945 0.933359i \(-0.616863\pi\)
−0.358945 + 0.933359i \(0.616863\pi\)
\(12\) 3.21930e24 0.140282
\(13\) −1.95138e25 −0.129621 −0.0648103 0.997898i \(-0.520644\pi\)
−0.0648103 + 0.997898i \(0.520644\pi\)
\(14\) −2.29586e26 −0.267261
\(15\) 1.90854e27 0.439092
\(16\) 4.95176e27 0.250000
\(17\) −1.97729e28 −0.240171 −0.120085 0.992764i \(-0.538317\pi\)
−0.120085 + 0.992764i \(0.538317\pi\)
\(18\) −2.05486e29 −0.651446
\(19\) 6.85888e29 0.610300 0.305150 0.952304i \(-0.401293\pi\)
0.305150 + 0.952304i \(0.401293\pi\)
\(20\) 2.93562e30 0.782518
\(21\) −1.25209e30 −0.106043
\(22\) −1.78844e31 −0.507625
\(23\) −9.20825e31 −0.919545 −0.459773 0.888037i \(-0.652069\pi\)
−0.459773 + 0.888037i \(0.652069\pi\)
\(24\) 2.70054e31 0.0991943
\(25\) 1.02982e33 1.44934
\(26\) −1.63694e32 −0.0916556
\(27\) −2.33707e33 −0.539043
\(28\) −1.92590e33 −0.188982
\(29\) 1.53180e34 0.658946 0.329473 0.944165i \(-0.393129\pi\)
0.329473 + 0.944165i \(0.393129\pi\)
\(30\) 1.60100e34 0.310485
\(31\) −5.45750e34 −0.489772 −0.244886 0.969552i \(-0.578751\pi\)
−0.244886 + 0.969552i \(0.578751\pi\)
\(32\) 4.15384e34 0.176777
\(33\) −9.75364e34 −0.201414
\(34\) −1.65867e35 −0.169826
\(35\) −1.14176e36 −0.591528
\(36\) −1.72374e36 −0.460642
\(37\) −3.13590e36 −0.440171 −0.220085 0.975481i \(-0.570634\pi\)
−0.220085 + 0.975481i \(0.570634\pi\)
\(38\) 5.75364e36 0.431547
\(39\) −8.92737e35 −0.0363668
\(40\) 2.46257e37 0.553324
\(41\) −1.26888e38 −1.59588 −0.797939 0.602739i \(-0.794076\pi\)
−0.797939 + 0.602739i \(0.794076\pi\)
\(42\) −1.05033e37 −0.0749838
\(43\) −2.98527e38 −1.22595 −0.612977 0.790101i \(-0.710028\pi\)
−0.612977 + 0.790101i \(0.710028\pi\)
\(44\) −1.50026e38 −0.358945
\(45\) −1.02191e39 −1.44184
\(46\) −7.72444e38 −0.650217
\(47\) −1.61389e39 −0.819546 −0.409773 0.912188i \(-0.634392\pi\)
−0.409773 + 0.912188i \(0.634392\pi\)
\(48\) 2.26538e38 0.0701409
\(49\) 7.49048e38 0.142857
\(50\) 8.63872e39 1.02484
\(51\) −9.04588e38 −0.0673832
\(52\) −1.37316e39 −0.0648103
\(53\) 2.19473e39 0.0662060 0.0331030 0.999452i \(-0.489461\pi\)
0.0331030 + 0.999452i \(0.489461\pi\)
\(54\) −1.96048e40 −0.381161
\(55\) −8.89416e40 −1.12352
\(56\) −1.61557e40 −0.133631
\(57\) 3.13786e40 0.171228
\(58\) 1.28497e41 0.465945
\(59\) −2.26203e41 −0.548878 −0.274439 0.961604i \(-0.588492\pi\)
−0.274439 + 0.961604i \(0.588492\pi\)
\(60\) 1.34301e41 0.219546
\(61\) 1.43967e42 1.59592 0.797959 0.602711i \(-0.205913\pi\)
0.797959 + 0.602711i \(0.205913\pi\)
\(62\) −4.57809e41 −0.346321
\(63\) 6.70421e41 0.348213
\(64\) 3.48449e41 0.125000
\(65\) −8.14071e41 −0.202861
\(66\) −8.18195e41 −0.142421
\(67\) −1.58039e43 −1.93199 −0.965996 0.258556i \(-0.916754\pi\)
−0.965996 + 0.258556i \(0.916754\pi\)
\(68\) −1.39139e42 −0.120085
\(69\) −4.21268e42 −0.257991
\(70\) −9.57777e42 −0.418273
\(71\) −2.35793e42 −0.0737836 −0.0368918 0.999319i \(-0.511746\pi\)
−0.0368918 + 0.999319i \(0.511746\pi\)
\(72\) −1.44598e43 −0.325723
\(73\) 6.24780e43 1.01775 0.508873 0.860841i \(-0.330062\pi\)
0.508873 + 0.860841i \(0.330062\pi\)
\(74\) −2.63058e43 −0.311248
\(75\) 4.71130e43 0.406631
\(76\) 4.82651e43 0.305150
\(77\) 5.83500e43 0.271337
\(78\) −7.48882e42 −0.0257152
\(79\) −3.88095e44 −0.987873 −0.493936 0.869498i \(-0.664442\pi\)
−0.493936 + 0.869498i \(0.664442\pi\)
\(80\) 2.06576e44 0.391259
\(81\) 5.44397e44 0.770048
\(82\) −1.06441e45 −1.12846
\(83\) 1.75777e45 1.40161 0.700806 0.713352i \(-0.252824\pi\)
0.700806 + 0.713352i \(0.252824\pi\)
\(84\) −8.81081e43 −0.0530216
\(85\) −8.24877e44 −0.375876
\(86\) −2.50422e45 −0.866880
\(87\) 7.00784e44 0.184876
\(88\) −1.25851e45 −0.253812
\(89\) −3.91769e45 −0.605850 −0.302925 0.953014i \(-0.597963\pi\)
−0.302925 + 0.953014i \(0.597963\pi\)
\(90\) −8.57239e45 −1.01954
\(91\) 5.34069e44 0.0489920
\(92\) −6.47973e45 −0.459773
\(93\) −2.49675e45 −0.137412
\(94\) −1.35383e46 −0.579506
\(95\) 2.86136e46 0.955142
\(96\) 1.90034e45 0.0495971
\(97\) 1.95504e45 0.0399963 0.0199981 0.999800i \(-0.493634\pi\)
0.0199981 + 0.999800i \(0.493634\pi\)
\(98\) 6.28347e45 0.101015
\(99\) 5.22250e46 0.661380
\(100\) 7.24669e46 0.724669
\(101\) −4.65881e46 −0.368742 −0.184371 0.982857i \(-0.559025\pi\)
−0.184371 + 0.982857i \(0.559025\pi\)
\(102\) −7.58824e45 −0.0476471
\(103\) 2.53650e46 0.126637 0.0633183 0.997993i \(-0.479832\pi\)
0.0633183 + 0.997993i \(0.479832\pi\)
\(104\) −1.15189e46 −0.0458278
\(105\) −5.22342e46 −0.165961
\(106\) 1.84107e46 0.0468147
\(107\) −5.36470e47 −1.09402 −0.547012 0.837125i \(-0.684235\pi\)
−0.547012 + 0.837125i \(0.684235\pi\)
\(108\) −1.64457e47 −0.269521
\(109\) −5.18261e47 −0.683952 −0.341976 0.939709i \(-0.611096\pi\)
−0.341976 + 0.939709i \(0.611096\pi\)
\(110\) −7.46096e47 −0.794451
\(111\) −1.43464e47 −0.123496
\(112\) −1.35523e47 −0.0944911
\(113\) −2.53933e48 −1.43673 −0.718365 0.695666i \(-0.755109\pi\)
−0.718365 + 0.695666i \(0.755109\pi\)
\(114\) 2.63223e47 0.121077
\(115\) −3.84146e48 −1.43912
\(116\) 1.07791e48 0.329473
\(117\) 4.78008e47 0.119417
\(118\) −1.89753e48 −0.388116
\(119\) 5.41159e47 0.0907761
\(120\) 1.12660e48 0.155243
\(121\) −4.27436e48 −0.484635
\(122\) 1.20768e49 1.12848
\(123\) −5.80499e48 −0.447745
