Properties

Label 14.42.a.d.1.5
Level $14$
Weight $42$
Character 14.1
Self dual yes
Analytic conductor $149.060$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [14,42,Mod(1,14)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 42, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("14.1"); S:= CuspForms(chi, 42); N := Newforms(S);
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 42 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-6291456] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(149.060338639\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2 x^{5} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{30}\cdot 3^{10}\cdot 5^{3}\cdot 7^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(4.00095e9\) of defining polynomial
Character \(\chi\) \(=\) 14.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.04858e6 q^{2} +7.61188e9 q^{3} +1.09951e12 q^{4} -9.47383e13 q^{5} -7.98164e15 q^{6} +7.97923e16 q^{7} -1.15292e18 q^{8} +2.14677e19 q^{9} +9.93403e19 q^{10} -3.99797e21 q^{11} +8.36935e21 q^{12} +3.88838e22 q^{13} -8.36683e22 q^{14} -7.21136e23 q^{15} +1.20893e24 q^{16} -7.69424e24 q^{17} -2.25105e25 q^{18} +1.23400e26 q^{19} -1.04166e26 q^{20} +6.07369e26 q^{21} +4.19218e27 q^{22} -8.27721e27 q^{23} -8.77590e27 q^{24} -3.64994e28 q^{25} -4.07726e28 q^{26} -1.14218e29 q^{27} +8.77325e28 q^{28} +4.08980e29 q^{29} +7.56166e29 q^{30} -1.50954e30 q^{31} -1.26765e30 q^{32} -3.04321e31 q^{33} +8.06800e30 q^{34} -7.55938e30 q^{35} +2.36040e31 q^{36} +2.18213e32 q^{37} -1.29395e32 q^{38} +2.95979e32 q^{39} +1.09226e32 q^{40} +1.19847e33 q^{41} -6.36873e32 q^{42} +2.44113e33 q^{43} -4.39582e33 q^{44} -2.03382e33 q^{45} +8.67928e33 q^{46} +1.60527e34 q^{47} +9.20220e33 q^{48} +6.36681e33 q^{49} +3.82724e34 q^{50} -5.85677e34 q^{51} +4.27532e34 q^{52} +2.41936e35 q^{53} +1.19767e35 q^{54} +3.78761e35 q^{55} -9.19942e34 q^{56} +9.39310e35 q^{57} -4.28847e35 q^{58} -1.11558e36 q^{59} -7.92898e35 q^{60} +1.61612e36 q^{61} +1.58287e36 q^{62} +1.71296e36 q^{63} +1.32923e36 q^{64} -3.68379e36 q^{65} +3.19104e37 q^{66} +3.72091e37 q^{67} -8.45991e36 q^{68} -6.30051e37 q^{69} +7.92658e36 q^{70} -1.14501e38 q^{71} -2.47506e37 q^{72} +3.90033e37 q^{73} -2.28813e38 q^{74} -2.77829e38 q^{75} +1.35680e38 q^{76} -3.19007e38 q^{77} -3.10356e38 q^{78} -3.74054e38 q^{79} -1.14532e38 q^{80} -1.65241e39 q^{81} -1.25669e39 q^{82} -4.95162e38 q^{83} +6.67810e38 q^{84} +7.28939e38 q^{85} -2.55971e39 q^{86} +3.11311e39 q^{87} +4.60935e39 q^{88} +4.38732e39 q^{89} +2.13261e39 q^{90} +3.10263e39 q^{91} -9.10089e39 q^{92} -1.14904e40 q^{93} -1.68325e40 q^{94} -1.16907e40 q^{95} -9.64921e39 q^{96} +8.52599e40 q^{97} -6.67608e39 q^{98} -8.58274e40 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6291456 q^{2} - 2340113048 q^{3} + 6597069766656 q^{4} - 178161928499100 q^{5} + 24\!\cdots\!48 q^{6} + 47\!\cdots\!06 q^{7} - 69\!\cdots\!56 q^{8} + 51\!\cdots\!58 q^{9} + 18\!\cdots\!00 q^{10} + 14\!\cdots\!48 q^{11}+ \cdots - 48\!\cdots\!84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.04858e6 −0.707107
\(3\) 7.61188e9 1.26039 0.630197 0.776435i \(-0.282974\pi\)
0.630197 + 0.776435i \(0.282974\pi\)
\(4\) 1.09951e12 0.500000
\(5\) −9.47383e13 −0.444263 −0.222132 0.975017i \(-0.571301\pi\)
−0.222132 + 0.975017i \(0.571301\pi\)
\(6\) −7.98164e15 −0.891233
\(7\) 7.97923e16 0.377964
\(8\) −1.15292e18 −0.353553
\(9\) 2.14677e19 0.588592
\(10\) 9.93403e19 0.314142
\(11\) −3.99797e21 −1.79180 −0.895901 0.444254i \(-0.853469\pi\)
−0.895901 + 0.444254i \(0.853469\pi\)
\(12\) 8.36935e21 0.630197
\(13\) 3.88838e22 0.567453 0.283727 0.958905i \(-0.408429\pi\)
0.283727 + 0.958905i \(0.408429\pi\)
\(14\) −8.36683e22 −0.267261
\(15\) −7.21136e23 −0.559947
\(16\) 1.20893e24 0.250000
\(17\) −7.69424e24 −0.459159 −0.229579 0.973290i \(-0.573735\pi\)
−0.229579 + 0.973290i \(0.573735\pi\)
\(18\) −2.25105e25 −0.416198
\(19\) 1.23400e26 0.753127 0.376563 0.926391i \(-0.377106\pi\)
0.376563 + 0.926391i \(0.377106\pi\)
\(20\) −1.04166e26 −0.222132
\(21\) 6.07369e26 0.476384
\(22\) 4.19218e27 1.26700
\(23\) −8.27721e27 −1.00569 −0.502844 0.864377i \(-0.667713\pi\)
−0.502844 + 0.864377i \(0.667713\pi\)
\(24\) −8.77590e27 −0.445616
\(25\) −3.64994e28 −0.802630
\(26\) −4.07726e28 −0.401250
\(27\) −1.14218e29 −0.518536
\(28\) 8.77325e28 0.188982
\(29\) 4.08980e29 0.429085 0.214543 0.976715i \(-0.431174\pi\)
0.214543 + 0.976715i \(0.431174\pi\)
\(30\) 7.56166e29 0.395942
\(31\) −1.50954e30 −0.403580 −0.201790 0.979429i \(-0.564676\pi\)
−0.201790 + 0.979429i \(0.564676\pi\)
\(32\) −1.26765e30 −0.176777
\(33\) −3.04321e31 −2.25838
\(34\) 8.06800e30 0.324674
\(35\) −7.55938e30 −0.167916
\(36\) 2.36040e31 0.294296
\(37\) 2.18213e32 1.55148 0.775739 0.631054i \(-0.217377\pi\)
0.775739 + 0.631054i \(0.217377\pi\)
\(38\) −1.29395e32 −0.532541
\(39\) 2.95979e32 0.715215
\(40\) 1.09226e32 0.157071
\(41\) 1.19847e33 1.03886 0.519431 0.854512i \(-0.326144\pi\)
0.519431 + 0.854512i \(0.326144\pi\)
\(42\) −6.36873e32 −0.336854
\(43\) 2.44113e33 0.797055 0.398527 0.917156i \(-0.369521\pi\)
0.398527 + 0.917156i \(0.369521\pi\)
\(44\) −4.39582e33 −0.895901
\(45\) −2.03382e33 −0.261490
\(46\) 8.67928e33 0.711129
\(47\) 1.60527e34 0.846335 0.423168 0.906051i \(-0.360918\pi\)
0.423168 + 0.906051i \(0.360918\pi\)
\(48\) 9.20220e33 0.315098
\(49\) 6.36681e33 0.142857
\(50\) 3.82724e34 0.567545
\(51\) −5.85677e34 −0.578721
\(52\) 4.27532e34 0.283727
\(53\) 2.41936e35 1.08654 0.543270 0.839558i \(-0.317186\pi\)
0.543270 + 0.839558i \(0.317186\pi\)
\(54\) 1.19767e35 0.366660
