Defining parameters
Level: | \( N \) | \(=\) | \( 14 = 2 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 42 \) |
Character orbit: | \([\chi]\) | \(=\) | 14.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(84\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{42}(\Gamma_0(14))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 84 | 20 | 64 |
Cusp forms | 80 | 20 | 60 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(20\) | \(5\) | \(15\) | \(19\) | \(5\) | \(14\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(22\) | \(6\) | \(16\) | \(21\) | \(6\) | \(15\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(21\) | \(5\) | \(16\) | \(20\) | \(5\) | \(15\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(21\) | \(4\) | \(17\) | \(20\) | \(4\) | \(16\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(41\) | \(9\) | \(32\) | \(39\) | \(9\) | \(30\) | \(2\) | \(0\) | \(2\) | ||||
Minus space | \(-\) | \(43\) | \(11\) | \(32\) | \(41\) | \(11\) | \(30\) | \(2\) | \(0\) | \(2\) |
Trace form
Decomposition of \(S_{42}^{\mathrm{new}}(\Gamma_0(14))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 7 | |||||||
14.42.a.a | $4$ | $149.060$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(4194304\) | \(-6441397578\) | \(-22\!\cdots\!50\) | \(31\!\cdots\!04\) | $-$ | $-$ | \(q+2^{20}q^{2}+(-1610349395-\beta _{1}+\cdots)q^{3}+\cdots\) | |
14.42.a.b | $5$ | $149.060$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(-5242880\) | \(-7465466466\) | \(32\!\cdots\!40\) | \(-39\!\cdots\!05\) | $+$ | $+$ | \(q-2^{20}q^{2}+(-1493093293-\beta _{1}+\cdots)q^{3}+\cdots\) | |
14.42.a.c | $5$ | $149.060$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(5242880\) | \(-4593182194\) | \(-21\!\cdots\!76\) | \(-39\!\cdots\!05\) | $-$ | $+$ | \(q+2^{20}q^{2}+(-918636439-\beta _{1})q^{3}+\cdots\) | |
14.42.a.d | $6$ | $149.060$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(-6291456\) | \(-2340113048\) | \(-17\!\cdots\!00\) | \(47\!\cdots\!06\) | $+$ | $-$ | \(q-2^{20}q^{2}+(-390018841+\beta _{1})q^{3}+\cdots\) |
Decomposition of \(S_{42}^{\mathrm{old}}(\Gamma_0(14))\) into lower level spaces
\( S_{42}^{\mathrm{old}}(\Gamma_0(14)) \simeq \) \(S_{42}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{42}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{42}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)