\(124\) −3.84038e48 −0.244886
\(125\) 1.33193e49 0.703229
\(126\) 5.62390e48 0.246224
\(127\) 2.49325e48 0.0906521 0.0453260 0.998972i \(-0.485567\pi\)
0.0453260 + 0.998972i \(0.485567\pi\)
\(128\) 2.92300e48 0.0883883
\(129\) −1.36573e49 −0.343958
\(130\) −6.82892e48 −0.143444
\(131\) 6.29980e49 1.10523 0.552614 0.833438i \(-0.313631\pi\)
0.552614 + 0.833438i \(0.313631\pi\)
\(132\) −6.86351e48 −0.100707
\(133\) −1.87719e49 −0.230672
\(134\) −1.32572e50 −1.36613
\(135\) −9.74969e49 −0.843621
\(136\) −1.16718e49 −0.0849132
\(137\) 1.45763e50 0.892718 0.446359 0.894854i \(-0.352721\pi\)
0.446359 + 0.894854i \(0.352721\pi\)
\(138\) −3.53385e49 −0.182427
\(139\) 3.58465e50 1.56171 0.780853 0.624715i \(-0.214785\pi\)
0.780853 + 0.624715i \(0.214785\pi\)
\(140\) −8.03441e49 −0.295764
\(141\) −7.38336e49 −0.229935
\(142\) −1.97797e49 −0.0521729
\(143\) 4.16034e49 0.0930533
\(144\) −1.21298e50 −0.230321
\(145\) 6.39032e50 1.03127
\(146\) 5.24103e50 0.719656
\(147\) 3.42682e49 0.0400805
\(148\) −2.20669e50 −0.220085
\(149\) 9.86272e50 0.839691 0.419845 0.907596i \(-0.362084\pi\)
0.419845 + 0.907596i \(0.362084\pi\)
\(150\) 3.95212e50 0.287532
\(151\) −1.23599e50 −0.0769228 −0.0384614 0.999260i \(-0.512246\pi\)
−0.0384614 + 0.999260i \(0.512246\pi\)
\(152\) 4.04877e50 0.215774
\(153\) 4.84354e50 0.221266
\(154\) 4.89475e50 0.191864
\(155\) −2.27674e51 −0.766511
\(156\) −6.28208e49 −0.0181834
\(157\) −4.50074e51 −1.12109 −0.560547 0.828122i \(-0.689409\pi\)
−0.560547 + 0.828122i \(0.689409\pi\)
\(158\) −3.25557e51 −0.698532
\(159\) 1.00406e50 0.0185750
\(160\) 1.73288e51 0.276662
\(161\) 2.52018e51 0.347555
\(162\) 4.56673e51 0.544506
\(163\) −1.04851e52 −1.08184 −0.540920 0.841074i \(-0.681924\pi\)
−0.540920 + 0.841074i \(0.681924\pi\)
\(164\) −8.92894e51 −0.797939
\(165\) −4.06898e51 −0.315220
\(166\) 1.47453e52 0.991090
\(167\) 1.63921e52 0.956748 0.478374 0.878156i \(-0.341226\pi\)
0.478374 + 0.878156i \(0.341226\pi\)
\(168\) −7.39104e50 −0.0374919
\(169\) −2.22833e52 −0.983199
\(170\) −6.91957e51 −0.265784
\(171\) −1.68014e52 −0.562260
\(172\) −2.10069e52 −0.612977
\(173\) 5.41837e52 1.37970 0.689851 0.723951i \(-0.257676\pi\)
0.689851 + 0.723951i \(0.257676\pi\)
\(174\) 5.87860e51 0.130727
\(175\) −2.81848e52 −0.547798
\(176\) −1.05571e52 −0.179472
\(177\) −1.03485e52 −0.153995
\(178\) −3.28640e52 −0.428400
\(179\) −2.85957e52 −0.326779 −0.163390 0.986562i \(-0.552243\pi\)
−0.163390 + 0.986562i \(0.552243\pi\)
\(180\) −7.19104e52 −0.720921
\(181\) −1.29801e53 −1.14244 −0.571218 0.820799i \(-0.693529\pi\)
−0.571218 + 0.820799i \(0.693529\pi\)
\(182\) 4.48010e51 0.0346426
\(183\) 6.58632e52 0.447757
\(184\) −5.43559e52 −0.325108
\(185\) −1.30822e53 −0.688883
\(186\) −2.09443e52 −0.0971652
\(187\) 4.21556e52 0.172416
\(188\) −1.13567e53 −0.409773
\(189\) 6.39626e52 0.203739
\(190\) 2.40028e53 0.675387
\(191\) −3.07810e52 −0.0765595 −0.0382797 0.999267i \(-0.512188\pi\)
−0.0382797 + 0.999267i \(0.512188\pi\)
\(192\) 1.59412e52 0.0350705
\(193\) −6.20236e53 −1.20770 −0.603852 0.797096i \(-0.706368\pi\)
−0.603852 + 0.797096i \(0.706368\pi\)
\(194\) 1.64001e52 0.0282816
\(195\) −3.72429e52 −0.0569154
\(196\) 5.27096e52 0.0714286
\(197\) 6.54397e53 0.786837 0.393418 0.919360i \(-0.371292\pi\)
0.393418 + 0.919360i \(0.371292\pi\)
\(198\) 4.38095e53 0.467666
\(199\) −3.49763e53 −0.331685 −0.165843 0.986152i \(-0.553034\pi\)
−0.165843 + 0.986152i \(0.553034\pi\)
\(200\) 6.07896e53 0.512418
\(201\) −7.23010e53 −0.542047
\(202\) −3.90810e53 −0.260740
\(203\) −4.19235e53 −0.249058
\(204\) −6.36547e52 −0.0336916
\(205\) −5.29346e54 −2.49761
\(206\) 2.12777e53 0.0895456
\(207\) 2.25564e54 0.847162
\(208\) −9.66279e52 −0.0324051
\(209\) −1.46231e54 −0.438128
\(210\) −4.38173e53 −0.117352
\(211\) −1.11823e54 −0.267851 −0.133925 0.990991i \(-0.542758\pi\)
−0.133925 + 0.990991i \(0.542758\pi\)
\(212\) 1.54440e53 0.0331030
\(213\) −1.07873e53 −0.0207010
\(214\) −4.50024e54 −0.773592
\(215\) −1.24538e55 −1.91866
\(216\) −1.37956e54 −0.190580
\(217\) 1.49365e54 0.185117
\(218\) −4.34749e54 −0.483627
\(219\) 2.85830e54 0.285543
\(220\) −6.25871e54 −0.561761
\(221\) 3.85845e53 0.0311311
\(222\) −1.20346e54 −0.0873248
\(223\) 1.98565e54 0.129640 0.0648198 0.997897i \(-0.479353\pi\)
0.0648198 + 0.997897i \(0.479353\pi\)
\(224\) −1.13685e54 −0.0668153
\(225\) −2.52262e55 −1.33525
\(226\) −2.13014e55 −1.01592
\(227\) −1.49272e55 −0.641759 −0.320880 0.947120i \(-0.603978\pi\)
−0.320880 + 0.947120i \(0.603978\pi\)
\(228\) 2.20808e54 0.0856140
\(229\) −3.85021e55 −1.34695 −0.673473 0.739211i \(-0.735198\pi\)
−0.673473 + 0.739211i \(0.735198\pi\)
\(230\) −3.22245e55 −1.01761
\(231\) 2.66945e54 0.0761272
\(232\) 9.04217e54 0.232973
\(233\) −1.22980e55 −0.286399 −0.143199 0.989694i \(-0.545739\pi\)
−0.143199 + 0.989694i \(0.545739\pi\)
\(234\) 4.00982e54 0.0844408
\(235\) −6.73274e55 −1.28262
\(236\) −1.59176e55 −0.274439
\(237\) −1.77549e55 −0.277161
\(238\) 4.53957e54 0.0641884
\(239\) −1.38934e56 −1.78015 −0.890075 0.455815i \(-0.849348\pi\)
−0.890075 + 0.455815i \(0.849348\pi\)
\(240\) 9.45061e54 0.109773
\(241\) 4.25580e55 0.448313 0.224156 0.974553i \(-0.428037\pi\)