\(55\) 3.78761e35 0.796032
\(56\) −9.19942e34 −0.133631
\(57\) 9.39310e35 0.949236
\(58\) −4.28847e35 −0.303409
\(59\) −1.11558e36 −0.555946 −0.277973 0.960589i \(-0.589663\pi\)
−0.277973 + 0.960589i \(0.589663\pi\)
\(60\) −7.92898e35 −0.279973
\(61\) 1.61612e36 0.406642 0.203321 0.979112i \(-0.434827\pi\)
0.203321 + 0.979112i \(0.434827\pi\)
\(62\) 1.58287e36 0.285374
\(63\) 1.71296e36 0.222467
\(64\) 1.32923e36 0.125000
\(65\) −3.68379e36 −0.252099
\(66\) 3.19104e37 1.59691
\(67\) 3.72091e37 1.36809 0.684047 0.729438i \(-0.260218\pi\)
0.684047 + 0.729438i \(0.260218\pi\)
\(68\) −8.45991e36 −0.229579
\(69\) −6.30051e37 −1.26756
\(70\) 7.92658e36 0.118734
\(71\) −1.14501e38 −1.28237 −0.641183 0.767388i \(-0.721556\pi\)
−0.641183 + 0.767388i \(0.721556\pi\)
\(72\) −2.47506e37 −0.208099
\(73\) 3.90033e37 0.247162 0.123581 0.992334i \(-0.460562\pi\)
0.123581 + 0.992334i \(0.460562\pi\)
\(74\) −2.28813e38 −1.09706
\(75\) −2.77829e38 −1.01163
\(76\) 1.35680e38 0.376563
\(77\) −3.19007e38 −0.677237
\(78\) −3.10356e38 −0.505733
\(79\) −3.74054e38 −0.469439 −0.234719 0.972063i \(-0.575417\pi\)
−0.234719 + 0.972063i \(0.575417\pi\)
\(80\) −1.14532e38 −0.111066
\(81\) −1.65241e39 −1.24215
\(82\) −1.25669e39 −0.734587
\(83\) −4.95162e38 −0.225760 −0.112880 0.993609i \(-0.536008\pi\)
−0.112880 + 0.993609i \(0.536008\pi\)
\(84\) 6.67810e38 0.238192
\(85\) 7.28939e38 0.203987
\(86\) −2.55971e39 −0.563603
\(87\) 3.11311e39 0.540816
\(88\) 4.60935e39 0.633498
\(89\) 4.38732e39 0.478304 0.239152 0.970982i \(-0.423131\pi\)
0.239152 + 0.970982i \(0.423131\pi\)
\(90\) 2.13261e39 0.184901
\(91\) 3.10263e39 0.214477
\(92\) −9.10089e39 −0.502844
\(93\) −1.14904e40 −0.508670
\(94\) −1.68325e40 −0.598450
\(95\) −1.16907e40 −0.334586
\(96\) −9.64921e39 −0.222808
\(97\) 8.52599e40 1.59193 0.795966 0.605342i \(-0.206964\pi\)
0.795966 + 0.605342i \(0.206964\pi\)
\(98\) −6.67608e39 −0.101015
\(99\) −8.58274e40 −1.05464
\(100\) −4.01315e40 −0.401315
\(101\) 2.13845e41 1.74386 0.871930 0.489631i \(-0.162868\pi\)
0.871930 + 0.489631i \(0.162868\pi\)
\(102\) 6.14126e40 0.409218
\(103\) −6.42609e40 −0.350577 −0.175289 0.984517i \(-0.556086\pi\)
−0.175289 + 0.984517i \(0.556086\pi\)
\(104\) −4.48300e40 −0.200625
\(105\) −5.75411e40 −0.211640
\(106\) −2.53689e41 −0.768300
\(107\) −7.80930e41 −1.95094 −0.975472 0.220125i \(-0.929353\pi\)
−0.975472 + 0.220125i \(0.929353\pi\)
\(108\) −1.25584e41 −0.259268
\(109\) 6.42300e41 1.09773 0.548864 0.835912i \(-0.315061\pi\)
0.548864 + 0.835912i \(0.315061\pi\)
\(110\) −3.97160e41 −0.562879
\(111\) 1.66101e42 1.95547
\(112\) 9.64629e40 0.0944911
\(113\) −2.82320e41 −0.230480 −0.115240 0.993338i \(-0.536764\pi\)
−0.115240 + 0.993338i \(0.536764\pi\)
\(114\) −9.84938e41 −0.671211
\(115\) 7.84169e41 0.446790
\(116\) 4.49679e41 0.214543
\(117\) 8.34747e41 0.333999
\(118\) 1.16977e42 0.393113
\(119\) −6.13941e41 −0.173546
\(120\) 8.31414e41 0.197971
\(121\) 1.10053e43 2.21055
\(122\) −1.69463e42 −0.287539
\(123\) 9.12261e42 1.30938
\(124\) −1.65976e42 −0.201790
\(125\) 7.76609e42 0.800842
\(126\) −1.79617e42 −0.157308
\(127\) −1.50717e43 −1.12250 −0.561251 0.827646i \(-0.689680\pi\)
−0.561251 + 0.827646i \(0.689680\pi\)
\(128\) −1.39380e42 −0.0883883
\(129\) 1.85816e43 1.00460
\(130\) 3.86273e42 0.178261
\(131\) −2.07505e43 −0.818401 −0.409201 0.912444i \(-0.634192\pi\)
−0.409201 + 0.912444i \(0.634192\pi\)
\(132\) −3.34605e43 −1.12919
\(133\) 9.84641e42 0.284655
\(134\) −3.90166e43 −0.967389
\(135\) 1.08208e43 0.230366
\(136\) 8.87086e42 0.162337
\(137\) −8.91677e43 −1.40422 −0.702112 0.712067i \(-0.747759\pi\)
−0.702112 + 0.712067i \(0.747759\pi\)
\(138\) 6.60657e43 0.896302
\(139\) −4.88064e43 −0.571049 −0.285524 0.958371i \(-0.592168\pi\)
−0.285524 + 0.958371i \(0.592168\pi\)
\(140\) −8.31163e42 −0.0839578
\(141\) 1.22191e44 1.06672
\(142\) 1.20063e44 0.906770
\(143\) −1.55457e44 −1.01676
\(144\) 2.59529e43 0.147148
\(145\) −3.87461e43 −0.190627
\(146\) −4.08979e43 −0.174770
\(147\) 4.84634e43 0.180056
\(148\) 2.39928e44 0.775739
\(149\) 2.66733e44 0.751205 0.375602 0.926781i \(-0.377436\pi\)
0.375602 + 0.926781i \(0.377436\pi\)
\(150\) 2.91325e44 0.715331
\(151\) 3.10084e44 0.664434 0.332217 0.943203i \(-0.392203\pi\)
0.332217 + 0.943203i \(0.392203\pi\)
\(152\) −1.42271e44 −0.266271
\(153\) −1.65178e44 −0.270257
\(154\) 3.34504e44 0.478879
\(155\) 1.43011e44 0.179296
\(156\) 3.25432e44 0.357607
\(157\) 1.25525e45 1.21001 0.605004 0.796222i \(-0.293171\pi\)
0.605004 + 0.796222i \(0.293171\pi\)
\(158\) 3.92224e44 0.331943
\(159\) 1.84159e45 1.36947
\(160\) 1.20095e44 0.0785354
\(161\) −6.60457e44 −0.380114
\(162\) 1.73268e45 0.878334
\(163\) 1.68291e45 0.751994 0.375997 0.926621i \(-0.377300\pi\)
0.375997 + 0.926621i \(0.377300\pi\)
\(164\) 1.31773e45 0.519431
\(165\) 2.88308e45 1.00331
\(166\) 5.19215e44 0.159636
\(167\) 3.12246e45 0.848808 0.424404 0.905473i \(-0.360484\pi\)
0.424404 + 0.905473i \(0.360484\pi\)
\(168\) −7.00249e44 −0.168427
\(169\) −3.18350e45 −0.677997
\(170\) −7.64348e44 −0.144241
\(171\) 2.64913e45 0.443285
\(172\) 2.68405e45 0.398527
\(173\) 1.00726e46 1.32799 0.663995 0.747737i \(-0.268860\pi\)
0.663995 + 0.747737i \(0.268860\pi\)
\(174\) −3.26433e45 −0.382415
\(175\) −2.91237e45 −0.303366
\(176\) −4.83325e45 −0.447950
\(177\) −8.49163e45 −0.700711
\(178\) −4.60044e45 −0.338212
\(179\) 1.67923e46 1.10059 0.550293 0.834972i \(-0.314516\pi\)
0.550293 + 0.834972i \(0.314516\pi\)
\(180\) −2.23620e45 −0.130745
\(181\) 3.02497e46 1.57874 0.789370 0.613918i \(-0.210408\pi\)
0.789370 + 0.613918i \(0.210408\pi\)
