Properties

Label 14.48.a.c.1.3
Level $14$
Weight $48$
Character 14.1
Self dual yes
Analytic conductor $195.871$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [14,48,Mod(1,14)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 48, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("14.1"); S:= CuspForms(chi, 48); N := Newforms(S);
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 48 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,50331648] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(195.870727717\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2 x^{5} + \cdots - 16\!\cdots\!84 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{36}\cdot 3^{15}\cdot 5^{6}\cdot 7^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(6.87036e8\) of defining polynomial
Character \(\chi\) \(=\) 14.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.38861e6 q^{2} +2.85805e9 q^{3} +7.03687e13 q^{4} -4.96190e16 q^{5} +2.39750e16 q^{6} -2.73687e19 q^{7} +5.90296e20 q^{8} -2.65806e22 q^{9} -4.16234e23 q^{10} +2.75791e24 q^{11} +2.01117e23 q^{12} -1.47333e26 q^{13} -2.29586e26 q^{14} -1.41813e26 q^{15} +4.95176e27 q^{16} +1.61499e29 q^{17} -2.22975e29 q^{18} +9.03896e29 q^{19} -3.49162e30 q^{20} -7.82212e28 q^{21} +2.31350e31 q^{22} +4.22977e31 q^{23} +1.68709e30 q^{24} +1.75150e33 q^{25} -1.23591e33 q^{26} -1.51961e32 q^{27} -1.92590e33 q^{28} +3.47113e33 q^{29} -1.18962e33 q^{30} -1.81147e35 q^{31} +4.15384e34 q^{32} +7.88224e33 q^{33} +1.35475e36 q^{34} +1.35801e36 q^{35} -1.87045e36 q^{36} +1.12630e37 q^{37} +7.58243e36 q^{38} -4.21083e35 q^{39} -2.92899e37 q^{40} +5.45836e36 q^{41} -6.56167e35 q^{42} +2.20806e38 q^{43} +1.94071e38 q^{44} +1.31890e39 q^{45} +3.54819e38 q^{46} -1.06649e39 q^{47} +1.41524e37 q^{48} +7.49048e38 q^{49} +1.46926e40 q^{50} +4.61573e38 q^{51} -1.03676e40 q^{52} -3.12107e40 q^{53} -1.27474e39 q^{54} -1.36845e41 q^{55} -1.61557e40 q^{56} +2.58338e39 q^{57} +2.91180e40 q^{58} -7.68569e41 q^{59} -9.97923e39 q^{60} -2.46085e41 q^{61} -1.51957e42 q^{62} +7.27479e41 q^{63} +3.48449e41 q^{64} +7.31049e42 q^{65} +6.61210e40 q^{66} +7.21144e40 q^{67} +1.13645e43 q^{68} +1.20889e41 q^{69} +1.13918e43 q^{70} -1.56833e43 q^{71} -1.56904e43 q^{72} -4.53957e42 q^{73} +9.44813e43 q^{74} +5.00586e42 q^{75} +6.36060e43 q^{76} -7.54805e43 q^{77} -3.53230e42 q^{78} -7.66715e44 q^{79} -2.45701e44 q^{80} +7.06314e44 q^{81} +4.57881e43 q^{82} +4.38261e44 q^{83} -5.50433e42 q^{84} -8.01342e45 q^{85} +1.85226e45 q^{86} +9.92067e42 q^{87} +1.62798e45 q^{88} +8.80332e45 q^{89} +1.10638e46 q^{90} +4.03231e45 q^{91} +2.97643e45 q^{92} -5.17727e44 q^{93} -8.94640e45 q^{94} -4.48504e46 q^{95} +1.18719e44 q^{96} -4.24824e46 q^{97} +6.28347e45 q^{98} -7.33070e46 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 50331648 q^{2} + 91348200216 q^{3} + 422212465065984 q^{4} - 30\!\cdots\!00 q^{5} + 76\!\cdots\!28 q^{6} - 16\!\cdots\!58 q^{7} + 35\!\cdots\!72 q^{8} + 23\!\cdots\!02 q^{9} - 25\!\cdots\!00 q^{10}+ \cdots - 22\!\cdots\!76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.38861e6 0.707107
\(3\) 2.85805e9 0.0175275 0.00876375 0.999962i \(-0.497210\pi\)
0.00876375 + 0.999962i \(0.497210\pi\)
\(4\) 7.03687e13 0.500000
\(5\) −4.96190e16 −1.86145 −0.930727 0.365714i \(-0.880825\pi\)
−0.930727 + 0.365714i \(0.880825\pi\)
\(6\) 2.39750e16 0.0123938
\(7\) −2.73687e19 −0.377964
\(8\) 5.90296e20 0.353553
\(9\) −2.65806e22 −0.999693
\(10\) −4.16234e23 −1.31625
\(11\) 2.75791e24 0.928650 0.464325 0.885665i \(-0.346297\pi\)
0.464325 + 0.885665i \(0.346297\pi\)
\(12\) 2.01117e23 0.00876375
\(13\) −1.47333e26 −0.978656 −0.489328 0.872100i \(-0.662758\pi\)
−0.489328 + 0.872100i \(0.662758\pi\)
\(14\) −2.29586e26 −0.267261
\(15\) −1.41813e26 −0.0326267
\(16\) 4.95176e27 0.250000
\(17\) 1.61499e29 1.96165 0.980823 0.194899i \(-0.0624380\pi\)
0.980823 + 0.194899i \(0.0624380\pi\)
\(18\) −2.22975e29 −0.706890
\(19\) 9.03896e29 0.804283 0.402141 0.915578i \(-0.368266\pi\)
0.402141 + 0.915578i \(0.368266\pi\)
\(20\) −3.49162e30 −0.930727
\(21\) −7.82212e28 −0.00662477
\(22\) 2.31350e31 0.656654
\(23\) 4.22977e31 0.422389 0.211194 0.977444i \(-0.432265\pi\)
0.211194 + 0.977444i \(0.432265\pi\)
\(24\) 1.68709e30 0.00619691
\(25\) 1.75150e33 2.46501
\(26\) −1.23591e33 −0.692014
\(27\) −1.51961e32 −0.0350496
\(28\) −1.92590e33 −0.188982
\(29\) 3.47113e33 0.149320 0.0746601 0.997209i \(-0.476213\pi\)
0.0746601 + 0.997209i \(0.476213\pi\)
\(30\) −1.18962e33 −0.0230705
\(31\) −1.81147e35 −1.62567 −0.812834 0.582495i \(-0.802076\pi\)
−0.812834 + 0.582495i \(0.802076\pi\)
\(32\) 4.15384e34 0.176777
\(33\) 7.88224e33 0.0162769
\(34\) 1.35475e36 1.38709
\(35\) 1.35801e36 0.703564
\(36\) −1.87045e36 −0.499846
\(37\) 1.12630e37 1.58094 0.790470 0.612501i \(-0.209836\pi\)
0.790470 + 0.612501i \(0.209836\pi\)
\(38\) 7.58243e36 0.568714
\(39\) −4.21083e35 −0.0171534
\(40\) −2.92899e37 −0.658124
\(41\) 5.45836e36 0.0686502 0.0343251 0.999411i \(-0.489072\pi\)
0.0343251 + 0.999411i \(0.489072\pi\)
\(42\) −6.56167e35 −0.00468442
\(43\) 2.20806e38 0.906781 0.453391 0.891312i \(-0.350214\pi\)
0.453391 + 0.891312i \(0.350214\pi\)
\(44\) 1.94071e38 0.464325
\(45\) 1.31890e39 1.86088
\(46\) 3.54819e38 0.298674
\(47\) −1.06649e39 −0.541575 −0.270788 0.962639i \(-0.587284\pi\)
−0.270788 + 0.962639i \(0.587284\pi\)
\(48\) 1.41524e37 0.00438188
\(49\) 7.49048e38 0.142857
\(50\) 1.46926e40 1.74303
\(51\) 4.61573e38 0.0343828
\(52\) −1.03676e40 −0.489328
\(53\) −3.12107e40 −0.941501 −0.470751 0.882266i \(-0.656017\pi\)
−0.470751 + 0.882266i \(0.656017\pi\)
\(54\) −1.27474e39 −0.0247838
\(55\) −1.36845e41 −1.72864
