Properties

Label 14.42.a.d
Level $14$
Weight $42$
Character orbit 14.a
Self dual yes
Analytic conductor $149.060$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [14,42,Mod(1,14)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 42, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("14.1"); S:= CuspForms(chi, 42); N := Newforms(S);
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 42 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-6291456] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(149.060338639\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2 x^{5} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{30}\cdot 3^{10}\cdot 5^{3}\cdot 7^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 1048576 q^{2} + (\beta_1 - 390018841) q^{3} + 1099511627776 q^{4} + (\beta_{2} + 2182 \beta_1 - 29693654749123) q^{5} + ( - 1048576 \beta_1 + 408964396220416) q^{6} + 79\!\cdots\!01 q^{7} - 11\!\cdots\!76 q^{8}+ \cdots + ( - 19\!\cdots\!83 \beta_{5} + \cdots - 81\!\cdots\!38) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6291456 q^{2} - 2340113048 q^{3} + 6597069766656 q^{4} - 178161928499100 q^{5} + 24\!\cdots\!48 q^{6} + 47\!\cdots\!06 q^{7} - 69\!\cdots\!56 q^{8} + 51\!\cdots\!58 q^{9} + 18\!\cdots\!00 q^{10} + 14\!\cdots\!48 q^{11}+ \cdots - 48\!\cdots\!84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2 x^{5} + \cdots - 10\!\cdots\!00 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 44\!\cdots\!91 \nu^{5} + \cdots - 89\!\cdots\!50 ) / 17\!\cdots\!50 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 18\!\cdots\!52 \nu^{5} + \cdots - 55\!\cdots\!25 ) / 97\!\cdots\!25 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 40\!\cdots\!47 \nu^{5} + \cdots - 16\!\cdots\!50 ) / 39\!\cdots\!50 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 20\!\cdots\!27 \nu^{5} + \cdots - 80\!\cdots\!00 ) / 72\!\cdots\!50 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{4} + 41265\beta_{2} + 1446703378\beta _1 + 44872267367890140626 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 1444584488 \beta_{5} - 2830342942 \beta_{4} + 3492887883 \beta_{3} + 73516160039754 \beta_{2} + \cdots + 64\!\cdots\!62 ) / 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 11\!\cdots\!57 \beta_{5} + \cdots + 30\!\cdots\!74 ) / 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 57\!\cdots\!89 \beta_{5} + \cdots + 16\!\cdots\!12 ) / 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.37760e9
−2.89496e9
−1.60558e9
2.83917e8
4.00095e9
4.59327e9
−1.04858e6 −9.14521e9 1.09951e12 9.22250e13 9.58945e15 7.97923e16 −1.15292e18 4.71619e19 −9.67049e19
1.2 −1.04858e6 −6.17994e9 1.09951e12 −3.30318e14 6.48013e15 7.97923e16 −1.15292e18 1.71863e18 3.46363e20
1.3 −1.04858e6 −3.60118e9 1.09951e12 2.62316e14 3.77611e15 7.97923e16 −1.15292e18 −2.35045e19 −2.75058e20
1.4 −1.04858e6 1.77814e8 1.09951e12 −2.40373e14 −1.86452e14 7.97923e16 −1.15292e18 −3.64414e19 2.52050e20
1.5 −1.04858e6 7.61188e9 1.09951e12 −9.47383e13 −7.98164e15 7.97923e16 −1.15292e18 2.14677e19 9.93403e19
1.6 −1.04858e6 8.79653e9 1.09951e12 1.32726e14 −9.22383e15 7.97923e16 −1.15292e18 4.09059e19 −1.39173e20
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 14.42.a.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.42.a.d 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} + 2340113048 T_{3}^{5} + \cdots - 24\!\cdots\!00 \) acting on \(S_{42}^{\mathrm{new}}(\Gamma_0(14))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1048576)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots - 24\!\cdots\!00 \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots - 24\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( (T - 79\!\cdots\!01)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 18\!\cdots\!36 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 34\!\cdots\!56 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 97\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 28\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 50\!\cdots\!44 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 74\!\cdots\!84 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 14\!\cdots\!76 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 10\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 44\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 68\!\cdots\!04 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 21\!\cdots\!64 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 12\!\cdots\!24 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 32\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 72\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 20\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 78\!\cdots\!84 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 54\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 70\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 81\!\cdots\!00 \) Copy content Toggle raw display
show more
show less