\(182\) −3.25334e45 −0.151658
\(183\) 1.23017e46 0.512529
\(184\) 9.54297e45 0.355564
\(185\) −2.06731e46 −0.689265
\(186\) 1.20486e46 0.359684
\(187\) 3.07614e46 0.822722
\(188\) 1.76502e46 0.423168
\(189\) −9.11374e45 −0.195988
\(190\) 1.22586e46 0.236588
\(191\) 8.12526e46 1.40816 0.704082 0.710118i \(-0.251359\pi\)
0.704082 + 0.710118i \(0.251359\pi\)
\(192\) 1.01179e46 0.157549
\(193\) 4.62754e46 0.647776 0.323888 0.946095i \(-0.395010\pi\)
0.323888 + 0.946095i \(0.395010\pi\)
\(194\) −8.94015e46 −1.12567
\(195\) −2.80405e46 −0.317744
\(196\) 7.00038e45 0.0714286
\(197\) 6.33379e46 0.582246 0.291123 0.956686i \(-0.405971\pi\)
0.291123 + 0.956686i \(0.405971\pi\)
\(198\) 8.99966e46 0.745744
\(199\) −1.18620e47 −0.886483 −0.443242 0.896402i \(-0.646172\pi\)
−0.443242 + 0.896402i \(0.646172\pi\)
\(200\) 4.20809e46 0.283773
\(201\) 2.83231e47 1.72434
\(202\) −2.24233e47 −1.23309
\(203\) 3.26335e46 0.162179
\(204\) −6.43958e46 −0.289360
\(205\) −1.13541e47 −0.461528
\(206\) 6.73825e46 0.247896
\(207\) −1.77693e47 −0.591940
\(208\) 4.70077e46 0.141863
\(209\) −4.93352e47 −1.34945
\(210\) 6.03362e46 0.149652
\(211\) 7.44008e46 0.167412 0.0837061 0.996490i \(-0.473324\pi\)
0.0837061 + 0.996490i \(0.473324\pi\)
\(212\) 2.66012e47 0.543270
\(213\) −8.71566e47 −1.61629
\(214\) 8.18864e47 1.37953
\(215\) −2.31269e47 −0.354102
\(216\) 1.31685e47 0.183330
\(217\) −1.20450e47 −0.152539
\(218\) −6.73500e47 −0.776211
\(219\) 2.96888e47 0.311522
\(220\) 4.16452e47 0.398016
\(221\) −2.99182e47 −0.260551
\(222\) −1.74170e48 −1.38273
\(223\) 2.43341e47 0.176183 0.0880917 0.996112i \(-0.471923\pi\)
0.0880917 + 0.996112i \(0.471923\pi\)
\(224\) −1.01149e47 −0.0668153
\(225\) −7.83559e47 −0.472422
\(226\) 2.96034e47 0.162974
\(227\) −1.17660e47 −0.0591696 −0.0295848 0.999562i \(-0.509419\pi\)
−0.0295848 + 0.999562i \(0.509419\pi\)
\(228\) 1.03278e48 0.474618
\(229\) 1.08318e48 0.455067 0.227533 0.973770i \(-0.426934\pi\)
0.227533 + 0.973770i \(0.426934\pi\)
\(230\) −8.22260e47 −0.315928
\(231\) −2.42825e48 −0.853586
\(232\) −4.71522e47 −0.151704
\(233\) −2.81188e48 −0.828325 −0.414163 0.910203i \(-0.635926\pi\)
−0.414163 + 0.910203i \(0.635926\pi\)
\(234\) −8.75296e47 −0.236173
\(235\) −1.52081e48 −0.375996
\(236\) −1.22659e48 −0.277973
\(237\) −2.84725e48 −0.591678
\(238\) 6.43764e47 0.122715
\(239\) −5.56423e47 −0.0973303 −0.0486651 0.998815i \(-0.515497\pi\)
−0.0486651 + 0.998815i \(0.515497\pi\)
\(240\) −8.71800e47 −0.139987
\(241\) −9.29447e48 −1.37049 −0.685244 0.728313i \(-0.740305\pi\)
−0.685244 + 0.728313i \(0.740305\pi\)
\(242\) −1.15399e49 −1.56310
\(243\) −8.41205e48 −1.04706
\(244\) 1.77694e48 0.203321
\(245\) −6.03180e47 −0.0634662
\(246\) −9.56575e48 −0.925868
\(247\) 4.79828e48 0.427364
\(248\) 1.74038e48 0.142687
\(249\) −3.76911e48 −0.284546
\(250\) −8.14333e48 −0.566281
\(251\) 2.88601e49 1.84921 0.924606 0.380925i \(-0.124395\pi\)
0.924606 + 0.380925i \(0.124395\pi\)
\(252\) 1.88342e48 0.111234
\(253\) 3.30921e49 1.80199
\(254\) 1.58039e49 0.793729
\(255\) 5.54860e48 0.257104
\(256\) 1.46150e48 0.0625000
\(257\) 4.04251e49 1.59596 0.797980 0.602684i \(-0.205902\pi\)
0.797980 + 0.602684i \(0.205902\pi\)
\(258\) −1.94842e49 −0.710361
\(259\) 1.74117e49 0.586404
\(260\) −4.05036e48 −0.126049
\(261\) 8.77988e48 0.252556
\(262\) 2.17584e49 0.578697
\(263\) −4.20638e49 −1.03470 −0.517351 0.855773i \(-0.673082\pi\)
−0.517351 + 0.855773i \(0.673082\pi\)
\(264\) 3.50858e49 0.798456
\(265\) −2.29206e49 −0.482710
\(266\) −1.03247e49 −0.201282
\(267\) 3.33957e49 0.602851
\(268\) 4.09119e49 0.684047
\(269\) 5.31394e49 0.823181 0.411590 0.911369i \(-0.364973\pi\)
0.411590 + 0.911369i \(0.364973\pi\)
\(270\) −1.13465e49 −0.162894
\(271\) −5.28970e49 −0.703981 −0.351990 0.936004i \(-0.614495\pi\)
−0.351990 + 0.936004i \(0.614495\pi\)
\(272\) −9.30177e48 −0.114790
\(273\) 2.36168e49 0.270326
\(274\) 9.34992e49 0.992936
\(275\) 1.45924e50 1.43815
\(276\) −6.92749e49 −0.633782
\(277\) −1.22897e49 −0.104401 −0.0522005 0.998637i \(-0.516623\pi\)
−0.0522005 + 0.998637i \(0.516623\pi\)
\(278\) 5.11772e49 0.403792
\(279\) −3.24064e49 −0.237544
\(280\) 8.71537e48 0.0593672
\(281\) −4.31503e49 −0.273215 −0.136607 0.990625i \(-0.543620\pi\)
−0.136607 + 0.990625i \(0.543620\pi\)
\(282\) −1.28127e50 −0.754282
\(283\) −1.40208e50 −0.767626 −0.383813 0.923411i \(-0.625389\pi\)
−0.383813 + 0.923411i \(0.625389\pi\)
\(284\) −1.25895e50 −0.641183
\(285\) −8.89886e49 −0.421711
\(286\) 1.63008e50 0.718961
\(287\) 9.56286e49 0.392653
\(288\) −2.72136e49 −0.104049
\(289\) −2.21604e50 −0.789173
\(290\) 4.06282e49 0.134793
\(291\) 6.48988e50 2.00646
\(292\) 4.28846e49 0.123581
\(293\) 9.10915e49 0.244732 0.122366 0.992485i \(-0.460952\pi\)
0.122366 + 0.992485i \(0.460952\pi\)
\(294\) −5.08175e49 −0.127319
\(295\) 1.05688e50 0.246986
\(296\) −2.51583e50 −0.548530
\(297\) 4.56642e50 0.929113
\(298\) −2.79690e50 −0.531182
\(299\) −3.21850e50 −0.570681
\(300\) −3.05476e50 −0.505815
\(301\) 1.94784e50 0.301258
\(302\) −3.25147e50 −0.469826
\(303\) 1.62776e51 2.19795
\(304\) 1.49182e50 0.188282
\(305\) −1.53108e50 −0.180656
\(306\) 1.73202e50 0.191101
\(307\) 9.86179e50 1.01770 0.508849 0.860856i \(-0.330071\pi\)
0.508849 + 0.860856i \(0.330071\pi\)
\(308\) −3.50752e50 −0.338619
\(309\) −4.89147e50 −0.441866
\(310\) −1.49958e50 −0.126781
\(311\) −9.35571e50 −0.740438 −0.370219 0.928944i \(-0.620717\pi\)
−0.370219 + 0.928944i \(0.620717\pi\)
\(312\) −3.41241e50 −0.252867
\(313\) 2.47338e51 1.71645 0.858225 0.513274i \(-0.171567\pi\)
0.858225 + 0.513274i \(0.171567\pi\)