\(56\) −1.61557e40 −0.133631
\(57\) 2.58338e39 0.0140971
\(58\) 2.91180e40 0.105585
\(59\) −7.68569e41 −1.86492 −0.932460 0.361272i \(-0.882343\pi\)
−0.932460 + 0.361272i \(0.882343\pi\)
\(60\) −9.97923e39 −0.0163133
\(61\) −2.46085e41 −0.272793 −0.136397 0.990654i \(-0.543552\pi\)
−0.136397 + 0.990654i \(0.543552\pi\)
\(62\) −1.51957e42 −1.14952
\(63\) 7.27479e41 0.377848
\(64\) 3.48449e41 0.125000
\(65\) 7.31049e42 1.82172
\(66\) 6.61210e40 0.0115095
\(67\) 7.21144e40 0.00881585 0.00440792 0.999990i \(-0.498597\pi\)
0.00440792 + 0.999990i \(0.498597\pi\)
\(68\) 1.13645e43 0.980823
\(69\) 1.20889e41 0.00740342
\(70\) 1.13918e43 0.497495
\(71\) −1.56833e43 −0.490755 −0.245378 0.969428i \(-0.578912\pi\)
−0.245378 + 0.969428i \(0.578912\pi\)
\(72\) −1.56904e43 −0.353445
\(73\) −4.53957e42 −0.0739482 −0.0369741 0.999316i \(-0.511772\pi\)
−0.0369741 + 0.999316i \(0.511772\pi\)
\(74\) 9.44813e43 1.11789
\(75\) 5.00586e42 0.0432055
\(76\) 6.36060e43 0.402141
\(77\) −7.54805e43 −0.350997
\(78\) −3.53230e42 −0.0121293
\(79\) −7.66715e44 −1.95163 −0.975815 0.218598i \(-0.929852\pi\)
−0.975815 + 0.218598i \(0.929852\pi\)
\(80\) −2.45701e44 −0.465364
\(81\) 7.06314e44 0.999078
\(82\) 4.57881e43 0.0485430
\(83\) 4.38261e44 0.349460 0.174730 0.984616i \(-0.444095\pi\)
0.174730 + 0.984616i \(0.444095\pi\)
\(84\) −5.50433e42 −0.00331239
\(85\) −8.01342e45 −3.65152
\(86\) 1.85226e45 0.641191
\(87\) 9.92067e42 0.00261721
\(88\) 1.62798e45 0.328327
\(89\) 8.80332e45 1.36139 0.680693 0.732569i \(-0.261679\pi\)
0.680693 + 0.732569i \(0.261679\pi\)
\(90\) 1.10638e46 1.31584
\(91\) 4.03231e45 0.369897
\(92\) 2.97643e45 0.211194
\(93\) −5.17727e44 −0.0284939
\(94\) −8.94640e45 −0.382951
\(95\) −4.48504e46 −1.49714
\(96\) 1.18719e44 0.00309845
\(97\) −4.24824e46 −0.869108 −0.434554 0.900646i \(-0.643094\pi\)
−0.434554 + 0.900646i \(0.643094\pi\)
\(98\) 6.28347e45 0.101015
\(99\) −7.33070e46 −0.928364
\(100\) 1.23251e47 1.23251
\(101\) −1.03418e47 −0.818548 −0.409274 0.912411i \(-0.634218\pi\)
−0.409274 + 0.912411i \(0.634218\pi\)
\(102\) 3.87195e45 0.0243123
\(103\) −1.36830e46 −0.0683133 −0.0341566 0.999416i \(-0.510875\pi\)
−0.0341566 + 0.999416i \(0.510875\pi\)
\(104\) −8.69698e46 −0.346007
\(105\) 3.88125e45 0.0123317
\(106\) −2.61815e47 −0.665742
\(107\) −3.91889e47 −0.799180 −0.399590 0.916694i \(-0.630848\pi\)
−0.399590 + 0.916694i \(0.630848\pi\)
\(108\) −1.06933e46 −0.0175248
\(109\) 5.47798e47 0.722933 0.361466 0.932385i \(-0.382276\pi\)
0.361466 + 0.932385i \(0.382276\pi\)
\(110\) −1.14794e48 −1.22233
\(111\) 3.21903e46 0.0277099
\(112\) −1.35523e47 −0.0944911
\(113\) 1.62357e48 0.918605 0.459303 0.888280i \(-0.348099\pi\)
0.459303 + 0.888280i \(0.348099\pi\)
\(114\) 2.16709e46 0.00996813
\(115\) −2.09877e48 −0.786257
\(116\) 2.44259e47 0.0746601
\(117\) 3.91619e48 0.978355
\(118\) −6.44722e48 −1.31870
\(119\) −4.42003e48 −0.741433
\(120\) −8.37118e46 −0.0115353
\(121\) −1.21368e48 −0.137610
\(122\) −2.06431e48 −0.192894
\(123\) 1.56003e46 0.00120327
\(124\) −1.27471e49 −0.812834
\(125\) −5.16511e49 −2.72706
\(126\) 6.10254e48 0.267179
\(127\) 3.76428e49 1.36866 0.684329 0.729174i \(-0.260095\pi\)
0.684329 + 0.729174i \(0.260095\pi\)
\(128\) 2.92300e48 0.0883883
\(129\) 6.31075e47 0.0158936
\(130\) 6.13248e49 1.28815
\(131\) 7.15382e49 1.25505 0.627527 0.778595i \(-0.284067\pi\)
0.627527 + 0.778595i \(0.284067\pi\)
\(132\) 5.54663e47 0.00813845
\(133\) −2.47385e49 −0.303990
\(134\) 6.04939e47 0.00623375
\(135\) 7.54014e48 0.0652433
\(136\) 9.53323e49 0.693547
\(137\) −1.80580e50 −1.10595 −0.552977 0.833197i \(-0.686508\pi\)
−0.552977 + 0.833197i \(0.686508\pi\)
\(138\) 1.01409e48 0.00523501
\(139\) 2.72373e50 1.18663 0.593316 0.804970i \(-0.297819\pi\)
0.593316 + 0.804970i \(0.297819\pi\)
\(140\) 9.55614e49 0.351782
\(141\) −3.04809e48 −0.00949246
\(142\) −1.31561e50 −0.347016
\(143\) −4.06330e50 −0.908828
\(144\) −1.31621e50 −0.249923
\(145\) −1.72234e50 −0.277953
\(146\) −3.80807e49 −0.0522893
\(147\) 2.14082e48 0.00250393
\(148\) 7.92566e50 0.790470
\(149\) 9.74934e50 0.830038 0.415019 0.909813i \(-0.363775\pi\)
0.415019 + 0.909813i \(0.363775\pi\)
\(150\) 4.19922e49 0.0305509
\(151\) 4.36036e50 0.271372 0.135686 0.990752i \(-0.456676\pi\)
0.135686 + 0.990752i \(0.456676\pi\)
\(152\) 5.33566e50 0.284357
\(153\) −4.29275e51 −1.96104
\(154\) −6.33177e50 −0.248192
\(155\) 8.98834e51 3.02611
\(156\) −2.96311e49 −0.00857669
\(157\) 4.28053e51 1.06624 0.533121 0.846039i \(-0.321019\pi\)
0.533121 + 0.846039i \(0.321019\pi\)
\(158\) −6.43167e51 −1.38001
\(159\) −8.92017e49 −0.0165022
\(160\) −2.06109e51 −0.329062
\(161\) −1.15763e51 −0.159648
\(162\) 5.92499e51 0.706455
\(163\) −8.07644e51 −0.833319 −0.416660 0.909063i \(-0.636799\pi\)
−0.416660 + 0.909063i \(0.636799\pi\)
\(164\) 3.84098e50 0.0343251
\(165\) −3.91108e50 −0.0302987
\(166\) 3.67640e51 0.247106
\(167\) −2.27505e51 −0.132786 −0.0663932 0.997794i \(-0.521149\pi\)
−0.0663932 + 0.997794i \(0.521149\pi\)
\(168\) −4.61736e49 −0.00234221
\(169\) −9.57177e50 −0.0422333
\(170\) −6.72215e52 −2.58201
\(171\) −2.40261e52 −0.804036
\(172\) 1.55379e52 0.453391
\(173\) −6.63394e52 −1.68923 −0.844613 0.535377i \(-0.820170\pi\)
−0.844613 + 0.535377i \(0.820170\pi\)
\(174\) 8.32206e49 0.00185065
\(175\) −4.79363e52 −0.931688
\(176\) 1.36565e52 0.232162
\(177\) −2.19661e51 −0.0326874
\(178\) 7.38476e52 0.962646
\(179\) −4.94983e52 −0.565645 −0.282822 0.959172i \(-0.591271\pi\)
−0.282822 + 0.959172i \(0.591271\pi\)
\(180\) 9.28096e52 0.930441
\(181\) 1.68696e53 1.48477 0.742385 0.669974i \(-0.233695\pi\)
0.742385 + 0.669974i \(0.233695\pi\)
\(182\) 3.38254e52 0.261557