0.224156 + 0.974553i \(0.428037\pi\)
\(242\) −3.58559e55 −0.342688
\(243\) 8.70455e55 0.755090
\(244\) 1.01308e56 0.797959
\(245\) 3.12485e55 0.223577
\(246\) −4.86958e55 −0.316604
\(247\) −1.33843e55 −0.0791075
\(248\) −3.22154e55 −0.173161
\(249\) 8.04163e55 0.393242
\(250\) 1.11731e56 0.497258
\(251\) −3.04781e56 −1.23497 −0.617484 0.786583i \(-0.711848\pi\)
−0.617484 + 0.786583i \(0.711848\pi\)
\(252\) 4.71767e55 0.174106
\(253\) 1.96319e56 0.660132
\(254\) 2.09149e55 0.0641007
\(255\) −3.77373e55 −0.105457
\(256\) 2.45199e55 0.0625000
\(257\) 3.53878e56 0.823048 0.411524 0.911399i \(-0.364997\pi\)
0.411524 + 0.911399i \(0.364997\pi\)
\(258\) −1.14565e56 −0.243215
\(259\) 8.58255e55 0.166369
\(260\) −5.72851e55 −0.101430
\(261\) −3.75228e56 −0.607077
\(262\) 5.28466e56 0.781514
\(263\) −4.57231e56 −0.618267 −0.309133 0.951019i \(-0.600039\pi\)
−0.309133 + 0.951019i \(0.600039\pi\)
\(264\) −5.75753e55 −0.0712105
\(265\) 9.15588e55 0.103615
\(266\) −1.57470e56 −0.163110
\(267\) −1.79230e56 −0.169979
\(268\) −1.11210e57 −0.965996
\(269\) 4.54738e56 0.361895 0.180947 0.983493i \(-0.442084\pi\)
0.180947 + 0.983493i \(0.442084\pi\)
\(270\) −8.17863e56 −0.596530
\(271\) −1.57362e55 −0.0105226 −0.00526128 0.999986i \(-0.501675\pi\)
−0.00526128 + 0.999986i \(0.501675\pi\)
\(272\) −9.79106e55 −0.0600427
\(273\) 2.44331e55 0.0137454
\(274\) 1.22275e57 0.631247
\(275\) −2.19556e57 −1.04046
\(276\) −2.96441e56 −0.128995
\(277\) 3.72624e57 1.48935 0.744674 0.667428i \(-0.232605\pi\)
0.744674 + 0.667428i \(0.232605\pi\)
\(278\) 3.00702e57 1.10429
\(279\) 1.33686e57 0.451219
\(280\) −6.73975e56 −0.209137
\(281\) 4.87014e57 1.38977 0.694885 0.719121i \(-0.255455\pi\)
0.694885 + 0.719121i \(0.255455\pi\)
\(282\) −6.19361e56 −0.162588
\(283\) 7.65266e57 1.84855 0.924276 0.381726i \(-0.124670\pi\)
0.924276 + 0.381726i \(0.124670\pi\)
\(284\) −1.65925e56 −0.0368918
\(285\) 1.30904e57 0.267978
\(286\) 3.48994e56 0.0657986
\(287\) 3.47276e57 0.603185
\(288\) −1.01752e57 −0.162862
\(289\) −6.38700e57 −0.942318
\(290\) 5.36059e57 0.729221
\(291\) 8.94410e55 0.0112215
\(292\) 4.39650e57 0.508873
\(293\) −1.46527e58 −1.56505 −0.782525 0.622619i \(-0.786069\pi\)
−0.782525 + 0.622619i \(0.786069\pi\)
\(294\) 2.87462e56 0.0283412
\(295\) −9.43665e57 −0.859014
\(296\) −1.85111e57 −0.155624
\(297\) 4.98261e57 0.386973
\(298\) 8.27345e57 0.593751
\(299\) 1.79688e57 0.119192
\(300\) 3.31528e57 0.203316
\(301\) 8.17030e57 0.463367
\(302\) −1.03682e57 −0.0543926
\(303\) −2.13136e57 −0.103456
\(304\) 3.39635e57 0.152575
\(305\) 6.00594e58 2.49767
\(306\) 4.06305e57 0.156458
\(307\) 2.81687e58 1.00465 0.502325 0.864679i \(-0.332478\pi\)
0.502325 + 0.864679i \(0.332478\pi\)
\(308\) 4.10601e57 0.135668
\(309\) 1.16042e57 0.0355297
\(310\) −1.90987e58 −0.542005
\(311\) 3.17533e58 0.835449 0.417725 0.908574i \(-0.362828\pi\)
0.417725 + 0.908574i \(0.362828\pi\)
\(312\) −5.26979e56 −0.0128576
\(313\) 6.80203e58 1.53938 0.769692 0.638416i \(-0.220410\pi\)
0.769692 + 0.638416i \(0.220410\pi\)
\(314\) −3.77550e58 −0.792734
\(315\) 2.79683e58 0.544965
\(316\) −2.73097e58 −0.493936
\(317\) −6.30005e58 −1.05792 −0.528958 0.848648i \(-0.677417\pi\)
−0.528958 + 0.848648i \(0.677417\pi\)
\(318\) 8.42270e56 0.0131345
\(319\) −3.26579e58 −0.473051
\(320\) 1.45365e58 0.195629
\(321\) −2.45429e58 −0.306944
\(322\) 2.11408e58 0.245759
\(323\) −1.35620e58 −0.146576
\(324\) 3.83085e58 0.385024
\(325\) −2.00957e58 −0.187864
\(326\) −8.79552e58 −0.764976
\(327\) −2.37099e58 −0.191892
\(328\) −7.49014e58 −0.564228
\(329\) 4.41700e58 0.309759
\(330\) −3.41331e58 −0.222894
\(331\) −2.82332e59 −1.71713 −0.858563 0.512709i \(-0.828642\pi\)
−0.858563 + 0.512709i \(0.828642\pi\)
\(332\) 1.23692e59 0.700806
\(333\) 7.68164e58 0.405522
\(334\) 1.37507e59 0.676523
\(335\) −6.59300e59 −3.02364
\(336\) −6.20005e57 −0.0265108
\(337\) −1.36123e59 −0.542784 −0.271392 0.962469i \(-0.587484\pi\)
−0.271392 + 0.962469i \(0.587484\pi\)
\(338\) −1.86926e59 −0.695226
\(339\) −1.16172e59 −0.403094
\(340\) −5.80456e58 −0.187938
\(341\) 1.16354e59 0.351602
\(342\) −1.40940e59 −0.397578
\(343\) −2.05005e58 −0.0539949
\(344\) −1.76219e59 −0.433440
\(345\) −1.75743e59 −0.403765
\(346\) 4.54526e59 0.975597
\(347\) 1.32848e59 0.266448 0.133224 0.991086i \(-0.457467\pi\)
0.133224 + 0.991086i \(0.457467\pi\)
\(348\) 4.93133e58 0.0924382
\(349\) 5.10481e59 0.894504 0.447252 0.894408i \(-0.352403\pi\)
0.447252 + 0.894408i \(0.352403\pi\)
\(350\) −2.36431e59 −0.387352
\(351\) 4.56052e58 0.0698710
\(352\) −8.85595e58 −0.126906
\(353\) −2.62873e59 −0.352403 −0.176202 0.984354i \(-0.556381\pi\)
−0.176202 + 0.984354i \(0.556381\pi\)
\(354\) −8.68099e58 −0.108891
\(355\) −9.83672e58 −0.115474
\(356\) −2.75683e59 −0.302925
\(357\) 2.47574e58 0.0254685
\(358\) −2.39878e59 −0.231068
\(359\) −1.74617e60 −1.57531 −0.787656 0.616116i \(-0.788705\pi\)
−0.787656 + 0.616116i \(0.788705\pi\)
\(360\) −6.03228e59 −0.509768
\(361\) −7.92604e59 −0.627534
\(362\) −1.08885e60 −0.807824
\(363\) −1.95547e59 −0.135971
\(364\) 3.75818e58 0.0244960
\(365\) 2.60643e60 1.59281
\(366\) 5.52501e59 0.316612
\(367\) −2.43269e59 −0.130748 −0.0653738 0.997861i \(-0.520824\pi\)
