Properties

Label 14.42.a
Level $14$
Weight $42$
Character orbit 14.a
Rep. character $\chi_{14}(1,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $4$
Sturm bound $84$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 42 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(84\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{42}(\Gamma_0(14))\).

Total New Old
Modular forms 84 20 64
Cusp forms 80 20 60
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(20\)\(5\)\(15\)\(19\)\(5\)\(14\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(22\)\(6\)\(16\)\(21\)\(6\)\(15\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(21\)\(5\)\(16\)\(20\)\(5\)\(15\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(21\)\(4\)\(17\)\(20\)\(4\)\(16\)\(1\)\(0\)\(1\)
Plus space\(+\)\(41\)\(9\)\(32\)\(39\)\(9\)\(30\)\(2\)\(0\)\(2\)
Minus space\(-\)\(43\)\(11\)\(32\)\(41\)\(11\)\(30\)\(2\)\(0\)\(2\)

Trace form

\( 20 q - 2097152 q^{2} - 20840159286 q^{3} + 21990232555520 q^{4} - 292600339624086 q^{5} - 12\!\cdots\!08 q^{6} - 23\!\cdots\!52 q^{8} + 25\!\cdots\!72 q^{9} - 61\!\cdots\!16 q^{10} - 46\!\cdots\!40 q^{11}+ \cdots - 46\!\cdots\!76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{42}^{\mathrm{new}}(\Gamma_0(14))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7
14.42.a.a 14.a 1.a $4$ $149.060$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 14.42.a.a \(4194304\) \(-6441397578\) \(-22\!\cdots\!50\) \(31\!\cdots\!04\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{20}q^{2}+(-1610349395-\beta _{1}+\cdots)q^{3}+\cdots\)
14.42.a.b 14.a 1.a $5$ $149.060$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 14.42.a.b \(-5242880\) \(-7465466466\) \(32\!\cdots\!40\) \(-39\!\cdots\!05\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{20}q^{2}+(-1493093293-\beta _{1}+\cdots)q^{3}+\cdots\)
14.42.a.c 14.a 1.a $5$ $149.060$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 14.42.a.c \(5242880\) \(-4593182194\) \(-21\!\cdots\!76\) \(-39\!\cdots\!05\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{20}q^{2}+(-918636439-\beta _{1})q^{3}+\cdots\)
14.42.a.d 14.a 1.a $6$ $149.060$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 14.42.a.d \(-6291456\) \(-2340113048\) \(-17\!\cdots\!00\) \(47\!\cdots\!06\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{20}q^{2}+(-390018841+\beta _{1})q^{3}+\cdots\)

Decomposition of \(S_{42}^{\mathrm{old}}(\Gamma_0(14))\) into lower level spaces

\( S_{42}^{\mathrm{old}}(\Gamma_0(14)) \simeq \) \(S_{42}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{42}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{42}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)