\(183\) −7.03323e50 −0.00478139
\(184\) 2.49681e52 0.149337
\(185\) −5.58861e53 −2.94285
\(186\) −4.34301e51 −0.0201482
\(187\) 4.45400e53 1.82168
\(188\) −7.50478e52 −0.270788
\(189\) 4.15898e51 0.0132475
\(190\) −3.76232e53 −1.05863
\(191\) 9.00666e52 0.224016 0.112008 0.993707i \(-0.464272\pi\)
0.112008 + 0.993707i \(0.464272\pi\)
\(192\) 9.95884e50 0.00219094
\(193\) −3.10384e53 −0.604369 −0.302185 0.953249i \(-0.597716\pi\)
−0.302185 + 0.953249i \(0.597716\pi\)
\(194\) −3.56368e53 −0.614552
\(195\) 2.08937e52 0.0319303
\(196\) 5.27096e52 0.0714286
\(197\) −8.17940e53 −0.983479 −0.491740 0.870742i \(-0.663639\pi\)
−0.491740 + 0.870742i \(0.663639\pi\)
\(198\) −6.14944e53 −0.656453
\(199\) −3.71278e53 −0.352089 −0.176044 0.984382i \(-0.556330\pi\)
−0.176044 + 0.984382i \(0.556330\pi\)
\(200\) 1.03390e54 0.871514
\(201\) 2.06106e50 0.000154520 0
\(202\) −8.67534e53 −0.578801
\(203\) −9.50006e52 −0.0564377
\(204\) 3.24803e52 0.0171914
\(205\) −2.70838e53 −0.127789
\(206\) −1.14781e53 −0.0483048
\(207\) −1.12430e54 −0.422259
\(208\) −7.29555e53 −0.244664
\(209\) 2.49286e54 0.746897
\(210\) 3.25583e52 0.00871984
\(211\) 1.01024e54 0.241985 0.120993 0.992653i \(-0.461392\pi\)
0.120993 + 0.992653i \(0.461392\pi\)
\(212\) −2.19626e54 −0.470751
\(213\) −4.48235e52 −0.00860172
\(214\) −3.28741e54 −0.565106
\(215\) −1.09562e55 −1.68793
\(216\) −8.97019e52 −0.0123919
\(217\) 4.95777e54 0.614445
\(218\) 4.59526e54 0.511191
\(219\) −1.29743e52 −0.00129613
\(220\) −9.62958e54 −0.864320
\(221\) −2.37941e55 −1.91978
\(222\) 2.70032e53 0.0195939
\(223\) −2.73824e55 −1.78775 −0.893874 0.448317i \(-0.852023\pi\)
−0.893874 + 0.448317i \(0.852023\pi\)
\(224\) −1.13685e54 −0.0668153
\(225\) −4.65559e55 −2.46426
\(226\) 1.36195e55 0.649552
\(227\) −3.71604e55 −1.59762 −0.798808 0.601585i \(-0.794536\pi\)
−0.798808 + 0.601585i \(0.794536\pi\)
\(228\) 1.81789e53 0.00704853
\(229\) −2.19337e55 −0.767322 −0.383661 0.923474i \(-0.625337\pi\)
−0.383661 + 0.923474i \(0.625337\pi\)
\(230\) −1.76057e55 −0.555968
\(231\) −2.15727e53 −0.00615209
\(232\) 2.04900e54 0.0527927
\(233\) −4.19117e54 −0.0976048 −0.0488024 0.998808i \(-0.515540\pi\)
−0.0488024 + 0.998808i \(0.515540\pi\)
\(234\) 3.28514e55 0.691801
\(235\) 5.29183e55 1.00812
\(236\) −5.40832e55 −0.932460
\(237\) −2.19131e54 −0.0342072
\(238\) −3.70779e55 −0.524272
\(239\) 3.07194e55 0.393606 0.196803 0.980443i \(-0.436944\pi\)
0.196803 + 0.980443i \(0.436944\pi\)
\(240\) −7.02226e53 −0.00815666
\(241\) 3.60139e55 0.379376 0.189688 0.981844i \(-0.439252\pi\)
0.189688 + 0.981844i \(0.439252\pi\)
\(242\) −1.01811e55 −0.0973048
\(243\) 6.05914e54 0.0525610
\(244\) −1.73167e55 −0.136397
\(245\) −3.71670e55 −0.265922
\(246\) 1.30864e53 0.000850838 0
\(247\) −1.33173e56 −0.787116
\(248\) −1.06930e56 −0.574760
\(249\) 1.25257e54 0.00612517
\(250\) −4.33281e56 −1.92832
\(251\) −1.13914e56 −0.461576 −0.230788 0.973004i \(-0.574130\pi\)
−0.230788 + 0.973004i \(0.574130\pi\)
\(252\) 5.11918e55 0.188924
\(253\) 1.16653e56 0.392251
\(254\) 3.15771e56 0.967787
\(255\) −2.29027e55 −0.0640020
\(256\) 2.45199e55 0.0625000
\(257\) 5.22610e56 1.21548 0.607742 0.794135i \(-0.292076\pi\)
0.607742 + 0.794135i \(0.292076\pi\)
\(258\) 5.29384e54 0.0112385
\(259\) −3.08255e56 −0.597539
\(260\) 5.14430e56 0.910862
\(261\) −9.22650e55 −0.149274
\(262\) 6.00106e56 0.887458
\(263\) −1.04966e57 −1.41935 −0.709675 0.704529i \(-0.751158\pi\)
−0.709675 + 0.704529i \(0.751158\pi\)
\(264\) 4.65285e54 0.00575476
\(265\) 1.54864e57 1.75256
\(266\) −2.07522e56 −0.214954
\(267\) 2.51603e55 0.0238617
\(268\) 5.07460e54 0.00440792
\(269\) −1.70871e57 −1.35985 −0.679923 0.733284i \(-0.737987\pi\)
−0.679923 + 0.733284i \(0.737987\pi\)
\(270\) 6.32513e55 0.0461340
\(271\) −1.27971e56 −0.0855722 −0.0427861 0.999084i \(-0.513623\pi\)
−0.0427861 + 0.999084i \(0.513623\pi\)
\(272\) 7.99705e56 0.490412
\(273\) 1.15245e55 0.00648337
\(274\) −1.51482e57 −0.782027
\(275\) 4.83047e57 2.28913
\(276\) 8.50679e54 0.00370171
\(277\) −2.61228e57 −1.04411 −0.522054 0.852913i \(-0.674834\pi\)
−0.522054 + 0.852913i \(0.674834\pi\)
\(278\) 2.28483e57 0.839075
\(279\) 4.81501e57 1.62517
\(280\) 8.01627e56 0.248747
\(281\) −1.82899e57 −0.521930 −0.260965 0.965348i \(-0.584041\pi\)
−0.260965 + 0.965348i \(0.584041\pi\)
\(282\) −2.55692e55 −0.00671218
\(283\) −7.06013e57 −1.70542 −0.852710 0.522385i \(-0.825043\pi\)
−0.852710 + 0.522385i \(0.825043\pi\)
\(284\) −1.10361e57 −0.245378
\(285\) −1.28184e56 −0.0262411
\(286\) −3.40854e57 −0.642639
\(287\) −1.49389e56 −0.0259473
\(288\) −1.10412e57 −0.176722
\(289\) 1.93040e58 2.84806
\(290\) −1.44480e57 −0.196542
\(291\) −1.21417e56 −0.0152333
\(292\) −3.19444e56 −0.0369741
\(293\) −2.80215e57 −0.299297 −0.149648 0.988739i \(-0.547814\pi\)
−0.149648 + 0.988739i \(0.547814\pi\)
\(294\) 1.79585e55 0.00177055
\(295\) 3.81356e58 3.47147
\(296\) 6.64853e57 0.558947
\(297\) −4.19094e56 −0.0325488
\(298\) 8.17834e57 0.586926
\(299\) −6.23182e57 −0.413373
\(300\) 3.52256e56 0.0216028
\(301\) −6.04319e57 −0.342731
\(302\) 3.65774e57 0.191889
\(303\) −2.95574e56 −0.0143471
\(304\) 4.47587e57 0.201071
\(305\) 1.22105e58 0.507793
\(306\) −3.60102e58 −1.38667
\(307\) 4.47679e58 1.59667 0.798334 0.602215i \(-0.205715\pi\)
0.798334 + 0.602215i \(0.205715\pi\)
\(308\) −5.31147e57 −0.175498
\(309\) −3.91065e55 −0.00119736
\(310\) 7.53996e58 2.13978
\(311\) −1.28938e58 −0.339243 −0.169621 0.985509i \(-0.554254\pi\)
−0.169621 + 0.985509i \(0.554254\pi\)
\(312\) −2.48564e56 −0.00606464
\(313\) −7.64220e58 −1.72952 −0.864762 0.502182i \(-0.832531\pi\)
−0.864762 + 0.502182i \(0.832531\pi\)