−0.0653738 + 0.997861i \(0.520824\pi\)
\(368\) −4.55971e59 −0.229886
\(369\) 3.10823e60 1.47026
\(370\) −1.09742e60 −0.487114
\(371\) −6.00669e58 −0.0250235
\(372\) −1.75693e59 −0.0687062
\(373\) 5.29913e60 1.94557 0.972786 0.231705i \(-0.0744304\pi\)
0.972786 + 0.231705i \(0.0744304\pi\)
\(374\) 3.53627e59 0.121917
\(375\) 6.09344e59 0.197300
\(376\) −9.52670e59 −0.289753
\(377\) −2.98914e59 −0.0854130
\(378\) 5.36558e59 0.144065
\(379\) 1.77237e60 0.447231 0.223615 0.974677i \(-0.428214\pi\)
0.223615 + 0.974677i \(0.428214\pi\)
\(380\) 2.01350e60 0.477571
\(381\) 1.14063e59 0.0254337
\(382\) −2.58210e59 −0.0541357
\(383\) −1.65136e60 −0.325590 −0.162795 0.986660i \(-0.552051\pi\)
−0.162795 + 0.986660i \(0.552051\pi\)
\(384\) 1.33724e59 0.0247986
\(385\) 2.43422e60 0.424652
\(386\) −5.20292e60 −0.853976
\(387\) 7.31266e60 1.12945
\(388\) 1.37574e59 0.0199981
\(389\) −3.20749e60 −0.438884 −0.219442 0.975626i \(-0.570424\pi\)
−0.219442 + 0.975626i \(0.570424\pi\)
\(390\) −3.12416e59 −0.0402453
\(391\) 1.82074e60 0.220848
\(392\) 4.42160e59 0.0505076
\(393\) 2.88209e60 0.310087
\(394\) 5.48948e60 0.556378
\(395\) −1.61904e61 −1.54606
\(396\) 3.67501e60 0.330690
\(397\) −4.14935e60 −0.351887 −0.175943 0.984400i \(-0.556298\pi\)
−0.175943 + 0.984400i \(0.556298\pi\)
\(398\) −2.93402e60 −0.234537
\(399\) −8.58794e59 −0.0647181
\(400\) 5.09940e60 0.362334
\(401\) 2.16421e61 1.45013 0.725065 0.688680i \(-0.241810\pi\)
0.725065 + 0.688680i \(0.241810\pi\)
\(402\) −6.06505e60 −0.383285
\(403\) 1.06497e60 0.0634846
\(404\) −3.27835e60 −0.184371
\(405\) 2.27109e61 1.20515
\(406\) −3.51680e60 −0.176111
\(407\) 6.68571e60 0.315994
\(408\) −5.33975e59 −0.0238236
\(409\) 3.89301e60 0.163979 0.0819895 0.996633i \(-0.473873\pi\)
0.0819895 + 0.996633i \(0.473873\pi\)
\(410\) −4.44048e61 −1.76607
\(411\) 6.66850e60 0.250464
\(412\) 1.78490e60 0.0633183
\(413\) 6.19089e60 0.207457
\(414\) 1.89217e61 0.599034
\(415\) 7.33302e61 2.19357
\(416\) −8.10573e59 −0.0229139
\(417\) 1.63994e61 0.438158
\(418\) −1.22667e61 −0.309803
\(419\) 7.94187e60 0.189624 0.0948120 0.995495i \(-0.469775\pi\)
0.0948120 + 0.995495i \(0.469775\pi\)
\(420\) −3.67566e60 −0.0829806
\(421\) 5.68598e61 1.21388 0.606941 0.794747i \(-0.292396\pi\)
0.606941 + 0.794747i \(0.292396\pi\)
\(422\) −9.38038e60 −0.189399
\(423\) 3.95335e61 0.755034
\(424\) 1.29554e60 0.0234074
\(425\) −2.03624e61 −0.348089
\(426\) −9.04902e59 −0.0146378
\(427\) −3.94019e61 −0.603201
\(428\) −3.77507e61 −0.547012
\(429\) 1.90331e60 0.0261074
\(430\) −1.04470e62 −1.35670
\(431\) −3.38663e60 −0.0416439 −0.0208219 0.999783i \(-0.506628\pi\)
−0.0208219 + 0.999783i \(0.506628\pi\)
\(432\) −1.15726e61 −0.134761
\(433\) −2.99996e61 −0.330864 −0.165432 0.986221i \(-0.552902\pi\)
−0.165432 + 0.986221i \(0.552902\pi\)
\(434\) 1.25296e61 0.130897
\(435\) 2.92350e61 0.289338
\(436\) −3.64694e61 −0.341976
\(437\) −6.31583e61 −0.561198
\(438\) 2.39772e61 0.201909
\(439\) 7.61907e61 0.608115 0.304057 0.952654i \(-0.401659\pi\)
0.304057 + 0.952654i \(0.401659\pi\)
\(440\) −5.25019e61 −0.397225
\(441\) −1.83486e61 −0.131612
\(442\) 3.23670e60 0.0220130
\(443\) −6.03416e61 −0.389161 −0.194581 0.980887i \(-0.562335\pi\)
−0.194581 + 0.980887i \(0.562335\pi\)
\(444\) −1.00954e61 −0.0617480
\(445\) −1.63437e62 −0.948176
\(446\) 1.66568e61 0.0916691
\(447\) 4.51209e61 0.235587
\(448\) −9.53662e60 −0.0472456
\(449\) −1.48223e62 −0.696828 −0.348414 0.937341i \(-0.613280\pi\)
−0.348414 + 0.937341i \(0.613280\pi\)
\(450\) −2.11613e62 −0.944165
\(451\) 2.70524e62 1.14566
\(452\) −1.78689e62 −0.718365
\(453\) −5.65450e60 −0.0215817
\(454\) −1.25219e62 −0.453792
\(455\) 2.22801e61 0.0766742
\(456\) 1.85227e61 0.0605383
\(457\) 1.23134e62 0.382250 0.191125 0.981566i \(-0.438786\pi\)
0.191125 + 0.981566i \(0.438786\pi\)
\(458\) −3.22979e62 −0.952435
\(459\) 4.62106e61 0.129462
\(460\) −2.70319e62 −0.719561
\(461\) −5.68520e62 −1.43805 −0.719025 0.694984i \(-0.755411\pi\)
−0.719025 + 0.694984i \(0.755411\pi\)
\(462\) 2.23930e61 0.0538301
\(463\) −7.15046e62 −1.63373 −0.816866 0.576828i \(-0.804290\pi\)
−0.816866 + 0.576828i \(0.804290\pi\)
\(464\) 7.58512e61 0.164737
\(465\) −1.04158e62 −0.215055
\(466\) −1.03163e62 −0.202514
\(467\) 6.59199e62 1.23047 0.615233 0.788345i \(-0.289062\pi\)
0.615233 + 0.788345i \(0.289062\pi\)
\(468\) 3.36368e61 0.0597087
\(469\) 4.32532e62 0.730225
\(470\) −5.64784e62 −0.906948
\(471\) −2.05904e62 −0.314538
\(472\) −1.33527e62 −0.194058
\(473\) 6.36456e62 0.880100
\(474\) −1.48939e62 −0.195983
\(475\) 7.06338e62 0.884531
\(476\) 3.80807e61 0.0453880
\(477\) −5.37617e61 −0.0609946
\(478\) −1.16546e63 −1.25876
\(479\) 1.31263e63 1.34977 0.674883 0.737924i \(-0.264194\pi\)
0.674883 + 0.737924i \(0.264194\pi\)
\(480\) 7.92775e61 0.0776213
\(481\) 6.11934e61 0.0570552
\(482\) 3.57003e62 0.317005
\(483\) 1.15296e62 0.0975114
\(484\) −3.00781e62 −0.242317
\(485\) 8.15595e61 0.0625956
\(486\) 7.30190e62 0.533929
\(487\) 2.77178e63 1.93121 0.965603 0.260020i \(-0.0837290\pi\)
0.965603 + 0.260020i \(0.0837290\pi\)
\(488\) 8.49829e62 0.564242
\(489\) −4.79681e62 −0.303525
\(490\) 2.62131e62 0.158092