\(314\) −1.31623e51 −0.855605
\(315\) −1.62283e50 −0.0988339
\(316\) −4.11277e50 −0.234719
\(317\) −7.17879e50 −0.384004 −0.192002 0.981394i \(-0.561498\pi\)
−0.192002 + 0.981394i \(0.561498\pi\)
\(318\) −1.93105e51 −0.968361
\(319\) −1.63509e51 −0.768835
\(320\) −1.25929e50 −0.0555329
\(321\) −5.94435e51 −2.45896
\(322\) 6.92540e50 0.268781
\(323\) −9.49473e50 −0.345805
\(324\) −1.81684e51 −0.621076
\(325\) −1.41924e51 −0.455455
\(326\) −1.76466e51 −0.531740
\(327\) 4.88911e51 1.38357
\(328\) −1.38174e51 −0.367293
\(329\) 1.28088e51 0.319885
\(330\) −3.02313e51 −0.709450
\(331\) −6.60580e50 −0.145697 −0.0728487 0.997343i \(-0.523209\pi\)
−0.0728487 + 0.997343i \(0.523209\pi\)
\(332\) −5.44436e50 −0.112880
\(333\) 4.68454e51 0.913188
\(334\) −3.27414e51 −0.600198
\(335\) −3.52513e51 −0.607794
\(336\) 7.34264e50 0.119096
\(337\) −3.44162e51 −0.525230 −0.262615 0.964901i \(-0.584585\pi\)
−0.262615 + 0.964901i \(0.584585\pi\)
\(338\) 3.33814e51 0.479416
\(339\) −2.14899e51 −0.290496
\(340\) 8.01477e50 0.101994
\(341\) 6.03510e51 0.723135
\(342\) −2.77781e51 −0.313450
\(343\) 5.08022e50 0.0539949
\(344\) −2.81443e51 −0.281801
\(345\) 5.96900e51 0.563132
\(346\) −1.05618e52 −0.939031
\(347\) −7.87615e51 −0.660024 −0.330012 0.943977i \(-0.607053\pi\)
−0.330012 + 0.943977i \(0.607053\pi\)
\(348\) 3.42290e51 0.270408
\(349\) 2.15217e52 1.60308 0.801540 0.597941i \(-0.204014\pi\)
0.801540 + 0.597941i \(0.204014\pi\)
\(350\) 3.05384e51 0.214512
\(351\) −4.44124e51 −0.294245
\(352\) 5.06803e51 0.316749
\(353\) 1.13342e52 0.668360 0.334180 0.942509i \(-0.391541\pi\)
0.334180 + 0.942509i \(0.391541\pi\)
\(354\) 8.90412e51 0.495478
\(355\) 1.08476e52 0.569708
\(356\) 4.82391e51 0.239152
\(357\) −4.67325e51 −0.218736
\(358\) −1.76080e52 −0.778232
\(359\) −2.95132e51 −0.123191 −0.0615956 0.998101i \(-0.519619\pi\)
−0.0615956 + 0.998101i \(0.519619\pi\)
\(360\) 2.34483e51 0.0924507
\(361\) −1.16194e52 −0.432800
\(362\) −3.17191e52 −1.11634
\(363\) 8.37709e52 2.78617
\(364\) 3.41138e51 0.107239
\(365\) −3.69510e51 −0.109805
\(366\) −1.28993e52 −0.362413
\(367\) 3.32424e52 0.883157 0.441578 0.897223i \(-0.354419\pi\)
0.441578 + 0.897223i \(0.354419\pi\)
\(368\) −1.00065e52 −0.251422
\(369\) 2.57284e52 0.611467
\(370\) 2.16774e52 0.487384
\(371\) 1.93047e52 0.410674
\(372\) −1.26339e52 −0.254335
\(373\) 8.84932e52 1.68608 0.843041 0.537849i \(-0.180763\pi\)
0.843041 + 0.537849i \(0.180763\pi\)
\(374\) −3.22556e52 −0.581752
\(375\) 5.91145e52 1.00938
\(376\) −1.85075e52 −0.299225
\(377\) 1.59027e52 0.243486
\(378\) 9.55645e51 0.138584
\(379\) −1.93310e52 −0.265553 −0.132777 0.991146i \(-0.542389\pi\)
−0.132777 + 0.991146i \(0.542389\pi\)
\(380\) −1.28541e52 −0.167293
\(381\) −1.14724e53 −1.41479
\(382\) −8.51996e52 −0.995723
\(383\) 1.07301e53 1.18859 0.594293 0.804249i \(-0.297432\pi\)
0.594293 + 0.804249i \(0.297432\pi\)
\(384\) −1.06094e52 −0.111404
\(385\) 3.02222e52 0.300872
\(386\) −4.85232e52 −0.458047
\(387\) 5.24056e52 0.469140
\(388\) 9.37443e52 0.795966
\(389\) −1.19912e53 −0.965818 −0.482909 0.875670i \(-0.660420\pi\)
−0.482909 + 0.875670i \(0.660420\pi\)
\(390\) 2.94026e52 0.224679
\(391\) 6.36869e52 0.461771
\(392\) −7.34043e51 −0.0505076
\(393\) −1.57950e53 −1.03151
\(394\) −6.64146e52 −0.411710
\(395\) 3.54372e52 0.208554
\(396\) −9.43683e52 −0.527321
\(397\) 2.39613e53 1.27146 0.635732 0.771909i \(-0.280698\pi\)
0.635732 + 0.771909i \(0.280698\pi\)
\(398\) 1.24382e53 0.626838
\(399\) 7.49497e52 0.358778
\(400\) −4.41251e52 −0.200658
\(401\) 1.28235e53 0.554047 0.277024 0.960863i \(-0.410652\pi\)
0.277024 + 0.960863i \(0.410652\pi\)
\(402\) −2.96990e53 −1.21929
\(403\) −5.86967e52 −0.229013
\(404\) 2.35125e53 0.871930
\(405\) 1.56546e53 0.551842
\(406\) −3.42187e52 −0.114678
\(407\) −8.72411e53 −2.77994
\(408\) 6.75239e52 0.204609
\(409\) −6.34815e53 −1.82945 −0.914723 0.404082i \(-0.867591\pi\)
−0.914723 + 0.404082i \(0.867591\pi\)
\(410\) 1.19056e53 0.326350
\(411\) −6.78734e53 −1.76987
\(412\) −7.06556e52 −0.175289
\(413\) −8.90143e52 −0.210128
\(414\) 1.86325e53 0.418565
\(415\) 4.69108e52 0.100297
\(416\) −4.92911e52 −0.100313
\(417\) −3.71508e53 −0.719746
\(418\) 5.17317e53 0.954208
\(419\) 2.81463e53 0.494350 0.247175 0.968971i \(-0.420498\pi\)
0.247175 + 0.968971i \(0.420498\pi\)
\(420\) −6.32671e52 −0.105820
\(421\) −8.69714e53 −1.38546 −0.692729 0.721198i \(-0.743592\pi\)
−0.692729 + 0.721198i \(0.743592\pi\)
\(422\) −7.80149e52 −0.118378
\(423\) 3.44615e53 0.498147
\(424\) −2.78934e53 −0.384150
\(425\) 2.80835e53 0.368535
\(426\) 9.13903e53 1.14289
\(427\) 1.28954e53 0.153696
\(428\) −8.58642e53 −0.975472
\(429\) −1.18332e54 −1.28152
\(430\) 2.42503e53 0.250388
\(431\) 1.95195e54 1.92169 0.960846 0.277083i \(-0.0893678\pi\)
0.960846 + 0.277083i \(0.0893678\pi\)
\(432\) −1.38081e53 −0.129634
\(433\) −1.72839e53 −0.154753 −0.0773767 0.997002i \(-0.524654\pi\)
−0.0773767 + 0.997002i \(0.524654\pi\)
\(434\) 1.26301e53 0.107861
\(435\) −2.94930e53 −0.240265
\(436\) 7.06216e53 0.548864
\(437\) −1.02141e54 −0.757411
\(438\) −3.11310e53 −0.220279
\(439\) 1.74242e54 1.17660 0.588302 0.808641i \(-0.299797\pi\)
0.588302 + 0.808641i \(0.299797\pi\)
\(440\) −4.36682e53 −0.281440
\(441\) 1.36681e53 0.0840846
\(442\) 3.13715e53 0.184238
\(443\) 2.26513e54 1.27004 0.635018 0.772497i \(-0.280993\pi\)
0.635018 + 0.772497i \(0.280993\pi\)
\(444\) 1.82630e54 0.977737
\(445\) −4.15647e53 −0.212493
\(446\) −2.55161e53 −0.124581
\(447\) 2.03034e54 0.946814
\(448\) 1.06062e53 0.0472456
\(449\) −2.96283e54 −1.26083 −0.630415 0.776259i \(-0.717115\pi\)