\(314\) 3.59077e58 0.753946
\(315\) −3.60967e58 −0.703348
\(316\) −5.39528e58 −0.975815
\(317\) 6.89423e58 1.15769 0.578846 0.815437i \(-0.303503\pi\)
0.578846 + 0.815437i \(0.303503\pi\)
\(318\) −7.48278e56 −0.0116688
\(319\) 9.57308e57 0.138666
\(320\) −1.72897e58 −0.232682
\(321\) −1.12004e57 −0.0140076
\(322\) −9.71094e57 −0.112888
\(323\) 1.45978e59 1.57772
\(324\) 4.97024e58 0.499539
\(325\) −2.58053e59 −2.41240
\(326\) −6.77501e58 −0.589246
\(327\) 1.56563e57 0.0126712
\(328\) 3.22205e57 0.0242715
\(329\) 2.91886e58 0.204696
\(330\) −3.28085e57 −0.0214244
\(331\) 1.30557e59 0.794042 0.397021 0.917810i \(-0.370044\pi\)
0.397021 + 0.917810i \(0.370044\pi\)
\(332\) 3.08399e58 0.174730
\(333\) −2.99379e59 −1.58045
\(334\) −1.90845e58 −0.0938942
\(335\) −3.57824e57 −0.0164103
\(336\) −3.87333e56 −0.00165619
\(337\) −1.77600e59 −0.708174 −0.354087 0.935212i \(-0.615208\pi\)
−0.354087 + 0.935212i \(0.615208\pi\)
\(338\) −8.02938e57 −0.0298634
\(339\) 4.64025e57 0.0161009
\(340\) −5.63894e59 −1.82576
\(341\) −4.99588e59 −1.50968
\(342\) −2.01546e59 −0.568539
\(343\) −2.05005e58 −0.0539949
\(344\) 1.30341e59 0.320596
\(345\) −5.99837e57 −0.0137811
\(346\) −5.56495e59 −1.19446
\(347\) 9.30629e58 0.186653 0.0933263 0.995636i \(-0.470250\pi\)
0.0933263 + 0.995636i \(0.470250\pi\)
\(348\) 6.98105e56 0.00130860
\(349\) −1.81707e59 −0.318400 −0.159200 0.987246i \(-0.550891\pi\)
−0.159200 + 0.987246i \(0.550891\pi\)
\(350\) −4.02119e59 −0.658803
\(351\) 2.23888e58 0.0343015
\(352\) 1.14559e59 0.164164
\(353\) −5.60444e59 −0.751324 −0.375662 0.926757i \(-0.622585\pi\)
−0.375662 + 0.926757i \(0.622585\pi\)
\(354\) −1.84265e58 −0.0231135
\(355\) 7.78187e59 0.913519
\(356\) 6.19479e59 0.680693
\(357\) −1.26327e58 −0.0129955
\(358\) −4.15222e59 −0.399971
\(359\) 1.63871e60 1.47837 0.739185 0.673503i \(-0.235211\pi\)
0.739185 + 0.673503i \(0.235211\pi\)
\(360\) 7.78543e59 0.657921
\(361\) −4.46019e59 −0.353129
\(362\) 1.41513e60 1.04989
\(363\) −3.46877e57 −0.00241196
\(364\) 2.83748e59 0.184949
\(365\) 2.25249e59 0.137651
\(366\) −5.89990e57 −0.00338095
\(367\) −3.06220e60 −1.64582 −0.822909 0.568174i \(-0.807650\pi\)
−0.822909 + 0.568174i \(0.807650\pi\)
\(368\) 2.09448e59 0.105597
\(369\) −1.45087e59 −0.0686291
\(370\) −4.68806e60 −2.08091
\(371\) 8.54198e59 0.355854
\(372\) −3.64318e58 −0.0142469
\(373\) 7.76030e59 0.284919 0.142459 0.989801i \(-0.454499\pi\)
0.142459 + 0.989801i \(0.454499\pi\)
\(374\) 3.73629e60 1.28812
\(375\) −1.47621e59 −0.0477985
\(376\) −6.29547e59 −0.191476
\(377\) −5.11411e59 −0.146133
\(378\) 3.48880e58 0.00936740
\(379\) 2.95556e60 0.745794 0.372897 0.927873i \(-0.378365\pi\)
0.372897 + 0.927873i \(0.378365\pi\)
\(380\) −3.15606e60 −0.748568
\(381\) 1.07585e59 0.0239891
\(382\) 7.55533e59 0.158403
\(383\) 4.65414e60 0.917632 0.458816 0.888531i \(-0.348274\pi\)
0.458816 + 0.888531i \(0.348274\pi\)
\(384\) 8.35408e57 0.00154923
\(385\) 3.74526e60 0.653364
\(386\) −2.60369e60 −0.427354
\(387\) −5.86917e60 −0.906503
\(388\) −2.98944e60 −0.434554
\(389\) 8.28987e60 1.13431 0.567156 0.823611i \(-0.308044\pi\)
0.567156 + 0.823611i \(0.308044\pi\)
\(390\) 1.75269e59 0.0225781
\(391\) 6.83104e60 0.828577
\(392\) 4.42160e59 0.0505076
\(393\) 2.04460e59 0.0219980
\(394\) −6.86138e60 −0.695425
\(395\) 3.80436e61 3.63287
\(396\) −5.15852e60 −0.464182
\(397\) −5.54339e60 −0.470109 −0.235054 0.971982i \(-0.575527\pi\)
−0.235054 + 0.971982i \(0.575527\pi\)
\(398\) −3.11451e60 −0.248965
\(399\) −7.07038e58 −0.00532819
\(400\) 8.67300e60 0.616254
\(401\) −7.15209e60 −0.479226 −0.239613 0.970868i \(-0.577021\pi\)
−0.239613 + 0.970868i \(0.577021\pi\)
\(402\) 1.72895e57 0.000109262 0
\(403\) 2.66889e61 1.59097
\(404\) −7.27740e60 −0.409274
\(405\) −3.50465e61 −1.85974
\(406\) −7.96923e59 −0.0399075
\(407\) 3.10625e61 1.46814
\(408\) 2.72464e59 0.0121561
\(409\) −5.97660e60 −0.251743 −0.125871 0.992047i \(-0.540173\pi\)
−0.125871 + 0.992047i \(0.540173\pi\)
\(410\) −2.27196e60 −0.0903606
\(411\) −5.16107e59 −0.0193846
\(412\) −9.62852e59 −0.0341566
\(413\) 2.10348e61 0.704874
\(414\) −9.43131e60 −0.298582
\(415\) −2.17461e61 −0.650505
\(416\) −6.11995e60 −0.173003
\(417\) 7.78454e59 0.0207987
\(418\) 2.09116e61 0.528136
\(419\) −5.61468e61 −1.34059 −0.670294 0.742095i \(-0.733832\pi\)
−0.670294 + 0.742095i \(0.733832\pi\)
\(420\) 2.73119e59 0.00616586
\(421\) −5.24376e61 −1.11947 −0.559737 0.828670i \(-0.689098\pi\)
−0.559737 + 0.828670i \(0.689098\pi\)
\(422\) 8.47454e60 0.171109
\(423\) 2.83481e61 0.541409
\(424\) −1.84236e61 −0.332871
\(425\) 2.82866e62 4.83549
\(426\) −3.76007e59 −0.00608233
\(427\) 6.73504e60 0.103106
\(428\) −2.75768e61 −0.399590
\(429\) −1.16131e60 −0.0159295
\(430\) −9.19071e61 −1.19355
\(431\) 2.89364e61 0.355818 0.177909 0.984047i \(-0.443067\pi\)
0.177909 + 0.984047i \(0.443067\pi\)
\(432\) −7.52474e59 −0.00876240
\(433\) 9.60366e61 1.05918 0.529592 0.848253i \(-0.322345\pi\)
0.529592 + 0.848253i \(0.322345\pi\)
\(434\) 4.15888e61 0.434478
\(435\) −4.92253e59 −0.00487182
\(436\) 3.85479e61 0.361466
\(437\) 3.82327e61 0.339720
\(438\) −1.08836e59 −0.000916500 0
\(439\) −1.42679e62 −1.13879 −0.569394 0.822065i \(-0.692822\pi\)
−0.569394 + 0.822065i \(0.692822\pi\)
\(440\) −8.07788e61 −0.611166
\(441\) −1.99102e61 −0.142813
\(442\) −1.99599e62 −1.35749
\(443\) −9.70171e61 −0.625692 −0.312846 0.949804i \(-0.601282\pi\)
−0.312846 + 0.949804i \(0.601282\pi\)
\(444\) 2.26519e60 0.0138550
\(445\) −4.36812e62 −2.53416
\(446\) −2.29700e62 −1.26413
\(447\) 2.78641e60 0.0145485
\(448\) −9.53662e60 −0.0472456
\(449\) 3.07682e62 1.44648 0.723241 0.690595i \(-0.242651\pi\)