\(491\) 8.05956e62 0.463336 0.231668 0.972795i \(-0.425582\pi\)
0.231668 + 0.972795i \(0.425582\pi\)
\(492\) −4.08490e62 −0.223873
\(493\) −3.02882e62 −0.158260
\(494\) −1.12276e62 −0.0559374
\(495\) 2.17870e63 1.03508
\(496\) −2.70242e62 −0.122443
\(497\) 6.45336e61 0.0278876
\(498\) 6.74581e62 0.278064
\(499\) −2.95377e63 −1.16149 −0.580744 0.814086i \(-0.697238\pi\)
−0.580744 + 0.814086i \(0.697238\pi\)
\(500\) 9.37263e62 0.351614
\(501\) 7.49921e62 0.268429
\(502\) −2.55669e63 −0.873255
\(503\) 3.50183e63 1.14143 0.570713 0.821150i \(-0.306667\pi\)
0.570713 + 0.821150i \(0.306667\pi\)
\(504\) 3.95747e62 0.123112
\(505\) −1.94355e63 −0.577095
\(506\) 1.64685e63 0.466784
\(507\) −1.01944e63 −0.275850
\(508\) 1.75447e62 0.0453260
\(509\) 4.46958e63 1.10255 0.551276 0.834323i \(-0.314141\pi\)
0.551276 + 0.834323i \(0.314141\pi\)
\(510\) −3.16563e62 −0.0745695
\(511\) −1.70994e63 −0.384672
\(512\) 2.05688e62 0.0441942
\(513\) −1.60297e63 −0.328978
\(514\) 2.96854e63 0.581983
\(515\) 1.05817e63 0.198191
\(516\) −9.61045e62 −0.171979
\(517\) 3.44079e63 0.588343
\(518\) 7.19957e62 0.117641
\(519\) 2.47885e63 0.387095
\(520\) −4.80543e62 −0.0717221
\(521\) 8.71875e63 1.24385 0.621925 0.783077i \(-0.286351\pi\)
0.621925 + 0.783077i \(0.286351\pi\)
\(522\) −3.14764e63 −0.429268
\(523\) −4.57676e63 −0.596717 −0.298358 0.954454i \(-0.596439\pi\)
−0.298358 + 0.954454i \(0.596439\pi\)
\(524\) 4.43309e63 0.552614
\(525\) −1.28942e63 −0.153692
\(526\) −3.83553e63 −0.437180
\(527\) 1.07911e63 0.117629
\(528\) −4.82977e62 −0.0503534
\(529\) −1.54867e63 −0.154437
\(530\) 7.68051e62 0.0732667
\(531\) 5.54104e63 0.505673
\(532\) −1.32095e63 −0.115336
\(533\) 2.47607e63 0.206859
\(534\) −1.50349e63 −0.120194
\(535\) −2.23803e64 −1.71219
\(536\) −9.32896e63 −0.683063
\(537\) −1.30822e63 −0.0916824
\(538\) 3.81462e63 0.255898
\(539\) −1.59697e63 −0.102556
\(540\) −6.86074e63 −0.421810
\(541\) 2.25060e64 1.32483 0.662417 0.749135i \(-0.269531\pi\)
0.662417 + 0.749135i \(0.269531\pi\)
\(542\) −1.32005e62 −0.00744057
\(543\) −5.93826e63 −0.320526
\(544\) −8.21333e62 −0.0424566
\(545\) −2.16206e64 −1.07041
\(546\) 2.04960e62 0.00971944
\(547\) −3.73451e64 −1.69641 −0.848205 0.529668i \(-0.822317\pi\)
−0.848205 + 0.529668i \(0.822317\pi\)
\(548\) 1.02572e64 0.446359
\(549\) −3.52659e64 −1.47029
\(550\) −1.84177e64 −0.735719
\(551\) 1.05065e64 0.402155
\(552\) −2.48673e63 −0.0912136
\(553\) 1.06217e64 0.373381
\(554\) 3.12580e64 1.05313
\(555\) −5.98497e63 −0.193276
\(556\) 2.52247e64 0.780853
\(557\) 1.81240e63 0.0537844 0.0268922 0.999638i \(-0.491439\pi\)
0.0268922 + 0.999638i \(0.491439\pi\)
\(558\) 1.12144e64 0.319060
\(559\) 5.82540e63 0.158909
\(560\) −5.65371e63 −0.147882
\(561\) 1.92858e63 0.0483737
\(562\) 4.08537e64 0.982716
\(563\) −6.54978e64 −1.51105 −0.755526 0.655119i \(-0.772619\pi\)
−0.755526 + 0.655119i \(0.772619\pi\)
\(564\) −5.19557e63 −0.114967
\(565\) −1.05935e65 −2.24853
\(566\) 6.41952e64 1.30712
\(567\) −1.48995e64 −0.291051
\(568\) −1.39188e63 −0.0260864
\(569\) 8.42527e64 1.51512 0.757558 0.652768i \(-0.226392\pi\)
0.757558 + 0.652768i \(0.226392\pi\)
\(570\) 1.09810e64 0.189489
\(571\) 4.73298e64 0.783766 0.391883 0.920015i \(-0.371824\pi\)
0.391883 + 0.920015i \(0.371824\pi\)
\(572\) 2.92758e63 0.0465266
\(573\) −1.40820e63 −0.0214798
\(574\) 2.91316e64 0.426516
\(575\) −9.48280e64 −1.33273
\(576\) −8.53556e63 −0.115161
\(577\) −2.33941e64 −0.303023 −0.151511 0.988456i \(-0.548414\pi\)
−0.151511 + 0.988456i \(0.548414\pi\)
\(578\) −5.35780e64 −0.666319
\(579\) −2.83752e64 −0.338838
\(580\) 4.49679e64 0.515637
\(581\) −4.81081e64 −0.529760
\(582\) 7.50285e62 0.00793480
\(583\) −4.67914e63 −0.0475286
\(584\) 3.68805e64 0.359828
\(585\) 1.99414e64 0.186892
\(586\) −1.22916e65 −1.10666
\(587\) −1.35444e65 −1.17156 −0.585782 0.810469i \(-0.699212\pi\)
−0.585782 + 0.810469i \(0.699212\pi\)
\(588\) 2.41141e63 0.0200403
\(589\) −3.74323e64 −0.298908
\(590\) −7.91603e64 −0.607415
\(591\) 2.99379e64 0.220758
\(592\) −1.55282e64 −0.110043
\(593\) 7.56604e64 0.515327 0.257664 0.966235i \(-0.417047\pi\)
0.257664 + 0.966235i \(0.417047\pi\)
\(594\) 4.17972e64 0.273631
\(595\) 2.25759e64 0.142068
\(596\) 6.94027e64 0.419845
\(597\) −1.60013e64 −0.0930588
\(598\) 1.50734e64 0.0842815
\(599\) −5.32759e63 −0.0286418 −0.0143209 0.999897i \(-0.504559\pi\)
−0.0143209 + 0.999897i \(0.504559\pi\)
\(600\) 2.78106e64 0.143766
\(601\) −2.98566e65 −1.48419 −0.742095 0.670294i \(-0.766168\pi\)
−0.742095 + 0.670294i \(0.766168\pi\)
\(602\) 6.85374e64 0.327650
\(603\) 3.87129e65 1.77991
\(604\) −8.69748e63 −0.0384614
\(605\) −1.78316e65 −0.758471
\(606\) −1.78791e64 −0.0731542
\(607\) 4.40767e65 1.73490 0.867451 0.497523i \(-0.165757\pi\)
0.867451 + 0.497523i \(0.165757\pi\)
\(608\) 2.84907e64 0.107887
\(609\) −1.91796e64 −0.0698767
\(610\) 5.03815e65 1.76612
\(611\) 3.14931e64 0.106230
\(612\) 3.40833e64 0.110633
\(613\) 5.99582e65 1.87295 0.936477 0.350729i \(-0.114066\pi\)
0.936477 + 0.350729i \(0.114066\pi\)
\(614\) 2.36296e65 0.710395
\(615\) −2.42170e65 −0.700737
\(616\) 3.44437e64 0.0959320
\(617\) −7.25982e65 −1.94637 −0.973183 0.230032i \(-0.926117\pi\)
