Properties

Label 136.2.s.a.75.1
Level $136$
Weight $2$
Character 136.75
Analytic conductor $1.086$
Analytic rank $0$
Dimension $8$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [136,2,Mod(3,136)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(136, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 8, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("136.3"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 136 = 2^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 136.s (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.08596546749\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{16}]$

Embedding invariants

Embedding label 75.1
Root \(-0.382683 - 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 136.75
Dual form 136.2.s.a.107.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.541196 + 1.30656i) q^{2} +(1.39635 - 2.08979i) q^{3} +(-1.41421 - 1.41421i) q^{4} +(1.97474 + 2.95541i) q^{6} +(2.61313 - 1.08239i) q^{8} +(-1.26937 - 3.06453i) q^{9} +(4.72705 - 3.15851i) q^{11} +(-4.93015 + 0.980668i) q^{12} +4.00000i q^{16} +(-3.76118 + 1.68925i) q^{17} +4.69098 q^{18} +(-2.83730 + 6.84984i) q^{19} +(1.56854 + 7.88556i) q^{22} +(1.38687 - 6.97229i) q^{24} +(-4.61940 + 1.91342i) q^{25} +(-0.781491 - 0.155448i) q^{27} +(-5.22625 - 2.16478i) q^{32} -14.2889i q^{33} +(-0.171573 - 5.82843i) q^{34} +(-2.53874 + 6.12906i) q^{36} +(-7.41421 - 7.41421i) q^{38} +(0.252982 - 1.27183i) q^{41} +(4.46447 + 10.7782i) q^{43} +(-11.1519 - 2.21824i) q^{44} +(8.35916 + 5.58541i) q^{48} +(-6.46716 - 2.67878i) q^{49} -7.07107i q^{50} +(-1.72176 + 10.2189i) q^{51} +(0.626043 - 0.936940i) q^{54} +(10.3529 + 15.4942i) q^{57} +(9.94975 - 4.12132i) q^{59} +(5.65685 - 5.65685i) q^{64} +(18.6694 + 7.73312i) q^{66} -16.1815i q^{67} +(7.70806 + 2.93015i) q^{68} +(-6.63405 - 6.63405i) q^{72} +(2.96960 + 14.9292i) q^{73} +(-2.45167 + 12.3254i) q^{75} +(13.6997 - 5.67459i) q^{76} +(5.62038 - 5.62038i) q^{81} +(1.52481 + 1.01884i) q^{82} +(-14.3640 - 5.94975i) q^{83} -16.4985 q^{86} +(8.93362 - 13.3701i) q^{88} +(8.56628 + 8.56628i) q^{89} +(-11.8216 + 7.89897i) q^{96} +(-14.4112 + 2.86657i) q^{97} +(7.00000 - 7.00000i) q^{98} +(-15.6797 - 10.4769i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{3} + 8 q^{6} + 16 q^{9} - 16 q^{12} - 24 q^{22} + 32 q^{24} - 32 q^{27} - 24 q^{34} + 32 q^{36} - 48 q^{38} - 32 q^{41} + 64 q^{43} - 16 q^{44} + 32 q^{48} - 40 q^{51} + 40 q^{54} - 40 q^{57}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/136\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(103\) \(105\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{11}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.541196 + 1.30656i −0.382683 + 0.923880i
\(3\) 1.39635 2.08979i 0.806185 1.20654i −0.169102 0.985599i \(-0.554087\pi\)
0.975287 0.220942i \(-0.0709133\pi\)
\(4\) −1.41421 1.41421i −0.707107 0.707107i
\(5\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(6\) 1.97474 + 2.95541i 0.806185 + 1.20654i
\(7\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(8\) 2.61313 1.08239i 0.923880 0.382683i
\(9\) −1.26937 3.06453i −0.423124 1.02151i
\(10\) 0 0
\(11\) 4.72705 3.15851i 1.42526 0.952327i 0.426401 0.904534i \(-0.359781\pi\)
0.998857 0.0477934i \(-0.0152189\pi\)
\(12\) −4.93015 + 0.980668i −1.42321 + 0.283094i
\(13\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000i 1.00000i
\(17\) −3.76118 + 1.68925i −0.912219 + 0.409702i
\(18\) 4.69098 1.10568
\(19\) −2.83730 + 6.84984i −0.650921 + 1.57146i 0.160524 + 0.987032i \(0.448682\pi\)
−0.811445 + 0.584429i \(0.801318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.56854 + 7.88556i 0.334413 + 1.68121i