0.723241 + 0.690595i \(0.242651\pi\)
\(450\) −3.90540e62 −1.74249
\(451\) 1.50537e61 0.0637520
\(452\) 1.14249e62 0.459303
\(453\) 1.24621e60 0.00475646
\(454\) −3.11724e62 −1.12969
\(455\) −2.00079e62 −0.688547
\(456\) 1.52496e60 0.00498407
\(457\) 6.26820e62 1.94586 0.972931 0.231098i \(-0.0742317\pi\)
0.972931 + 0.231098i \(0.0742317\pi\)
\(458\) −1.83993e62 −0.542579
\(459\) −2.45416e61 −0.0687550
\(460\) −1.47688e62 −0.393129
\(461\) −5.55866e61 −0.140604 −0.0703021 0.997526i \(-0.522396\pi\)
−0.0703021 + 0.997526i \(0.522396\pi\)
\(462\) −1.80965e60 −0.00435019
\(463\) −3.14206e62 −0.717896 −0.358948 0.933358i \(-0.616864\pi\)
−0.358948 + 0.933358i \(0.616864\pi\)
\(464\) 1.71882e61 0.0373300
\(465\) 2.56891e61 0.0530401
\(466\) −3.51581e61 −0.0690171
\(467\) −9.35089e62 −1.74545 −0.872723 0.488216i \(-0.837648\pi\)
−0.872723 + 0.488216i \(0.837648\pi\)
\(468\) 2.75578e62 0.489177
\(469\) −1.97368e60 −0.00333208
\(470\) 4.43911e62 0.712847
\(471\) 1.22340e61 0.0186885
\(472\) −4.53683e62 −0.659349
\(473\) 6.08964e62 0.842082
\(474\) −1.83820e61 −0.0241881
\(475\) 1.58317e63 1.98257
\(476\) −3.11032e62 −0.370716
\(477\) 8.29601e62 0.941212
\(478\) 2.57693e62 0.278321
\(479\) −2.16694e62 −0.222824 −0.111412 0.993774i \(-0.535537\pi\)
−0.111412 + 0.993774i \(0.535537\pi\)
\(480\) −5.89070e60 −0.00576763
\(481\) −1.65941e63 −1.54720
\(482\) 3.02106e62 0.268259
\(483\) −3.30857e60 −0.00279823
\(484\) −8.54054e61 −0.0688049
\(485\) 2.10793e63 1.61780
\(486\) 5.08277e61 0.0371662
\(487\) 3.19737e62 0.222773 0.111386 0.993777i \(-0.464471\pi\)
0.111386 + 0.993777i \(0.464471\pi\)
\(488\) −1.45263e62 −0.0964470
\(489\) −2.30829e61 −0.0146060
\(490\) −3.11779e62 −0.188035
\(491\) −2.48027e63 −1.42588 −0.712942 0.701223i \(-0.752638\pi\)
−0.712942 + 0.701223i \(0.752638\pi\)
\(492\) 1.09777e60 0.000601633 0
\(493\) 5.60586e62 0.292913
\(494\) −1.11714e63 −0.556575
\(495\) 3.63742e63 1.72811
\(496\) −8.96998e62 −0.406417
\(497\) 4.29231e62 0.185488
\(498\) 1.05073e61 0.00433115
\(499\) 4.39215e63 1.72709 0.863544 0.504274i \(-0.168240\pi\)
0.863544 + 0.504274i \(0.168240\pi\)
\(500\) −3.63462e63 −1.36353
\(501\) −6.50220e60 −0.00232742
\(502\) −9.55578e62 −0.326384
\(503\) 5.36364e63 1.74828 0.874142 0.485670i \(-0.161424\pi\)
0.874142 + 0.485670i \(0.161424\pi\)
\(504\) 4.29428e62 0.133590
\(505\) 5.13150e63 1.52369
\(506\) 9.78557e62 0.277363
\(507\) −2.73566e60 −0.000740244 0
\(508\) 2.64888e63 0.684329
\(509\) 3.48127e63 0.858757 0.429378 0.903125i \(-0.358733\pi\)
0.429378 + 0.903125i \(0.358733\pi\)
\(510\) −1.92122e62 −0.0452562
\(511\) 1.24242e62 0.0279498
\(512\) 2.05688e62 0.0441942
\(513\) −1.37357e62 −0.0281898
\(514\) 4.38397e63 0.859477
\(515\) 6.78934e62 0.127162
\(516\) 4.44079e61 0.00794681
\(517\) −2.94129e63 −0.502933
\(518\) −2.58583e63 −0.422524
\(519\) −1.89601e62 −0.0296079
\(520\) 4.31535e63 0.644076
\(521\) −4.33083e63 −0.617852 −0.308926 0.951086i \(-0.599970\pi\)
−0.308926 + 0.951086i \(0.599970\pi\)
\(522\) −7.73975e62 −0.105553
\(523\) −1.35148e64 −1.76206 −0.881031 0.473059i \(-0.843150\pi\)
−0.881031 + 0.473059i \(0.843150\pi\)
\(524\) 5.03405e63 0.627527
\(525\) −1.37004e62 −0.0163302
\(526\) −8.80521e63 −1.00363
\(527\) −2.92551e64 −3.18899
\(528\) 3.90310e61 0.00406923
\(529\) −8.23877e63 −0.821588
\(530\) 1.29910e64 1.23925
\(531\) 2.04291e64 1.86435
\(532\) −1.74082e63 −0.151995
\(533\) −8.04194e62 −0.0671849
\(534\) 2.11060e62 0.0168728
\(535\) 1.94451e64 1.48764
\(536\) 4.25688e61 0.00311687
\(537\) −1.41468e62 −0.00991434
\(538\) −1.43337e64 −0.961556
\(539\) 2.06581e63 0.132664
\(540\) 5.30590e62 0.0326216
\(541\) −7.93957e63 −0.467370 −0.233685 0.972312i \(-0.575078\pi\)
−0.233685 + 0.972312i \(0.575078\pi\)
\(542\) −1.07350e63 −0.0605087
\(543\) 4.82142e62 0.0260243
\(544\) 6.70841e63 0.346773
\(545\) −2.71812e64 −1.34571
\(546\) 9.66747e61 0.00458444
\(547\) −1.18369e64 −0.537696 −0.268848 0.963183i \(-0.586643\pi\)
−0.268848 + 0.963183i \(0.586643\pi\)
\(548\) −1.27072e64 −0.552977
\(549\) 6.54110e63 0.272710
\(550\) 4.05209e64 1.61866
\(551\) 3.13754e63 0.120096
\(552\) 7.13601e61 0.00261750
\(553\) 2.09840e64 0.737647
\(554\) −2.19134e64 −0.738295
\(555\) −1.59725e63 −0.0515808
\(556\) 1.91665e64 0.593316
\(557\) −2.94944e64 −0.875272 −0.437636 0.899152i \(-0.644184\pi\)
−0.437636 + 0.899152i \(0.644184\pi\)
\(558\) 4.03912e64 1.14917
\(559\) −3.25319e64 −0.887427
\(560\) 6.72453e63 0.175891
\(561\) 1.27298e63 0.0319295
\(562\) −1.53427e64 −0.369060
\(563\) 1.69796e64 0.391725 0.195863 0.980631i \(-0.437249\pi\)
0.195863 + 0.980631i \(0.437249\pi\)
\(564\) −2.14490e62 −0.00474623
\(565\) −8.05601e64 −1.70994
\(566\) −5.92246e64 −1.20591
\(567\) −1.93309e64 −0.377616
\(568\) −9.25776e63 −0.173508
\(569\) −7.10032e64 −1.27685 −0.638425 0.769684i \(-0.720414\pi\)
−0.638425 + 0.769684i \(0.720414\pi\)
\(570\) −1.07529e63 −0.0185552
\(571\) 5.49938e64 0.910679 0.455340 0.890318i \(-0.349518\pi\)
0.455340 + 0.890318i \(0.349518\pi\)
\(572\) −2.85929e64 −0.454414
\(573\) 2.57415e62 0.00392645
\(574\) −1.25316e63 −0.0183475
\(575\) 7.40843e64 1.04119
\(576\) −9.26200e63 −0.124962
\(577\) −3.61792e64 −0.468628 −0.234314 0.972161i \(-0.575284\pi\)
−0.234314 + 0.972161i \(0.575284\pi\)
\(578\) 1.61934e65 2.01388
\(579\) −8.87092e62 −0.0105931
\(580\) −1.21199e64 −0.138976
\(581\) −1.19947e64 −0.132084
\(582\) −1.01852e63 −0.0107716
\(583\) −8.60764e64 −0.874325
\(584\) −2.67969e63 −0.0261446
\(585\) −1.94317e65 −1.82116
\(586\) −2.35061e64 −0.211635
\(587\) −5.02884e64 −0.434983 −0.217492 0.976062i \(-0.569788\pi\)
−0.217492 + 0.976062i \(0.569788\pi\)