−0.973183 + 0.230032i \(0.926117\pi\)
\(618\) 9.73431e63 0.0251233
\(619\) 5.68633e65 1.41287 0.706434 0.707779i \(-0.250303\pi\)
0.706434 + 0.707779i \(0.250303\pi\)
\(620\) −1.60211e65 −0.383256
\(621\) 2.15203e65 0.495674
\(622\) 2.66366e65 0.590752
\(623\) 1.07222e65 0.228990
\(624\) −4.42062e63 −0.00909171
\(625\) −1.76078e65 −0.348759
\(626\) 5.70596e65 1.08851
\(627\) −6.68990e64 −0.122923
\(628\) −3.16712e65 −0.560547
\(629\) 6.20057e64 0.105716
\(630\) 2.34616e65 0.385349
\(631\) 2.05639e65 0.325398 0.162699 0.986676i \(-0.447980\pi\)
0.162699 + 0.986676i \(0.447980\pi\)
\(632\) −2.29091e65 −0.349266
\(633\) −5.11578e64 −0.0751492
\(634\) −5.28486e65 −0.748059
\(635\) 1.04012e65 0.141874
\(636\) 7.06547e63 0.00928751
\(637\) −1.46168e64 −0.0185172
\(638\) −2.73955e65 −0.334497
\(639\) 5.77595e64 0.0679756
\(640\) 1.21941e65 0.138331
\(641\) 3.57747e65 0.391212 0.195606 0.980683i \(-0.437333\pi\)
0.195606 + 0.980683i \(0.437333\pi\)
\(642\) −2.05881e65 −0.217042
\(643\) −4.28331e65 −0.435333 −0.217666 0.976023i \(-0.569844\pi\)
−0.217666 + 0.976023i \(0.569844\pi\)
\(644\) 1.77342e65 0.173778
\(645\) −5.69749e65 −0.538307
\(646\) −1.13766e65 −0.103645
\(647\) 2.86624e65 0.251804 0.125902 0.992043i \(-0.459818\pi\)
0.125902 + 0.992043i \(0.459818\pi\)
\(648\) 3.21355e65 0.272253
\(649\) 4.82263e65 0.394034
\(650\) −1.68575e65 −0.132840
\(651\) 6.83329e64 0.0519370
\(652\) −7.37822e65 −0.540920
\(653\) 1.13751e65 0.0804442 0.0402221 0.999191i \(-0.487193\pi\)
0.0402221 + 0.999191i \(0.487193\pi\)
\(654\) −1.98893e65 −0.135688
\(655\) 2.62813e66 1.72972
\(656\) −6.28318e65 −0.398969
\(657\) −1.53045e66 −0.937634
\(658\) 3.70525e65 0.219033
\(659\) −1.57436e66 −0.898042 −0.449021 0.893521i \(-0.648227\pi\)
−0.449021 + 0.893521i \(0.648227\pi\)
\(660\) −2.86329e65 −0.157610
\(661\) 3.95877e65 0.210294 0.105147 0.994457i \(-0.466469\pi\)
0.105147 + 0.994457i \(0.466469\pi\)
\(662\) −2.36837e66 −1.21419
\(663\) 1.76520e64 0.00873425
\(664\) 1.03761e66 0.495545
\(665\) −7.83118e65 −0.361010
\(666\) 6.44383e65 0.286748
\(667\) −1.41052e66 −0.605931
\(668\) 1.15349e66 0.478374
\(669\) 9.08413e64 0.0363722
\(670\) −5.53061e66 −2.13803
\(671\) −3.06936e66 −1.14569
\(672\) −5.20098e64 −0.0187460
\(673\) 1.13042e66 0.393446 0.196723 0.980459i \(-0.436970\pi\)
0.196723 + 0.980459i \(0.436970\pi\)
\(674\) −1.14188e66 −0.383807
\(675\) −2.40675e66 −0.781254
\(676\) −1.56805e66 −0.491599
\(677\) −5.89355e66 −1.78461 −0.892304 0.451434i \(-0.850912\pi\)
−0.892304 + 0.451434i \(0.850912\pi\)
\(678\) −9.74517e65 −0.285031
\(679\) −5.35070e64 −0.0151172
\(680\) −4.86922e65 −0.132892
\(681\) −6.82906e65 −0.180054
\(682\) 9.76044e65 0.248620
\(683\) 4.65402e66 1.14536 0.572679 0.819780i \(-0.305904\pi\)
0.572679 + 0.819780i \(0.305904\pi\)
\(684\) −1.18229e66 −0.281130
\(685\) 6.08089e66 1.39714
\(686\) −1.71971e65 −0.0381802
\(687\) −1.76143e66 −0.377904
\(688\) −1.47823e66 −0.306489
\(689\) −4.28276e64 −0.00858167
\(690\) −1.47424e66 −0.285505
\(691\) −4.06640e66 −0.761159 −0.380580 0.924748i \(-0.624276\pi\)
−0.380580 + 0.924748i \(0.624276\pi\)
\(692\) 3.81284e66 0.689851
\(693\) −1.42933e66 −0.249978
\(694\) 1.11441e66 0.188407
\(695\) 1.49543e67 2.44413
\(696\) 4.13670e65 0.0653637
\(697\) 2.50894e66 0.383283
\(698\) 4.28223e66 0.632510
\(699\) −5.62621e65 −0.0803531
\(700\) −1.98333e66 −0.273899
\(701\) 1.18836e67 1.58699 0.793497 0.608574i \(-0.208258\pi\)
0.793497 + 0.608574i \(0.208258\pi\)
\(702\) 3.82564e65 0.0494063
\(703\) −2.15087e66 −0.268636
\(704\) −7.42891e65 −0.0897362
\(705\) −3.08016e66 −0.359856
\(706\) −2.20514e66 −0.249187
\(707\) 1.27506e66 0.139371
\(708\) −7.28214e65 −0.0769977
\(709\) 6.73526e66 0.688919 0.344459 0.938801i \(-0.388062\pi\)
0.344459 + 0.938801i \(0.388062\pi\)
\(710\) −8.25164e65 −0.0816524
\(711\) 9.50671e66 0.910111
\(712\) −2.31260e66 −0.214200
\(713\) 5.02541e66 0.450368
\(714\) 2.07681e65 0.0180089
\(715\) 1.73559e66 0.145632
\(716\) −2.01224e66 −0.163390
\(717\) −6.35606e66 −0.499445
\(718\) −1.46479e67 −1.11391
\(719\) −3.71757e66 −0.273609 −0.136805 0.990598i \(-0.543683\pi\)
−0.136805 + 0.990598i \(0.543683\pi\)
\(720\) −5.06024e66 −0.360461
\(721\) −6.94207e65 −0.0478642
\(722\) −6.64885e66 −0.443733
\(723\) 1.94698e66 0.125780
\(724\) −9.13393e66 −0.571218
\(725\) 1.57748e67 0.955036
\(726\) −1.64037e66 −0.0961460
\(727\) 1.48214e67 0.841065 0.420532 0.907278i \(-0.361843\pi\)
0.420532 + 0.907278i \(0.361843\pi\)
\(728\) 3.15259e65 0.0173213
\(729\) −1.04926e67 −0.558197
\(730\) 2.18643e67 1.12629
\(731\) 5.90273e66 0.294438
\(732\) 4.63471e66 0.223878
\(733\) 7.51173e66 0.351396 0.175698 0.984444i \(-0.443782\pi\)
0.175698 + 0.984444i \(0.443782\pi\)
\(734\) −2.04069e66 −0.0924525
\(735\) 1.42959e66 0.0627275
\(736\) −3.82496e66 −0.162554
\(737\) 3.36937e67 1.38696
\(738\) 2.60737e67 1.03963
\(739\) −8.53564e66 −0.329679 −0.164840 0.986320i \(-0.552711\pi\)
−0.164840 + 0.986320i \(0.552711\pi\)
\(740\) −9.20579e66 −0.344441
\(741\) −6.12318e65 −0.0221947
\(742\) −5.03878e65 −0.0176943
\(743\) −4.79074e67 −1.62992 −0.814958 0.579519i \(-0.803240\pi\)
−0.814958 + 0.579519i \(0.803240\pi\)