−0.630415 + 0.776259i \(0.717115\pi\)
\(450\) 8.21621e53 0.334053
\(451\) −4.79145e54 −1.86144
\(452\) −3.10414e53 −0.115240
\(453\) 2.36032e54 0.837449
\(454\) 1.23375e53 0.0418392
\(455\) −2.93938e53 −0.0952843
\(456\) −1.08295e54 −0.335606
\(457\) −5.74123e54 −1.70107 −0.850536 0.525916i \(-0.823723\pi\)
−0.850536 + 0.525916i \(0.823723\pi\)
\(458\) −1.13580e54 −0.321781
\(459\) 8.78823e53 0.238090
\(460\) 8.62202e53 0.223395
\(461\) −6.22598e54 −1.54290 −0.771452 0.636287i \(-0.780469\pi\)
−0.771452 + 0.636287i \(0.780469\pi\)
\(462\) 2.54620e54 0.603576
\(463\) 5.31009e54 1.20418 0.602091 0.798428i \(-0.294335\pi\)
0.602091 + 0.798428i \(0.294335\pi\)
\(464\) 4.94427e53 0.107271
\(465\) 1.08858e54 0.225983
\(466\) 2.94847e54 0.585714
\(467\) 2.75884e54 0.524483 0.262241 0.965002i \(-0.415538\pi\)
0.262241 + 0.965002i \(0.415538\pi\)
\(468\) 9.17814e53 0.166999
\(469\) 2.96900e54 0.517091
\(470\) 1.59468e54 0.265869
\(471\) 9.55483e54 1.52509
\(472\) 1.28617e54 0.196557
\(473\) −9.75959e54 −1.42816
\(474\) 2.98556e54 0.418379
\(475\) −4.50404e54 −0.604482
\(476\) −6.75035e53 −0.0867729
\(477\) 5.19383e54 0.639530
\(478\) 5.83451e53 0.0688229
\(479\) 8.63620e54 0.975989 0.487994 0.872847i \(-0.337729\pi\)
0.487994 + 0.872847i \(0.337729\pi\)
\(480\) 9.14149e53 0.0989855
\(481\) 8.48496e54 0.880392
\(482\) 9.74596e54 0.969082
\(483\) −5.02732e54 −0.479094
\(484\) 1.21004e55 1.10528
\(485\) −8.07738e54 −0.707237
\(486\) 8.82068e54 0.740386
\(487\) −2.29291e55 −1.84520 −0.922601 0.385755i \(-0.873941\pi\)
−0.922601 + 0.385755i \(0.873941\pi\)
\(488\) −1.86326e54 −0.143770
\(489\) 1.28101e55 0.947809
\(490\) 6.32480e53 0.0448774
\(491\) 4.38594e54 0.298464 0.149232 0.988802i \(-0.452320\pi\)
0.149232 + 0.988802i \(0.452320\pi\)
\(492\) 1.00304e55 0.654688
\(493\) −3.14679e54 −0.197018
\(494\) −5.03136e54 −0.302192
\(495\) 8.13114e54 0.468538
\(496\) −1.82492e54 −0.100895
\(497\) −9.13627e54 −0.484689
\(498\) 3.95220e54 0.201204
\(499\) −1.33110e55 −0.650356 −0.325178 0.945653i \(-0.605424\pi\)
−0.325178 + 0.945653i \(0.605424\pi\)
\(500\) 8.53890e54 0.400421
\(501\) 2.37678e55 1.06983
\(502\) −3.02620e55 −1.30759
\(503\) −3.85944e54 −0.160096 −0.0800481 0.996791i \(-0.525507\pi\)
−0.0800481 + 0.996791i \(0.525507\pi\)
\(504\) −1.97491e54 −0.0786540
\(505\) −2.02593e55 −0.774733
\(506\) −3.46996e55 −1.27420
\(507\) −2.42324e55 −0.854543
\(508\) −1.65716e55 −0.561251
\(509\) −6.09223e55 −1.98181 −0.990905 0.134566i \(-0.957036\pi\)
−0.990905 + 0.134566i \(0.957036\pi\)
\(510\) −5.81813e54 −0.181800
\(511\) 3.11216e54 0.0934186
\(512\) −1.53250e54 −0.0441942
\(513\) −1.40946e55 −0.390523
\(514\) −4.23888e55 −1.12851
\(515\) 6.08797e54 0.155749
\(516\) 2.04307e55 0.502301
\(517\) −6.41784e55 −1.51647
\(518\) −1.82575e55 −0.414650
\(519\) 7.66712e55 1.67379
\(520\) 4.24712e54 0.0891303
\(521\) 2.22216e55 0.448335 0.224168 0.974551i \(-0.428034\pi\)
0.224168 + 0.974551i \(0.428034\pi\)
\(522\) −9.20637e54 −0.178584
\(523\) −3.12455e55 −0.582778 −0.291389 0.956605i \(-0.594117\pi\)
−0.291389 + 0.956605i \(0.594117\pi\)
\(524\) −2.28154e55 −0.409201
\(525\) −2.21686e55 −0.382360
\(526\) 4.41071e55 0.731645
\(527\) 1.16148e55 0.185307
\(528\) −3.67902e55 −0.564594
\(529\) 7.72823e53 0.0114088
\(530\) 2.40340e55 0.341327
\(531\) −2.39489e55 −0.327226
\(532\) 1.08262e55 0.142328
\(533\) 4.66011e55 0.589506
\(534\) −3.50180e55 −0.426280
\(535\) 7.39839e55 0.866732
\(536\) −4.28992e55 −0.483694
\(537\) 1.27821e56 1.38717
\(538\) −5.57207e55 −0.582077
\(539\) −2.54543e55 −0.255972
\(540\) 1.18976e55 0.115183
\(541\) 4.98038e55 0.464214 0.232107 0.972690i \(-0.425438\pi\)
0.232107 + 0.972690i \(0.425438\pi\)
\(542\) 5.54666e55 0.497790
\(543\) 2.30257e56 1.98983
\(544\) 9.75361e54 0.0811686
\(545\) −6.08504e55 −0.487680
\(546\) −2.47640e55 −0.191149
\(547\) 1.49701e56 1.11297 0.556486 0.830857i \(-0.312149\pi\)
0.556486 + 0.830857i \(0.312149\pi\)
\(548\) −9.80410e55 −0.702112
\(549\) 3.46944e55 0.239346
\(550\) −1.53012e56 −1.01693
\(551\) 5.04684e55 0.323155
\(552\) 7.26400e55 0.448151
\(553\) −2.98466e55 −0.177431
\(554\) 1.28866e55 0.0738227
\(555\) −1.57361e56 −0.868745
\(556\) −5.36632e55 −0.285524
\(557\) 4.33820e55 0.222474 0.111237 0.993794i \(-0.464519\pi\)
0.111237 + 0.993794i \(0.464519\pi\)
\(558\) 3.39806e55 0.167969
\(559\) 9.49206e55 0.452291
\(560\) −9.13873e54 −0.0419789
\(561\) 2.34152e56 1.03695
\(562\) 4.52464e55 0.193192
\(563\) −2.41126e56 −0.992711 −0.496355 0.868119i \(-0.665329\pi\)
−0.496355 + 0.868119i \(0.665329\pi\)
\(564\) 1.34351e56 0.533358
\(565\) 2.67465e55 0.102394
\(566\) 1.47018e56 0.542794
\(567\) −1.31849e56 −0.469489
\(568\) 1.32010e56 0.453385
\(569\) −5.22175e55 −0.172987 −0.0864937 0.996252i \(-0.527566\pi\)
−0.0864937 + 0.996252i \(0.527566\pi\)
\(570\) 9.33113e55 0.298195
\(571\) −2.96562e56 −0.914273 −0.457136 0.889397i \(-0.651125\pi\)
−0.457136 + 0.889397i \(0.651125\pi\)
\(572\) −1.70926e56 −0.508382
\(573\) 6.18485e56 1.77484
\(574\) −1.00274e56 −0.277648
\(575\) 3.02113e56 0.807196
\(576\) 2.85355e55 0.0735741
\(577\) 3.98880e56 0.992518 0.496259 0.868175i \(-0.334707\pi\)
0.496259 + 0.868175i \(0.334707\pi\)
\(578\) 2.32369e56 0.558030
\(579\) 3.52243e56 0.816453
\(580\) −4.26018e55 −0.0953133
\(581\) −3.95101e55 −0.0853291
\(582\) −6.80514e56 −1.41878
\(583\) −9.67256e56 −1.94687
\(584\) −4.49677e55 −0.0873851
\(585\) −7.90825e55 −0.148383
\(586\) −9.55163e55 −0.173052
\(587\) 4.02140e55 0.0703552 0.0351776 0.999381i \(-0.488800\pi\)
0.0351776 + 0.999381i \(0.488800\pi\)
\(588\) 5.32860e55 0.0900281