\(588\) 1.50647e62 0.00125196
\(589\) −1.63738e65 −1.30750
\(590\) 3.19904e65 2.45470
\(591\) −2.33771e63 −0.0172379
\(592\) 5.57719e64 0.395235
\(593\) 2.17891e65 1.48407 0.742035 0.670361i \(-0.233861\pi\)
0.742035 + 0.670361i \(0.233861\pi\)
\(594\) −3.51562e63 −0.0230155
\(595\) 2.19317e65 1.38014
\(596\) 6.86049e64 0.415019
\(597\) −1.06113e63 −0.00617124
\(598\) −5.22763e64 −0.292299
\(599\) −3.47392e65 −1.86762 −0.933812 0.357763i \(-0.883540\pi\)
−0.933812 + 0.357763i \(0.883540\pi\)
\(600\) 2.95494e63 0.0152755
\(601\) 1.55859e65 0.774784 0.387392 0.921915i \(-0.373376\pi\)
0.387392 + 0.921915i \(0.373376\pi\)
\(602\) −5.06940e64 −0.242348
\(603\) −1.91685e63 −0.00881314
\(604\) 3.06833e64 0.135686
\(605\) 6.02217e64 0.256154
\(606\) −2.47945e63 −0.0101449
\(607\) −1.72842e65 −0.680324 −0.340162 0.940367i \(-0.610482\pi\)
−0.340162 + 0.940367i \(0.610482\pi\)
\(608\) 3.75464e64 0.142178
\(609\) −2.71516e62 −0.000989212 0
\(610\) 1.02429e65 0.359064
\(611\) 1.57129e65 0.530015
\(612\) −3.02076e65 −0.980522
\(613\) −2.97410e65 −0.929041 −0.464521 0.885562i \(-0.653773\pi\)
−0.464521 + 0.885562i \(0.653773\pi\)
\(614\) 3.75540e65 1.12901
\(615\) −7.74069e62 −0.00223983
\(616\) −4.45558e64 −0.124096
\(617\) 2.16734e65 0.581067 0.290534 0.956865i \(-0.406167\pi\)
0.290534 + 0.956865i \(0.406167\pi\)
\(618\) −3.28049e62 −0.000846662 0
\(619\) 4.54166e65 1.12846 0.564228 0.825619i \(-0.309174\pi\)
0.564228 + 0.825619i \(0.309174\pi\)
\(620\) 6.32498e65 1.51305
\(621\) −6.42759e63 −0.0148046
\(622\) −1.08161e65 −0.239881
\(623\) −2.40936e65 −0.514556
\(624\) −2.08510e63 −0.00428835
\(625\) 1.31836e66 2.61128
\(626\) −6.41074e65 −1.22296
\(627\) 7.12472e63 0.0130912
\(628\) 3.01215e65 0.533121
\(629\) 1.81897e66 3.10125
\(630\) −3.02801e65 −0.497342
\(631\) 5.90112e65 0.933779 0.466890 0.884316i \(-0.345375\pi\)
0.466890 + 0.884316i \(0.345375\pi\)
\(632\) −4.52589e65 −0.690005
\(633\) 2.88733e63 0.00424139
\(634\) 5.78330e65 0.818612
\(635\) −1.86780e66 −2.54769
\(636\) −6.27701e63 −0.00825108
\(637\) −1.10359e65 −0.139808
\(638\) 8.03048e64 0.0980518
\(639\) 4.16871e65 0.490605
\(640\) −1.45036e65 −0.164531
\(641\) 3.08794e65 0.337680 0.168840 0.985643i \(-0.445998\pi\)
0.168840 + 0.985643i \(0.445998\pi\)
\(642\) −9.39556e63 −0.00990489
\(643\) −1.70492e66 −1.73279 −0.866397 0.499356i \(-0.833570\pi\)
−0.866397 + 0.499356i \(0.833570\pi\)
\(644\) −8.14613e64 −0.0798240
\(645\) −3.13133e64 −0.0295852
\(646\) 1.22456e66 1.11562
\(647\) 8.74050e65 0.767866 0.383933 0.923361i \(-0.374569\pi\)
0.383933 + 0.923361i \(0.374569\pi\)
\(648\) 4.16934e65 0.353228
\(649\) −2.11964e66 −1.73186
\(650\) −2.16470e66 −1.70582
\(651\) 1.41696e64 0.0107697
\(652\) −5.68329e65 −0.416660
\(653\) −2.22673e65 −0.157474 −0.0787368 0.996895i \(-0.525089\pi\)
−0.0787368 + 0.996895i \(0.525089\pi\)
\(654\) 1.31335e64 0.00895990
\(655\) −3.54965e66 −2.33623
\(656\) 2.70285e64 0.0171625
\(657\) 1.20665e65 0.0739255
\(658\) 2.44852e65 0.144742
\(659\) 2.55651e66 1.45828 0.729139 0.684366i \(-0.239921\pi\)
0.729139 + 0.684366i \(0.239921\pi\)
\(660\) −2.75218e64 −0.0151494
\(661\) −3.44639e65 −0.183076 −0.0915378 0.995802i \(-0.529178\pi\)
−0.0915378 + 0.995802i \(0.529178\pi\)
\(662\) 1.09519e66 0.561472
\(663\) −6.80046e64 −0.0336489
\(664\) 2.58704e65 0.123553
\(665\) 1.22750e66 0.565864
\(666\) −2.51137e66 −1.11755
\(667\) 1.46821e65 0.0630712
\(668\) −1.60092e65 −0.0663932
\(669\) −7.82601e64 −0.0313348
\(670\) −3.00165e64 −0.0116038
\(671\) −6.78680e65 −0.253330
\(672\) −3.24918e63 −0.00117111
\(673\) −5.27326e66 −1.83538 −0.917688 0.397302i \(-0.869947\pi\)
−0.917688 + 0.397302i \(0.869947\pi\)
\(674\) −1.48982e66 −0.500755
\(675\) −2.66159e65 −0.0863978
\(676\) −6.73553e64 −0.0211166
\(677\) −2.59424e66 −0.785554 −0.392777 0.919634i \(-0.628486\pi\)
−0.392777 + 0.919634i \(0.628486\pi\)
\(678\) 3.89253e64 0.0113850
\(679\) 1.16269e66 0.328492
\(680\) −4.73029e66 −1.29101
\(681\) −1.06206e65 −0.0280022
\(682\) −4.19084e66 −1.06750
\(683\) 3.83200e66 0.943060 0.471530 0.881850i \(-0.343702\pi\)
0.471530 + 0.881850i \(0.343702\pi\)
\(684\) −1.69069e66 −0.402018
\(685\) 8.96020e66 2.05868
\(686\) −1.71971e65 −0.0381802
\(687\) −6.26875e64 −0.0134492
\(688\) 1.09338e66 0.226695
\(689\) 4.59836e66 0.921405
\(690\) −5.03180e64 −0.00974473
\(691\) 5.53236e66 1.03556 0.517781 0.855513i \(-0.326758\pi\)
0.517781 + 0.855513i \(0.326758\pi\)
\(692\) −4.66822e66 −0.844613
\(693\) 2.00632e66 0.350889
\(694\) 7.80668e65 0.131983
\(695\) −1.35148e67 −2.20886
\(696\) 5.85613e63 0.000925323 0
\(697\) 8.81521e65 0.134667
\(698\) −1.52426e66 −0.225143
\(699\) −1.19786e64 −0.00171077
\(700\) −3.37322e66 −0.465844
\(701\) −4.02185e66 −0.537097 −0.268549 0.963266i \(-0.586544\pi\)
−0.268549 + 0.963266i \(0.586544\pi\)
\(702\) 1.87811e65 0.0242548
\(703\) 1.01806e67 1.27152
\(704\) 9.60991e65 0.116081
\(705\) 1.51243e65 0.0176698
\(706\) −4.70135e66 −0.531266
\(707\) 2.83042e66 0.309382
\(708\) −1.54572e65 −0.0163437
\(709\) −4.02893e66 −0.412100 −0.206050 0.978541i \(-0.566061\pi\)
−0.206050 + 0.978541i \(0.566061\pi\)
\(710\) 6.52790e66 0.645955
\(711\) 2.03798e67 1.95103
\(712\) 5.19656e66 0.481323
\(713\) −7.66210e66 −0.686664
\(714\) −1.05970e65 −0.00918918
\(715\) 2.01617e67 1.69174
\(716\) −3.48313e66 −0.282822
\(717\) 8.77974e64 0.00689893
\(718\) 1.37465e67 1.04537
\(719\) −6.32479e66 −0.465497 −0.232749 0.972537i \(-0.574772\pi\)
−0.232749 + 0.972537i \(0.574772\pi\)
\(720\) 6.53090e66 0.465221
\(721\) 3.74485e65 0.0258200
\(722\) −3.74148e66 −0.249700
\(723\) 1.02929e65 0.00664951
\(724\) 1.18709e67 0.742385
\(725\) 6.07969e66 0.368076