\(744\) −1.47382e66 −0.0485826
\(745\) 4.11449e67 1.31415
\(746\) 4.44524e67 1.37573
\(747\) −4.30582e67 −1.29128
\(748\) 2.96644e66 0.0862081
\(749\) 1.46825e67 0.413502
\(750\) 5.11155e66 0.139512
\(751\) −3.91615e67 −1.03591 −0.517953 0.855409i \(-0.673306\pi\)
−0.517953 + 0.855409i \(0.673306\pi\)
\(752\) −7.99158e66 −0.204886
\(753\) −1.39434e67 −0.346487
\(754\) −2.50747e66 −0.0603961
\(755\) −5.15624e66 −0.120387
\(756\) 4.50097e66 0.101869
\(757\) 2.30362e67 0.505426 0.252713 0.967541i \(-0.418677\pi\)
0.252713 + 0.967541i \(0.418677\pi\)
\(758\) 1.48677e67 0.316240
\(759\) 8.98140e66 0.185209
\(760\) 1.68905e67 0.337694
\(761\) −3.02172e67 −0.585754 −0.292877 0.956150i \(-0.594613\pi\)
−0.292877 + 0.956150i \(0.594613\pi\)
\(762\) 9.56833e65 0.0179843
\(763\) 1.41842e67 0.258510
\(764\) −2.16602e66 −0.0382797
\(765\) 2.02061e67 0.346289
\(766\) −1.38526e67 −0.230227
\(767\) 4.41409e66 0.0711459
\(768\) 1.12176e66 0.0175352
\(769\) −9.59373e67 −1.45452 −0.727258 0.686364i \(-0.759206\pi\)
−0.727258 + 0.686364i \(0.759206\pi\)
\(770\) 2.04197e67 0.300274
\(771\) 1.61895e67 0.230917
\(772\) −4.36453e67 −0.603852
\(773\) 1.92111e67 0.257831 0.128915 0.991656i \(-0.458850\pi\)
0.128915 + 0.991656i \(0.458850\pi\)
\(774\) 6.13430e67 0.798643
\(775\) −5.62022e67 −0.709845
\(776\) 1.15405e66 0.0141408
\(777\) 3.92643e66 0.0466771
\(778\) −2.69064e67 −0.310338
\(779\) −8.70309e67 −0.973964
\(780\) −2.62073e66 −0.0284577
\(781\) 5.02709e66 0.0529684
\(782\) 1.52734e67 0.156163
\(783\) −3.57993e67 −0.355200
\(784\) 3.70911e66 0.0357143
\(785\) −1.87760e68 −1.75455
\(786\) 2.41767e67 0.219264
\(787\) 1.53889e68 1.35457 0.677287 0.735719i \(-0.263156\pi\)
0.677287 + 0.735719i \(0.263156\pi\)
\(788\) 4.60491e67 0.393418
\(789\) −2.09178e67 −0.173463
\(790\) −1.35815e68 −1.09323
\(791\) 6.94982e67 0.543033
\(792\) 3.08282e67 0.233833
\(793\) −2.80934e67 −0.206864
\(794\) −3.48073e67 −0.248822
\(795\) 4.18872e66 0.0290706
\(796\) −2.46123e67 −0.165843
\(797\) −1.74415e68 −1.14107 −0.570535 0.821273i \(-0.693264\pi\)
−0.570535 + 0.821273i \(0.693264\pi\)
\(798\) −7.20409e66 −0.0457626
\(799\) 3.19112e67 0.196831
\(800\) 4.27769e67 0.256209
\(801\) 9.59671e67 0.558160
\(802\) 1.81547e68 1.02540
\(803\) −1.33203e68 −0.730630
\(804\) −5.08773e67 −0.271024
\(805\) 1.05136e68 0.543937
\(806\) 8.93360e66 0.0448904
\(807\) 2.08038e67 0.101535
\(808\) −2.75008e67 −0.130370
\(809\) −4.21527e68 −1.94104 −0.970520 0.241019i \(-0.922518\pi\)
−0.970520 + 0.241019i \(0.922518\pi\)
\(810\) 1.90513e68 0.852172
\(811\) 1.23406e68 0.536223 0.268112 0.963388i \(-0.413600\pi\)
0.268112 + 0.963388i \(0.413600\pi\)
\(812\) −2.95011e67 −0.124529
\(813\) −7.19914e65 −0.00295225
\(814\) 5.60838e67 0.223441
\(815\) −4.37412e68 −1.69312
\(816\) −4.47930e66 −0.0168458
\(817\) −2.04756e68 −0.748200
\(818\) 3.26569e67 0.115951
\(819\) −1.30825e67 −0.0451355
\(820\) −3.72494e68 −1.24880
\(821\) −1.35533e68 −0.441550 −0.220775 0.975325i \(-0.570859\pi\)
−0.220775 + 0.975325i \(0.570859\pi\)
\(822\) 5.59395e67 0.177105
\(823\) −2.10249e68 −0.646901 −0.323450 0.946245i \(-0.604843\pi\)
−0.323450 + 0.946245i \(0.604843\pi\)
\(824\) 1.49728e67 0.0447728
\(825\) −1.00445e68 −0.291916
\(826\) 5.19330e67 0.146694
\(827\) 6.21881e67 0.170737 0.0853685 0.996349i \(-0.472793\pi\)
0.0853685 + 0.996349i \(0.472793\pi\)
\(828\) 1.58727e68 0.423581
\(829\) 8.82520e67 0.228925 0.114462 0.993428i \(-0.463485\pi\)
0.114462 + 0.993428i \(0.463485\pi\)
\(830\) 6.15138e68 1.55109
\(831\) 1.70472e68 0.417857
\(832\) −6.79958e66 −0.0162026
\(833\) −1.48108e67 −0.0343101
\(834\) 1.37568e68 0.309824
\(835\) 6.83839e68 1.49735
\(836\) −1.02901e68 −0.219064
\(837\) 1.27546e68 0.264008
\(838\) 6.66212e67 0.134084
\(839\) 7.60277e68 1.48787 0.743937 0.668250i \(-0.232956\pi\)
0.743937 + 0.668250i \(0.232956\pi\)
\(840\) −3.08337e67 −0.0586762
\(841\) −3.05746e68 −0.565790
\(842\) 4.76975e68 0.858344
\(843\) 2.22804e68 0.389919
\(844\) −7.86884e67 −0.133925
\(845\) −9.29604e68 −1.53874
\(846\) 3.31631e68 0.533890
\(847\) 1.16984e68 0.183175
\(848\) 1.08678e67 0.0165515
\(849\) 3.50101e68 0.518636
\(850\) −1.70812e68 −0.246136
\(851\) 2.88761e68 0.404757
\(852\) −7.59087e66 −0.0103505
\(853\) 1.29663e69 1.71994 0.859968 0.510347i \(-0.170483\pi\)
0.859968 + 0.510347i \(0.170483\pi\)
\(854\) −3.30527e68 −0.426527
\(855\) −7.00914e68 −0.879957
\(856\) −3.16676e68 −0.386796
\(857\) 7.27586e68 0.864639 0.432320 0.901720i \(-0.357695\pi\)
0.432320 + 0.901720i \(0.357695\pi\)
\(858\) 1.59661e67 0.0184607
\(859\) −1.03789e69 −1.16765 −0.583825 0.811880i \(-0.698445\pi\)
−0.583825 + 0.811880i \(0.698445\pi\)
\(860\) −8.76359e68 −0.959331
\(861\) 1.58875e68 0.169232
\(862\) −2.84091e67 −0.0294467
\(863\) 8.82493e68 0.890139 0.445069 0.895496i \(-0.353179\pi\)
0.445069 + 0.895496i \(0.353179\pi\)
\(864\) −9.70780e67 −0.0952902
\(865\) 2.26042e69 2.15928
\(866\) −2.51655e68 −0.233956
\(867\) −2.92198e68 −0.264380
\(868\) 1.05106e68 0.0925583
\(869\) 8.27415e68 0.709183
\(870\) 2.45241e68 0.204593
\(871\) 3.08394e68 0.250426
\(872\) −3.05927e68 −0.241814
\(873\) −4.78903e67 −0.0368479
\(874\) −5.29810e68 −0.396827