\(589\) −1.86278e56 −0.303947
\(590\) −1.10822e56 −0.174646
\(591\) 4.82121e56 0.733859
\(592\) 2.63804e56 0.387870
\(593\) 1.34324e57 1.90780 0.953898 0.300130i \(-0.0970300\pi\)
0.953898 + 0.300130i \(0.0970300\pi\)
\(594\) −4.78824e56 −0.656982
\(595\) 5.81637e55 0.0771000
\(596\) 2.93276e56 0.375602
\(597\) −9.02923e56 −1.11732
\(598\) 3.37484e56 0.403533
\(599\) −1.19938e57 −1.38582 −0.692912 0.721022i \(-0.743673\pi\)
−0.692912 + 0.721022i \(0.743673\pi\)
\(600\) 3.20315e56 0.357665
\(601\) 2.75563e56 0.297368 0.148684 0.988885i \(-0.452496\pi\)
0.148684 + 0.988885i \(0.452496\pi\)
\(602\) −2.04245e56 −0.213022
\(603\) 7.98796e56 0.805250
\(604\) 3.40941e56 0.332217
\(605\) −1.04262e57 −0.982068
\(606\) −1.70684e57 −1.55419
\(607\) 1.95537e56 0.172132 0.0860658 0.996289i \(-0.472570\pi\)
0.0860658 + 0.996289i \(0.472570\pi\)
\(608\) −1.56429e56 −0.133135
\(609\) 2.48402e56 0.204409
\(610\) 1.60546e56 0.127743
\(611\) 6.24191e56 0.480256
\(612\) −1.81615e56 −0.135129
\(613\) −1.11336e56 −0.0801118 −0.0400559 0.999197i \(-0.512754\pi\)
−0.0400559 + 0.999197i \(0.512754\pi\)
\(614\) −1.03408e57 −0.719622
\(615\) −8.64260e56 −0.581707
\(616\) 3.67791e56 0.239440
\(617\) −1.19973e57 −0.755507 −0.377754 0.925906i \(-0.623303\pi\)
−0.377754 + 0.925906i \(0.623303\pi\)
\(618\) 5.12907e56 0.312446
\(619\) −1.93940e57 −1.14290 −0.571451 0.820636i \(-0.693619\pi\)
−0.571451 + 0.820636i \(0.693619\pi\)
\(620\) 1.57242e56 0.0896479
\(621\) 9.45409e56 0.521485
\(622\) 9.81018e56 0.523569
\(623\) 3.50074e56 0.180782
\(624\) 3.57817e56 0.178804
\(625\) 9.24055e56 0.446846
\(626\) −2.59352e57 −1.21371
\(627\) −3.75534e57 −1.70084
\(628\) 1.38016e57 0.605004
\(629\) −1.67899e57 −0.712375
\(630\) 1.70166e56 0.0698861
\(631\) −4.03284e57 −1.60328 −0.801640 0.597807i \(-0.796039\pi\)
−0.801640 + 0.597807i \(0.796039\pi\)
\(632\) 4.31255e56 0.165972
\(633\) 5.66330e56 0.211005
\(634\) 7.52750e56 0.271532
\(635\) 1.42787e57 0.498686
\(636\) 2.02485e57 0.684734
\(637\) 2.47566e56 0.0810648
\(638\) 1.71452e57 0.543649
\(639\) −2.45807e57 −0.754791
\(640\) 1.32046e56 0.0392677
\(641\) −3.36578e57 −0.969383 −0.484692 0.874685i \(-0.661068\pi\)
−0.484692 + 0.874685i \(0.661068\pi\)
\(642\) 6.23310e57 1.73875
\(643\) 5.64556e57 1.52539 0.762697 0.646756i \(-0.223875\pi\)
0.762697 + 0.646756i \(0.223875\pi\)
\(644\) −7.26181e56 −0.190057
\(645\) −1.76039e57 −0.446308
\(646\) 9.95595e56 0.244521
\(647\) −5.52219e57 −1.31393 −0.656967 0.753920i \(-0.728161\pi\)
−0.656967 + 0.753920i \(0.728161\pi\)
\(648\) 1.90510e57 0.439167
\(649\) 4.46004e57 0.996146
\(650\) 1.48818e57 0.322055
\(651\) −9.16848e56 −0.192259
\(652\) 1.85038e57 0.375997
\(653\) 1.57869e57 0.310869 0.155435 0.987846i \(-0.450322\pi\)
0.155435 + 0.987846i \(0.450322\pi\)
\(654\) −5.12660e57 −0.978331
\(655\) 1.96586e57 0.363585
\(656\) 1.44886e57 0.259716
\(657\) 8.37312e56 0.145478
\(658\) −1.34310e57 −0.226193
\(659\) −1.98097e57 −0.323391 −0.161695 0.986841i \(-0.551696\pi\)
−0.161695 + 0.986841i \(0.551696\pi\)
\(660\) 3.16998e57 0.501657
\(661\) −2.01251e57 −0.308750 −0.154375 0.988012i \(-0.549336\pi\)
−0.154375 + 0.988012i \(0.549336\pi\)
\(662\) 6.92669e56 0.103024
\(663\) −2.27733e57 −0.328397
\(664\) 5.70883e56 0.0798181
\(665\) −9.32831e56 −0.126462
\(666\) −4.91210e57 −0.645722
\(667\) −3.38522e57 −0.431526
\(668\) 3.43318e57 0.424404
\(669\) 1.85228e57 0.222061
\(670\) 3.69637e57 0.429775
\(671\) −6.46121e57 −0.728622
\(672\) −7.69932e56 −0.0842136
\(673\) −1.38763e56 −0.0147219 −0.00736095 0.999973i \(-0.502343\pi\)
−0.00736095 + 0.999973i \(0.502343\pi\)
\(674\) 3.60880e57 0.371394
\(675\) 4.16890e57 0.416192
\(676\) −3.50030e57 −0.338998
\(677\) 1.32919e58 1.24888 0.624440 0.781073i \(-0.285327\pi\)
0.624440 + 0.781073i \(0.285327\pi\)
\(678\) 2.25337e57 0.205411
\(679\) 6.80308e57 0.601694
\(680\) −8.40410e56 −0.0721204
\(681\) −8.95613e56 −0.0745770
\(682\) −6.32826e57 −0.511334
\(683\) 8.57042e57 0.672013 0.336007 0.941860i \(-0.390924\pi\)
0.336007 + 0.941860i \(0.390924\pi\)
\(684\) 2.91275e57 0.221642
\(685\) 8.44760e57 0.623845
\(686\) −5.32700e56 −0.0381802
\(687\) 8.24507e57 0.573563
\(688\) 2.95115e57 0.199264
\(689\) 9.40741e57 0.616561
\(690\) −6.25895e57 −0.398194
\(691\) 2.19872e58 1.35791 0.678955 0.734180i \(-0.262433\pi\)
0.678955 + 0.734180i \(0.262433\pi\)
\(692\) 1.10749e58 0.663995
\(693\) −6.84837e57 −0.398617
\(694\) 8.25874e57 0.466707
\(695\) 4.62383e57 0.253696
\(696\) −3.58917e57 −0.191207
\(697\) −9.22132e57 −0.477003
\(698\) −2.25671e58 −1.13355
\(699\) −2.14037e58 −1.04402
\(700\) −3.20218e57 −0.151683
\(701\) −2.62291e57 −0.120660 −0.0603302 0.998178i \(-0.519215\pi\)
−0.0603302 + 0.998178i \(0.519215\pi\)
\(702\) 4.65698e57 0.208062
\(703\) 2.69276e58 1.16846
\(704\) −5.31422e57 −0.223975
\(705\) −1.15762e58 −0.473903
\(706\) −1.18848e58 −0.472602
\(707\) 1.70632e58 0.659117
\(708\) −9.33665e57 −0.350356
\(709\) −1.50669e58 −0.549259 −0.274629 0.961550i \(-0.588555\pi\)
−0.274629 + 0.961550i \(0.588555\pi\)
\(710\) −1.13745e58 −0.402844
\(711\) −8.03009e57 −0.276308
\(712\) −5.05823e57 −0.169106
\(713\) 1.24948e58 0.405876
\(714\) 4.90025e57 0.154670
\(715\) 1.47277e58 0.451711
\(716\) 1.84634e58 0.550293
\(717\) −4.23542e57 −0.122674
\(718\) 3.09468e57 0.0871094
\(719\) 2.48651e57 0.0680218 0.0340109 0.999421i \(-0.489172\pi\)
0.0340109 + 0.999421i \(0.489172\pi\)
\(720\) −2.45873e57 −0.0653725
\(721\) −5.12753e57 −0.132506
\(722\) 1.21839e58 0.306036
\(723\) −7.07484e58 −1.72736
\(724\) 3.32599e58 0.789370
\(725\) −1.49275e58 −0.344397