\(726\) −2.90981e64 −0.00170551
\(727\) 1.00068e67 0.567854 0.283927 0.958846i \(-0.408363\pi\)
0.283927 + 0.958846i \(0.408363\pi\)
\(728\) 2.38025e66 0.130778
\(729\) −1.87627e67 −0.998157
\(730\) 1.88952e66 0.0973341
\(731\) 3.56600e67 1.77878
\(732\) −4.94919e64 −0.00239069
\(733\) 8.44722e66 0.395158 0.197579 0.980287i \(-0.436692\pi\)
0.197579 + 0.980287i \(0.436692\pi\)
\(734\) −2.56876e67 −1.16377
\(735\) −1.06225e65 −0.00466095
\(736\) 1.75698e66 0.0746685
\(737\) 1.98885e65 0.00818683
\(738\) −1.21708e66 −0.0485281
\(739\) −2.08026e67 −0.803475 −0.401738 0.915755i \(-0.631594\pi\)
−0.401738 + 0.915755i \(0.631594\pi\)
\(740\) −3.93263e67 −1.47142
\(741\) −3.80616e65 −0.0137962
\(742\) 7.16554e66 0.251627
\(743\) −1.93023e67 −0.656706 −0.328353 0.944555i \(-0.606494\pi\)
−0.328353 + 0.944555i \(0.606494\pi\)
\(744\) −3.05612e65 −0.0100741
\(745\) −4.83752e67 −1.54508
\(746\) 6.50981e66 0.201468
\(747\) −1.16493e67 −0.349353
\(748\) 3.13423e67 0.910841
\(749\) 1.07255e67 0.302062
\(750\) −1.23834e66 −0.0337986
\(751\) 3.43363e67 0.908269 0.454135 0.890933i \(-0.349949\pi\)
0.454135 + 0.890933i \(0.349949\pi\)
\(752\) −5.28102e66 −0.135394
\(753\) −3.25571e65 −0.00809028
\(754\) −4.29003e66 −0.103332
\(755\) −2.16357e67 −0.505146
\(756\) 2.92662e65 0.00662376
\(757\) 1.65846e67 0.363875 0.181938 0.983310i \(-0.441763\pi\)
0.181938 + 0.983310i \(0.441763\pi\)
\(758\) 2.47931e67 0.527356
\(759\) 3.33400e65 0.00687518
\(760\) −2.64750e67 −0.529317
\(761\) −1.18866e67 −0.230419 −0.115210 0.993341i \(-0.536754\pi\)
−0.115210 + 0.993341i \(0.536754\pi\)
\(762\) 9.02488e65 0.0169629
\(763\) −1.49926e67 −0.273243
\(764\) 6.33787e66 0.112008
\(765\) 2.13002e68 3.65039
\(766\) 3.90418e67 0.648864
\(767\) 1.13235e68 1.82512
\(768\) 7.00791e64 0.00109547
\(769\) −8.48937e67 −1.28708 −0.643542 0.765411i \(-0.722536\pi\)
−0.643542 + 0.765411i \(0.722536\pi\)
\(770\) 3.14176e67 0.461998
\(771\) 1.49364e66 0.0213044
\(772\) −2.18413e67 −0.302185
\(773\) 3.31439e67 0.444821 0.222411 0.974953i \(-0.428607\pi\)
0.222411 + 0.974953i \(0.428607\pi\)
\(774\) −4.92342e67 −0.640994
\(775\) −3.17279e68 −4.00729
\(776\) −2.50772e67 −0.307276
\(777\) −8.81009e65 −0.0104734
\(778\) 6.95405e67 0.802079
\(779\) 4.93379e66 0.0552141
\(780\) 1.47026e66 0.0159651
\(781\) −4.32530e67 −0.455740
\(782\) 5.73029e67 0.585893
\(783\) −5.27477e65 −0.00523362
\(784\) 3.70911e66 0.0357143
\(785\) −2.12395e68 −1.98476
\(786\) 1.71513e66 0.0155549
\(787\) −1.80792e68 −1.59138 −0.795690 0.605704i \(-0.792892\pi\)
−0.795690 + 0.605704i \(0.792892\pi\)
\(788\) −5.75574e67 −0.491740
\(789\) −2.99999e66 −0.0248777
\(790\) 3.19133e68 2.56883
\(791\) −4.44352e67 −0.347200
\(792\) −4.32728e67 −0.328226
\(793\) 3.62563e67 0.266971
\(794\) −4.65013e67 −0.332417
\(795\) 4.42610e66 0.0307180
\(796\) −2.61264e67 −0.176044
\(797\) −1.01561e68 −0.664441 −0.332221 0.943202i \(-0.607798\pi\)
−0.332221 + 0.943202i \(0.607798\pi\)
\(798\) −5.93106e65 −0.00376760
\(799\) −1.72238e68 −1.06238
\(800\) 7.27544e67 0.435757
\(801\) −2.33998e68 −1.36097
\(802\) −5.99961e67 −0.338864
\(803\) −1.25197e67 −0.0686720
\(804\) 1.45034e64 7.72599e−5 0
\(805\) 5.74406e67 0.297177
\(806\) 2.23883e68 1.12498
\(807\) −4.88357e66 −0.0238347
\(808\) −6.10473e67 −0.289401
\(809\) 3.37468e68 1.55397 0.776985 0.629520i \(-0.216748\pi\)
0.776985 + 0.629520i \(0.216748\pi\)
\(810\) −2.93992e68 −1.31503
\(811\) −3.80483e68 −1.65328 −0.826638 0.562734i \(-0.809750\pi\)
−0.826638 + 0.562734i \(0.809750\pi\)
\(812\) −6.68507e66 −0.0282189
\(813\) −3.65747e65 −0.00149987
\(814\) 2.60571e68 1.03813
\(815\) 4.00745e68 1.55119
\(816\) 2.28560e66 0.00859569
\(817\) 1.99586e68 0.729309
\(818\) −5.01354e67 −0.178009
\(819\) −1.07181e68 −0.369783
\(820\) −1.90585e67 −0.0638946
\(821\) −1.34877e68 −0.439414 −0.219707 0.975566i \(-0.570510\pi\)
−0.219707 + 0.975566i \(0.570510\pi\)
\(822\) −4.32942e66 −0.0137070
\(823\) 4.49698e66 0.0138365 0.00691823 0.999976i \(-0.497798\pi\)
0.00691823 + 0.999976i \(0.497798\pi\)
\(824\) −8.07699e66 −0.0241524
\(825\) 1.38057e67 0.0401228
\(826\) 1.76452e68 0.498421
\(827\) 3.01096e68 0.826657 0.413329 0.910582i \(-0.364366\pi\)
0.413329 + 0.910582i \(0.364366\pi\)
\(828\) −7.91155e67 −0.211129
\(829\) −1.22710e68 −0.318308 −0.159154 0.987254i \(-0.550877\pi\)
−0.159154 + 0.987254i \(0.550877\pi\)
\(830\) −1.82419e68 −0.459976
\(831\) −7.46602e66 −0.0183006
\(832\) −5.13379e67 −0.122332
\(833\) 1.20971e68 0.280235
\(834\) 6.53015e66 0.0147069
\(835\) 1.12886e68 0.247176
\(836\) 1.75420e68 0.373448
\(837\) 2.75273e67 0.0569790
\(838\) −4.70994e68 −0.947939
\(839\) −2.49800e68 −0.488863 −0.244431 0.969667i \(-0.578601\pi\)
−0.244431 + 0.969667i \(0.578601\pi\)
\(840\) 2.29109e66 0.00435992
\(841\) −5.28339e68 −0.977703
\(842\) −4.39879e68 −0.791587
\(843\) −5.22733e66 −0.00914813
\(844\) 7.10896e67 0.120993
\(845\) 4.74941e67 0.0786153
\(846\) 2.37801e68 0.382834
\(847\) 3.32170e67 0.0520116
\(848\) −1.54548e68 −0.235375
\(849\) −2.01782e67 −0.0298918
\(850\) 2.37285e69 3.41921
\(851\) 4.76401e68 0.667771
\(852\) −3.15417e66 −0.00430086
\(853\) 3.88675e68 0.515566 0.257783 0.966203i \(-0.417008\pi\)
0.257783 + 0.966203i \(0.417008\pi\)
\(854\) 5.64976e67 0.0729071
\(855\) 1.19215e69 1.49668
\(856\) −2.31331e68 −0.282553
\(857\) 7.74068e68 0.919877 0.459939 0.887951i \(-0.347871\pi\)
0.459939 + 0.887951i \(0.347871\pi\)
\(858\) −9.74177e66 −0.0112638
\(859\) −7.32436e68 −0.824006 −0.412003 0.911182i \(-0.635171\pi\)
−0.412003 + 0.911182i \(0.635171\pi\)
\(860\) −7.70972e68 −0.843966
\(861\) −4.26960e65 −0.000454792 0
\(862\) 2.42736e68 0.251601