\(875\) −3.64533e68 −0.265795
\(876\) 2.01135e68 0.142771
\(877\) 2.70944e69 1.87236 0.936180 0.351522i \(-0.114336\pi\)
0.936180 + 0.351522i \(0.114336\pi\)
\(878\) 6.39134e68 0.430002
\(879\) −6.70345e68 −0.439096
\(880\) −4.40418e68 −0.280881
\(881\) −2.86512e68 −0.177914 −0.0889568 0.996035i \(-0.528353\pi\)
−0.0889568 + 0.996035i \(0.528353\pi\)
\(882\) −1.53919e68 −0.0930637
\(883\) 2.36022e69 1.38956 0.694778 0.719224i \(-0.255502\pi\)
0.694778 + 0.719224i \(0.255502\pi\)
\(884\) 2.71514e67 0.0155655
\(885\) −4.31717e68 −0.241008
\(886\) −5.06182e68 −0.275178
\(887\) −2.14853e69 −1.13746 −0.568731 0.822524i \(-0.692565\pi\)
−0.568731 + 0.822524i \(0.692565\pi\)
\(888\) −8.46861e67 −0.0436624
\(889\) −6.82370e67 −0.0342633
\(890\) −1.37101e69 −0.670462
\(891\) −1.16065e69 −0.552810
\(892\) 1.39728e68 0.0648198
\(893\) −1.10694e69 −0.500169
\(894\) 3.78501e68 0.166585
\(895\) −1.19294e69 −0.511421
\(896\) −7.99989e67 −0.0334077
\(897\) 8.22055e67 0.0334409
\(898\) −1.24338e69 −0.492732
\(899\) −8.35982e68 −0.322734
\(900\) −1.77514e69 −0.667626
\(901\) −4.33961e67 −0.0159008
\(902\) 2.26932e69 0.810107
\(903\) 3.73782e68 0.130004
\(904\) −1.49895e69 −0.507961
\(905\) −5.41499e69 −1.78795
\(906\) −4.74334e67 −0.0152606
\(907\) −1.96925e67 −0.00617348 −0.00308674 0.999995i \(-0.500983\pi\)
−0.00308674 + 0.999995i \(0.500983\pi\)
\(908\) −1.05041e69 −0.320880
\(909\) 1.14122e69 0.339716
\(910\) 1.86899e68 0.0542168
\(911\) −1.28070e69 −0.362047 −0.181024 0.983479i \(-0.557941\pi\)
−0.181024 + 0.983479i \(0.557941\pi\)
\(912\) 1.55379e68 0.0428070
\(913\) −3.74756e69 −1.00620
\(914\) 1.03292e69 0.270291
\(915\) 2.74766e69 0.700756
\(916\) −2.70934e69 −0.673473
\(917\) −1.72418e69 −0.417737
\(918\) 3.87642e68 0.0915437
\(919\) −3.17051e69 −0.729818 −0.364909 0.931043i \(-0.618900\pi\)
−0.364909 + 0.931043i \(0.618900\pi\)
\(920\) −2.26760e69 −0.508806
\(921\) 1.28869e69 0.281868
\(922\) −4.76909e69 −1.01685
\(923\) 4.60123e67 0.00956387
\(924\) 1.87846e68 0.0380636
\(925\) −3.22940e69 −0.637956
\(926\) −5.99824e69 −1.15522
\(927\) −6.21336e68 −0.116668
\(928\) 6.36286e68 0.116486
\(929\) 8.21111e69 1.46566 0.732829 0.680413i \(-0.238199\pi\)
0.732829 + 0.680413i \(0.238199\pi\)
\(930\) −8.73744e68 −0.152067
\(931\) 5.13763e68 0.0871857
\(932\) −8.65396e68 −0.143199
\(933\) 1.45268e69 0.234397
\(934\) 5.52976e69 0.870071
\(935\) 1.75863e69 0.269837
\(936\) 2.82166e68 0.0422204
\(937\) −6.83105e68 −0.0996798 −0.0498399 0.998757i \(-0.515871\pi\)
−0.0498399 + 0.998757i \(0.515871\pi\)
\(938\) 3.62834e69 0.516347
\(939\) 3.11186e69 0.431895
\(940\) −4.73775e69 −0.641309
\(941\) 1.23580e70 1.63151 0.815756 0.578395i \(-0.196321\pi\)
0.815756 + 0.578395i \(0.196321\pi\)
\(942\) −1.72725e69 −0.222412
\(943\) 1.16842e70 1.46748
\(944\) −1.12010e69 −0.137220
\(945\) 2.66837e69 0.318859
\(946\) 5.33898e69 0.622324
\(947\) 3.76469e69 0.428060 0.214030 0.976827i \(-0.431341\pi\)
0.214030 + 0.976827i \(0.431341\pi\)
\(948\) −1.24939e69 −0.138581
\(949\) −1.21919e69 −0.131921
\(950\) 5.92519e69 0.625458
\(951\) −2.88220e69 −0.296813
\(952\) 3.19444e68 0.0320942
\(953\) −2.51591e69 −0.246611 −0.123305 0.992369i \(-0.539349\pi\)
−0.123305 + 0.992369i \(0.539349\pi\)
\(954\) −4.50986e68 −0.0431297
\(955\) −1.28411e69 −0.119818
\(956\) −9.77658e69 −0.890075
\(957\) −1.49407e69 −0.132721
\(958\) 1.10112e70 0.954429
\(959\) −3.98935e69 −0.337416
\(960\) 6.65028e68 0.0548865
\(961\) −9.43808e69 −0.760123
\(962\) 5.13327e68 0.0403441
\(963\) 1.31413e70 1.00791
\(964\) 2.99475e69 0.224156
\(965\) −2.58748e70 −1.89010
\(966\) 9.67170e68 0.0689510
\(967\) 7.97343e68 0.0554783 0.0277391 0.999615i \(-0.491169\pi\)
0.0277391 + 0.999615i \(0.491169\pi\)
\(968\) −2.52313e69 −0.171344
\(969\) −6.20446e68 −0.0411240
\(970\) 6.84171e68 0.0442618
\(971\) −1.32156e70 −0.834516 −0.417258 0.908788i \(-0.637009\pi\)
−0.417258 + 0.908788i \(0.637009\pi\)
\(972\) 6.12528e69 0.377545
\(973\) −9.81074e69 −0.590269
\(974\) 2.32514e70 1.36557
\(975\) −9.19355e68 −0.0527078
\(976\) 7.12888e69 0.398980
\(977\) −9.48252e69 −0.518086 −0.259043 0.965866i \(-0.583407\pi\)
−0.259043 + 0.965866i \(0.583407\pi\)
\(978\) −4.02386e69 −0.214625
\(979\) 8.35248e69 0.434933
\(980\) 2.19892e69 0.111788
\(981\) 1.26952e70 0.630114
\(982\) 6.76085e69 0.327628
\(983\) 2.31221e69 0.109400 0.0547002 0.998503i \(-0.482580\pi\)
0.0547002 + 0.998503i \(0.482580\pi\)
\(984\) −3.42666e69 −0.158302
\(985\) 2.72999e70 1.23143
\(986\) −2.54076e69 −0.111907
\(987\) 2.02073e69 0.0869072
\(988\) −9.41837e68 −0.0395537
\(989\) 2.74891e70 1.12732
\(990\) 1.82763e70 0.731915
\(991\) 3.87403e70 1.51507 0.757533 0.652797i \(-0.226404\pi\)
0.757533 + 0.652797i \(0.226404\pi\)
\(992\) −2.26696e69 −0.0865803
\(993\) −1.29164e70 −0.481763
\(994\) 5.41347e68 0.0197195
\(995\) −1.45913e70 −0.519099
\(996\) 5.65880e69 0.196621
\(997\) −5.34728e70 −1.81466 −0.907332 0.420414i \(-0.861885\pi\)
−0.907332 + 0.420414i \(0.861885\pi\)
\(998\) −2.47781e70 −0.821296
\(999\) 7.32881e69 0.237271
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 14.48.a.c.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.48.a.c.1.4 6 1.1 even 1 trivial