\(726\) −8.78401e58 −1.97012
\(727\) −5.23971e57 −0.114249 −0.0571244 0.998367i \(-0.518193\pi\)
−0.0571244 + 0.998367i \(0.518193\pi\)
\(728\) −3.57709e57 −0.0758291
\(729\) −3.76325e57 −0.0775620
\(730\) 3.87460e57 0.0776440
\(731\) −1.87827e58 −0.365975
\(732\) 1.35259e58 0.256264
\(733\) −5.87774e58 −1.08288 −0.541438 0.840741i \(-0.682120\pi\)
−0.541438 + 0.840741i \(0.682120\pi\)
\(734\) −3.48572e58 −0.624486
\(735\) −4.59133e57 −0.0799924
\(736\) 1.04926e58 0.177782
\(737\) −1.48761e59 −2.45135
\(738\) −2.69782e58 −0.432372
\(739\) 5.31386e58 0.828322 0.414161 0.910204i \(-0.364075\pi\)
0.414161 + 0.910204i \(0.364075\pi\)
\(740\) −2.27304e58 −0.344632
\(741\) 3.65240e58 0.538647
\(742\) −2.02424e58 −0.290390
\(743\) 3.34215e58 0.466397 0.233199 0.972429i \(-0.425081\pi\)
0.233199 + 0.972429i \(0.425081\pi\)
\(744\) 1.32476e58 0.179842
\(745\) −2.52698e58 −0.333733
\(746\) −9.27918e58 −1.19224
\(747\) −1.06300e58 −0.132880
\(748\) 3.38225e58 0.411361
\(749\) −6.23122e58 −0.737387
\(750\) −6.19861e58 −0.713737
\(751\) 4.32824e58 0.484946 0.242473 0.970158i \(-0.422041\pi\)
0.242473 + 0.970158i \(0.422041\pi\)
\(752\) 1.94065e58 0.211584
\(753\) 2.19680e59 2.33073
\(754\) −1.66752e58 −0.172170
\(755\) −2.93768e58 −0.295184
\(756\) −1.00207e58 −0.0979940
\(757\) −4.13773e58 −0.393819 −0.196909 0.980422i \(-0.563090\pi\)
−0.196909 + 0.980422i \(0.563090\pi\)
\(758\) 2.02701e58 0.187774
\(759\) 2.51893e59 2.27122
\(760\) 1.34785e58 0.118294
\(761\) 2.71850e57 0.0232244 0.0116122 0.999933i \(-0.496304\pi\)
0.0116122 + 0.999933i \(0.496304\pi\)
\(762\) 1.20297e59 1.00041
\(763\) 5.12506e58 0.414902
\(764\) 8.93382e58 0.704082
\(765\) 1.56487e58 0.120065
\(766\) −1.12514e59 −0.840457
\(767\) −4.33778e58 −0.315474
\(768\) 1.11248e58 0.0787746
\(769\) −2.45267e59 −1.69102 −0.845509 0.533961i \(-0.820703\pi\)
−0.845509 + 0.533961i \(0.820703\pi\)
\(770\) −3.16903e58 −0.212748
\(771\) 3.07711e59 2.01154
\(772\) 5.08803e58 0.323888
\(773\) 3.01359e59 1.86812 0.934060 0.357115i \(-0.116240\pi\)
0.934060 + 0.357115i \(0.116240\pi\)
\(774\) −5.49512e58 −0.331732
\(775\) 5.50973e58 0.323926
\(776\) −9.82980e58 −0.562833
\(777\) 1.32536e59 0.739100
\(778\) 1.25737e59 0.682937
\(779\) 1.47892e59 0.782395
\(780\) −3.08309e58 −0.158872
\(781\) 4.57771e59 2.29775
\(782\) −6.67805e58 −0.326521
\(783\) −4.67130e58 −0.222496
\(784\) 7.69700e57 0.0357143
\(785\) −1.18920e59 −0.537562
\(786\) 1.65623e59 0.729386
\(787\) −2.02677e59 −0.869604 −0.434802 0.900526i \(-0.643182\pi\)
−0.434802 + 0.900526i \(0.643182\pi\)
\(788\) 6.96408e58 0.291123
\(789\) −3.20184e59 −1.30413
\(790\) −3.71586e58 −0.147470
\(791\) −2.25269e58 −0.0871133
\(792\) 9.89523e58 0.372872
\(793\) 6.28409e58 0.230750
\(794\) −2.51252e59 −0.899062
\(795\) −1.74469e59 −0.608405
\(796\) −1.30424e59 −0.443242
\(797\) −5.14384e59 −1.70370 −0.851848 0.523790i \(-0.824518\pi\)
−0.851848 + 0.523790i \(0.824518\pi\)
\(798\) −7.85904e58 −0.253694
\(799\) −1.23514e59 −0.388602
\(800\) 4.62685e58 0.141886
\(801\) 9.41858e58 0.281526
\(802\) −1.34464e59 −0.391770
\(803\) −1.55934e59 −0.442866
\(804\) 3.11416e59 0.862169
\(805\) 6.25706e58 0.168871
\(806\) 6.15479e58 0.161937
\(807\) 4.04491e59 1.03753
\(808\) −2.46547e59 −0.616547
\(809\) 1.96341e59 0.478703 0.239352 0.970933i \(-0.423065\pi\)
0.239352 + 0.970933i \(0.423065\pi\)
\(810\) −1.64151e59 −0.390211
\(811\) −5.57625e59 −1.29245 −0.646226 0.763146i \(-0.723654\pi\)
−0.646226 + 0.763146i \(0.723654\pi\)
\(812\) 3.58809e58 0.0810894
\(813\) −4.02646e59 −0.887293
\(814\) 9.14789e59 1.96572
\(815\) −1.59436e59 −0.334083
\(816\) −7.08039e58 −0.144680
\(817\) 3.01237e59 0.600283
\(818\) 6.65652e59 1.29361
\(819\) 6.66064e58 0.126240
\(820\) −1.24840e59 −0.230764
\(821\) −9.79282e59 −1.76552 −0.882761 0.469822i \(-0.844318\pi\)
−0.882761 + 0.469822i \(0.844318\pi\)
\(822\) 7.11704e59 1.25149
\(823\) 2.47404e59 0.424337 0.212168 0.977233i \(-0.431947\pi\)
0.212168 + 0.977233i \(0.431947\pi\)
\(824\) 7.40878e58 0.123948
\(825\) 1.11075e60 1.81264
\(826\) 9.33383e58 0.148583
\(827\) −1.16997e60 −1.81682 −0.908408 0.418084i \(-0.862702\pi\)
−0.908408 + 0.418084i \(0.862702\pi\)
\(828\) −1.95375e59 −0.295970
\(829\) 4.96485e59 0.733733 0.366867 0.930274i \(-0.380431\pi\)
0.366867 + 0.930274i \(0.380431\pi\)
\(830\) −4.91895e58 −0.0709205
\(831\) −9.35474e58 −0.131586
\(832\) 5.16855e58 0.0709317
\(833\) −4.89877e58 −0.0655941
\(834\) 3.89555e59 0.508937
\(835\) −2.95817e59 −0.377094
\(836\) −5.42446e59 −0.674727
\(837\) 1.72417e59 0.209271
\(838\) −2.95136e59 −0.349558
\(839\) −9.66153e59 −1.11667 −0.558336 0.829615i \(-0.688560\pi\)
−0.558336 + 0.829615i \(0.688560\pi\)
\(840\) 6.63404e58 0.0748260
\(841\) −7.41221e59 −0.815886
\(842\) 9.11961e59 0.979667
\(843\) −3.28455e59 −0.344358
\(844\) 8.18045e58 0.0837061
\(845\) 3.01599e59 0.301209
\(846\) −3.61356e59 −0.352243
\(847\) 8.78136e59 0.835511
\(848\) 2.92483e59 0.271635
\(849\) −1.06724e60 −0.967511
\(850\) −2.94477e59 −0.260593
\(851\) −1.80620e60 −1.56030
\(852\) −9.58297e59 −0.808143
\(853\) 2.01671e60 1.66031 0.830153 0.557535i \(-0.188253\pi\)
0.830153 + 0.557535i \(0.188253\pi\)
\(854\) −1.35218e59 −0.108680
\(855\) −2.50974e59 −0.196935
\(856\) 9.00351e59 0.689763
\(857\) −2.04824e60 −1.53205 −0.766027 0.642808i \(-0.777769\pi\)
−0.766027 + 0.642808i \(0.777769\pi\)
\(858\) 1.24080e60 0.906174
\(859\) −3.52658e59 −0.251474 −0.125737 0.992064i \(-0.540130\pi\)
−0.125737 + 0.992064i \(0.540130\pi\)
\(860\) −2.54283e59 −0.177051
\(861\) 7.27914e59 0.494897
\(862\) −2.04676e60 −1.35884