\(863\) −1.68558e68 −0.170018 −0.0850091 0.996380i \(-0.527092\pi\)
−0.0850091 + 0.996380i \(0.527092\pi\)
\(864\) −6.31221e66 −0.00619596
\(865\) 3.29169e69 3.14442
\(866\) 8.05614e68 0.748956
\(867\) 5.51718e67 0.0499193
\(868\) 3.48872e68 0.307222
\(869\) −2.11453e69 −1.81238
\(870\) −4.12932e66 −0.00344490
\(871\) −1.06248e67 −0.00862768
\(872\) 3.23363e68 0.255595
\(873\) 1.12921e69 0.868841
\(874\) 3.20719e68 0.240218
\(875\) 1.41363e69 1.03073
\(876\) −9.12986e65 −0.000648063 0
\(877\) 4.63355e68 0.320201 0.160101 0.987101i \(-0.448818\pi\)
0.160101 + 0.987101i \(0.448818\pi\)
\(878\) −1.19688e69 −0.805245
\(879\) −8.00868e66 −0.00524593
\(880\) −6.77622e68 −0.432160
\(881\) −1.21977e69 −0.757435 −0.378718 0.925512i \(-0.623635\pi\)
−0.378718 + 0.925512i \(0.623635\pi\)
\(882\) −1.67019e68 −0.100984
\(883\) −2.10590e69 −1.23983 −0.619914 0.784670i \(-0.712832\pi\)
−0.619914 + 0.784670i \(0.712832\pi\)
\(884\) −1.67436e69 −0.959888
\(885\) 1.08993e68 0.0608461
\(886\) −8.13838e68 −0.442431
\(887\) 2.39710e69 1.26906 0.634528 0.772900i \(-0.281195\pi\)
0.634528 + 0.772900i \(0.281195\pi\)
\(888\) 1.90018e67 0.00979694
\(889\) −1.03024e69 −0.517304
\(890\) −3.66424e69 −1.79192
\(891\) 1.94795e69 0.927794
\(892\) −1.92686e69 −0.893874
\(893\) −9.63999e68 −0.435579
\(894\) 2.33741e67 0.0102873
\(895\) 2.45605e69 1.05292
\(896\) −7.99989e67 −0.0334077
\(897\) −1.78108e67 −0.00724540
\(898\) 2.58102e69 1.02282
\(899\) −6.28786e68 −0.242745
\(900\) −3.27608e69 −1.23213
\(901\) −5.04051e69 −1.84689
\(902\) 1.26279e68 0.0450794
\(903\) −1.72717e67 −0.00600722
\(904\) 9.58389e68 0.324776
\(905\) −8.37053e69 −2.76383
\(906\) 1.04540e67 0.00336333
\(907\) −3.76696e68 −0.118092 −0.0590460 0.998255i \(-0.518806\pi\)
−0.0590460 + 0.998255i \(0.518806\pi\)
\(908\) −2.61493e69 −0.798808
\(909\) 2.74892e69 0.818297
\(910\) −1.67838e69 −0.486876
\(911\) −4.72660e68 −0.133619 −0.0668094 0.997766i \(-0.521282\pi\)
−0.0668094 + 0.997766i \(0.521282\pi\)
\(912\) 1.27923e67 0.00352427
\(913\) 1.20868e69 0.324526
\(914\) 5.25814e69 1.37593
\(915\) 3.48981e67 0.00890034
\(916\) −1.54345e69 −0.383661
\(917\) −1.95791e69 −0.474366
\(918\) −2.05870e68 −0.0486171
\(919\) 2.71709e69 0.625445 0.312722 0.949845i \(-0.398759\pi\)
0.312722 + 0.949845i \(0.398759\pi\)
\(920\) −1.23889e69 −0.277984
\(921\) 1.27949e68 0.0279856
\(922\) −4.66294e68 −0.0994222
\(923\) 2.31065e69 0.480280
\(924\) −1.51804e67 −0.00307605
\(925\) 1.97272e70 3.89704
\(926\) −2.63575e69 −0.507629
\(927\) 3.63702e68 0.0682923
\(928\) 1.44185e68 0.0263963
\(929\) −5.48153e69 −0.978436 −0.489218 0.872161i \(-0.662718\pi\)
−0.489218 + 0.872161i \(0.662718\pi\)
\(930\) 2.15496e68 0.0375050
\(931\) 6.77062e68 0.114898
\(932\) −2.94928e68 −0.0488024
\(933\) −3.68510e67 −0.00594608
\(934\) −7.84410e69 −1.23422
\(935\) −2.21003e70 −3.39098
\(936\) 2.31171e69 0.345901
\(937\) −7.02329e69 −1.02485 −0.512425 0.858732i \(-0.671253\pi\)
−0.512425 + 0.858732i \(0.671253\pi\)
\(938\) −1.65564e67 −0.00235613
\(939\) −2.18418e68 −0.0303142
\(940\) 3.72379e69 0.504059
\(941\) 1.44920e69 0.191325 0.0956624 0.995414i \(-0.469503\pi\)
0.0956624 + 0.995414i \(0.469503\pi\)
\(942\) 1.02626e68 0.0132148
\(943\) 2.30876e68 0.0289971
\(944\) −3.80577e69 −0.466230
\(945\) −2.06364e68 −0.0246596
\(946\) 5.10836e69 0.595442
\(947\) 1.34230e70 1.52625 0.763124 0.646252i \(-0.223664\pi\)
0.763124 + 0.646252i \(0.223664\pi\)
\(948\) −1.54200e68 −0.0171036
\(949\) 6.68826e68 0.0723698
\(950\) 1.32806e70 1.40189
\(951\) 1.97040e68 0.0202914
\(952\) −2.60913e69 −0.262136
\(953\) −8.38184e69 −0.821592 −0.410796 0.911727i \(-0.634749\pi\)
−0.410796 + 0.911727i \(0.634749\pi\)
\(954\) 6.95920e69 0.665537
\(955\) −4.46901e69 −0.416996
\(956\) 2.16168e69 0.196803
\(957\) 2.73603e67 0.00243047
\(958\) −1.81776e69 −0.157560
\(959\) 4.94225e69 0.418011
\(960\) −4.94147e67 −0.00407833
\(961\) 2.03978e70 1.64280
\(962\) −1.39202e70 −1.09403
\(963\) 1.04167e70 0.798935
\(964\) 2.53425e69 0.189688
\(965\) 1.54009e70 1.12501
\(966\) −2.77543e67 −0.00197865
\(967\) −3.98935e69 −0.277575 −0.138788 0.990322i \(-0.544321\pi\)
−0.138788 + 0.990322i \(0.544321\pi\)
\(968\) −7.16432e68 −0.0486524
\(969\) 4.17213e68 0.0276535
\(970\) 1.76826e70 1.14396
\(971\) −4.66403e69 −0.294516 −0.147258 0.989098i \(-0.547045\pi\)
−0.147258 + 0.989098i \(0.547045\pi\)
\(972\) 4.26374e68 0.0262805
\(973\) −7.45450e69 −0.448504
\(974\) 2.68215e69 0.157524
\(975\) −7.37527e68 −0.0422833
\(976\) −1.21855e69 −0.0681984
\(977\) −1.29371e70 −0.706830 −0.353415 0.935467i \(-0.614980\pi\)
−0.353415 + 0.935467i \(0.614980\pi\)
\(978\) −1.93633e68 −0.0103280
\(979\) 2.42788e70 1.26425
\(980\) −2.61539e69 −0.132961
\(981\) −1.45608e70 −0.722711
\(982\) −2.08060e70 −1.00825
\(983\) 1.34733e70 0.637478 0.318739 0.947843i \(-0.396741\pi\)
0.318739 + 0.947843i \(0.396741\pi\)
\(984\) 9.20877e66 0.000425419 0
\(985\) 4.05853e70 1.83070
\(986\) 4.70253e69 0.207121
\(987\) 8.34224e67 0.00358781
\(988\) −9.37123e69 −0.393558
\(989\) 9.33959e69 0.383014
\(990\) 3.05129e70 1.22196
\(991\) −4.96910e70 −1.94333 −0.971665 0.236363i \(-0.924045\pi\)
−0.971665 + 0.236363i \(0.924045\pi\)
\(992\) −7.52456e69 −0.287380
\(993\) 3.73139e68 0.0139176
\(994\) 3.60065e69 0.131160
\(995\) 1.84224e70 0.655398
\(996\) 8.81419e67 0.00306258
\(997\) −1.54373e70 −0.523885 −0.261943 0.965083i \(-0.584363\pi\)
−0.261943 + 0.965083i \(0.584363\pi\)
\(998\) 3.68440e70 1.22124
\(999\) −1.71154e69 −0.0554113
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 14.48.a.c.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.48.a.c.1.3 6 1.1 even 1 trivial