\(863\) −2.94062e60 −1.90642 −0.953208 0.302314i \(-0.902241\pi\)
−0.953208 + 0.302314i \(0.902241\pi\)
\(864\) 1.44789e59 0.0916650
\(865\) −9.54257e59 −0.589977
\(866\) 1.81235e59 0.109427
\(867\) −1.68683e60 −0.994669
\(868\) −1.32436e59 −0.0762695
\(869\) 1.49546e60 0.841141
\(870\) 3.09257e59 0.169893
\(871\) 1.44683e60 0.776330
\(872\) −7.40521e59 −0.388105
\(873\) 1.83034e60 0.936999
\(874\) 1.07103e60 0.535570
\(875\) 6.19674e59 0.302690
\(876\) 3.26432e59 0.155761
\(877\) 1.00651e58 0.00469167 0.00234584 0.999997i \(-0.499253\pi\)
0.00234584 + 0.999997i \(0.499253\pi\)
\(878\) −1.82706e60 −0.831985
\(879\) 6.93377e59 0.308459
\(880\) 4.57894e59 0.199008
\(881\) 2.23485e60 0.948947 0.474474 0.880270i \(-0.342638\pi\)
0.474474 + 0.880270i \(0.342638\pi\)
\(882\) −1.43320e59 −0.0594568
\(883\) −1.44046e60 −0.583855 −0.291928 0.956440i \(-0.594297\pi\)
−0.291928 + 0.956440i \(0.594297\pi\)
\(884\) −3.28954e59 −0.130276
\(885\) 8.04482e59 0.311300
\(886\) −2.37516e60 −0.898051
\(887\) 4.32167e60 1.59668 0.798340 0.602208i \(-0.205712\pi\)
0.798340 + 0.602208i \(0.205712\pi\)
\(888\) −1.91502e60 −0.691364
\(889\) −1.20261e60 −0.424266
\(890\) 4.35837e59 0.150255
\(891\) 6.60629e60 2.22569
\(892\) 2.67556e59 0.0880917
\(893\) 1.98091e60 0.637398
\(894\) −2.12897e60 −0.669499
\(895\) −1.59088e60 −0.488950
\(896\) −1.11214e59 −0.0334077
\(897\) −2.44988e60 −0.719283
\(898\) 3.10675e60 0.891541
\(899\) −6.17372e59 −0.173170
\(900\) −8.61532e59 −0.236211
\(901\) −1.86152e60 −0.498895
\(902\) 5.02420e60 1.31623
\(903\) 1.48267e60 0.379704
\(904\) 3.25493e59 0.0814870
\(905\) −2.86580e60 −0.701376
\(906\) −2.47498e60 −0.592166
\(907\) 5.37020e60 1.25615 0.628074 0.778154i \(-0.283843\pi\)
0.628074 + 0.778154i \(0.283843\pi\)
\(908\) −1.29368e59 −0.0295848
\(909\) 4.59077e60 1.02642
\(910\) 3.08216e59 0.0673762
\(911\) 4.41100e60 0.942780 0.471390 0.881925i \(-0.343752\pi\)
0.471390 + 0.881925i \(0.343752\pi\)
\(912\) 1.13556e60 0.237309
\(913\) 1.97964e60 0.404516
\(914\) 6.02012e60 1.20284
\(915\) −1.16544e60 −0.227698
\(916\) 1.19097e60 0.227533
\(917\) −1.65573e60 −0.309327
\(918\) −9.21513e59 −0.168355
\(919\) −7.37898e60 −1.31834 −0.659171 0.751993i \(-0.729093\pi\)
−0.659171 + 0.751993i \(0.729093\pi\)
\(920\) −9.04085e59 −0.157964
\(921\) 7.50668e60 1.28270
\(922\) 6.52842e60 1.09100
\(923\) −4.45223e60 −0.727683
\(924\) −2.66989e60 −0.426793
\(925\) −7.96465e60 −1.24526
\(926\) −5.56804e60 −0.851485
\(927\) −1.37954e60 −0.206347
\(928\) −5.18444e59 −0.0758522
\(929\) 5.17816e60 0.741060 0.370530 0.928820i \(-0.379176\pi\)
0.370530 + 0.928820i \(0.379176\pi\)
\(930\) −1.14146e60 −0.159794
\(931\) 7.85667e59 0.107590
\(932\) −3.09170e60 −0.414163
\(933\) −7.12146e60 −0.933244
\(934\) −2.89286e60 −0.370865
\(935\) −2.91428e60 −0.365505
\(936\) −9.62398e59 −0.118086
\(937\) 1.30339e61 1.56463 0.782316 0.622882i \(-0.214038\pi\)
0.782316 + 0.622882i \(0.214038\pi\)
\(938\) −3.11322e60 −0.365639
\(939\) 1.88270e61 2.16340
\(940\) −1.67214e60 −0.187998
\(941\) 8.50936e59 0.0936073 0.0468036 0.998904i \(-0.485096\pi\)
0.0468036 + 0.998904i \(0.485096\pi\)
\(942\) −1.00190e61 −1.07840
\(943\) −9.91999e60 −1.04477
\(944\) −1.34865e60 −0.138987
\(945\) 8.63420e59 0.0870702
\(946\) 1.02337e61 1.00986
\(947\) 1.49866e61 1.44720 0.723602 0.690218i \(-0.242485\pi\)
0.723602 + 0.690218i \(0.242485\pi\)
\(948\) −3.13059e60 −0.295839
\(949\) 1.51660e60 0.140253
\(950\) 4.72283e60 0.427434
\(951\) −5.46441e60 −0.483997
\(952\) 7.07826e59 0.0613577
\(953\) 1.92071e61 1.62951 0.814754 0.579806i \(-0.196872\pi\)
0.814754 + 0.579806i \(0.196872\pi\)
\(954\) −5.44612e60 −0.452216
\(955\) −7.69773e60 −0.625596
\(956\) −6.11793e59 −0.0486651
\(957\) −1.24461e61 −0.969035
\(958\) −9.05572e60 −0.690128
\(959\) −7.11490e60 −0.530747
\(960\) −9.58555e59 −0.0699933
\(961\) −1.17117e61 −0.837123
\(962\) −8.89713e60 −0.622531
\(963\) −1.67648e61 −1.14831
\(964\) −1.02194e61 −0.685244
\(965\) −4.38405e60 −0.287783
\(966\) 5.27153e60 0.338771
\(967\) 1.11663e61 0.702534 0.351267 0.936275i \(-0.385751\pi\)
0.351267 + 0.936275i \(0.385751\pi\)
\(968\) −1.26882e61 −0.781549
\(969\) −7.22728e60 −0.435850
\(970\) 8.46974e60 0.500092
\(971\) 3.12771e61 1.80814 0.904071 0.427382i \(-0.140564\pi\)
0.904071 + 0.427382i \(0.140564\pi\)
\(972\) −9.24915e60 −0.523532
\(973\) −3.89437e60 −0.215836
\(974\) 2.40429e61 1.30476
\(975\) −1.08031e61 −0.574053
\(976\) 1.95377e60 0.101660
\(977\) −2.82155e61 −1.43764 −0.718819 0.695197i \(-0.755317\pi\)
−0.718819 + 0.695197i \(0.755317\pi\)
\(978\) −1.34324e61 −0.670202
\(979\) −1.75404e61 −0.857026
\(980\) −6.63204e59 −0.0317331
\(981\) 1.37887e61 0.646114
\(982\) −4.59899e60 −0.211046
\(983\) −1.07369e61 −0.482539 −0.241269 0.970458i \(-0.577564\pi\)
−0.241269 + 0.970458i \(0.577564\pi\)
\(984\) −1.05177e61 −0.462934
\(985\) −6.00052e60 −0.258670
\(986\) 3.29965e60 0.139313
\(987\) 9.74993e60 0.403181
\(988\) 5.27577e60 0.213682
\(989\) −2.02058e61 −0.801588
\(990\) −8.52612e60 −0.331307
\(991\) 1.90258e61 0.724156 0.362078 0.932148i \(-0.382067\pi\)
0.362078 + 0.932148i \(0.382067\pi\)
\(992\) 1.91357e60 0.0713435
\(993\) −5.02826e60 −0.183636
\(994\) 9.58008e60 0.342727
\(995\) 1.12379e61 0.393832
\(996\) −4.14418e60 −0.142273
\(997\) −2.21774e61 −0.745865 −0.372932 0.927859i \(-0.621648\pi\)
−0.372932 + 0.927859i \(0.621648\pi\)
\(998\) 1.39576e61 0.459871
\(999\) −2.49239e61 −0.804497
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 14.42.a.d.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.42.a.d.1.5 6 1.1 even 1 trivial