\(23\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(24\) 1.38687 6.97229i 0.283094 1.42321i
\(25\) −4.61940 + 1.91342i −0.923880 + 0.382683i
\(26\) 0 0
\(27\) −0.781491 0.155448i −0.150398 0.0299160i
\(28\) 0 0
\(29\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(30\) 0 0
\(31\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(32\) −5.22625 2.16478i −0.923880 0.382683i
\(33\) 14.2889i 2.48738i
\(34\) −0.171573 5.82843i −0.0294245 0.999567i
\(35\) 0 0
\(36\) −2.53874 + 6.12906i −0.423124 + 1.02151i
\(37\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(38\) −7.41421 7.41421i −1.20274 1.20274i
\(39\) 0 0
\(40\) 0 0
\(41\) 0.252982 1.27183i 0.0395091 0.198626i −0.955990 0.293400i \(-0.905213\pi\)
0.995499 + 0.0947747i \(0.0302131\pi\)
\(42\) 0 0
\(43\) 4.46447 + 10.7782i 0.680825 + 1.64366i 0.762493 + 0.646997i \(0.223975\pi\)
−0.0816682 + 0.996660i \(0.526025\pi\)
\(44\) −11.1519 2.21824i −1.68121 0.334413i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 8.35916 + 5.58541i 1.20654 + 0.806185i
\(49\) −6.46716 2.67878i −0.923880 0.382683i
\(50\) 7.07107i 1.00000i
\(51\) −1.72176 + 10.2189i −0.241095 + 1.43093i
\(52\) 0 0
\(53\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(54\) 0.626043 0.936940i 0.0851937 0.127501i
\(55\) 0 0
\(56\) 0 0
\(57\) 10.3529 + 15.4942i 1.37127 + 2.05225i
\(58\) 0 0
\(59\) 9.94975 4.12132i 1.29535 0.536550i 0.374772 0.927117i \(-0.377721\pi\)
0.920575 + 0.390567i \(0.127721\pi\)
\(60\) 0 0
\(61\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 5.65685 5.65685i 0.707107 0.707107i
\(65\) 0 0
\(66\) 18.6694 + 7.73312i 2.29804 + 0.951881i
\(67\) 16.1815i 1.97688i −0.151601 0.988442i \(-0.548443\pi\)
0.151601 0.988442i \(-0.451557\pi\)
\(68\) 7.70806 + 2.93015i 0.934740 + 0.355333i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(72\) −6.63405 6.63405i −0.781830 0.781830i
\(73\) 2.96960 + 14.9292i 0.347565 + 1.74733i 0.619486 + 0.785007i \(0.287341\pi\)
−0.271921 + 0.962319i \(0.587659\pi\)
\(74\) 0 0
\(75\) −2.45167 + 12.3254i −0.283094 + 1.42321i
\(76\) 13.6997 5.67459i 1.57146 0.650921i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(80\) 0 0
\(81\) 5.62038 5.62038i 0.624487 0.624487i
\(82\) 1.52481 + 1.01884i 0.168387 + 0.112512i
\(83\) −14.3640 5.94975i −1.57665 0.653070i −0.588771 0.808300i \(-0.700388\pi\)
−0.987878 + 0.155230i \(0.950388\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −16.4985 −1.77908
\(87\) 0 0
\(88\) 8.93362 13.3701i 0.952327 1.42526i
\(89\) 8.56628 + 8.56628i 0.908024 + 0.908024i 0.996113 0.0880885i \(-0.0280758\pi\)
−0.0880885 + 0.996113i \(0.528076\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) −11.8216 + 7.89897i −1.20654 + 0.806185i
\(97\) −14.4112 + 2.86657i −1.46324 + 0.291057i −0.861550 0.507673i \(-0.830506\pi\)
−0.601690 + 0.798730i \(0.705506\pi\)
\(98\) 7.00000 7.00000i 0.707107 0.707107i
\(99\) −15.6797 10.4769i −1.57587 1.05296i
\(100\) 9.23880 + 3.82683i 0.923880 + 0.382683i
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) −12.4198 7.77999i −1.22974 0.770334i
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.56001 17.8974i −0.344159 1.73021i −0.634180 0.773185i \(-0.718662\pi\)
0.290021 0.957020i \(-0.406338\pi\)
\(108\) 0.885359 + 1.32503i 0.0851937 + 0.127501i
\(109\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.30644 + 4.21383i −0.593260 + 0.396404i −0.815643 0.578556i \(-0.803617\pi\)
0.222383 + 0.974959i \(0.428617\pi\)
\(114\) −25.8470 + 5.14129i −2.42079 + 0.481526i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 15.2304i 1.40207i
\(119\) 0 0
\(120\) 0 0
\(121\) 8.15927 19.6982i 0.741751 1.79075i
\(122\) 0 0
\(123\) −2.30460 2.30460i −0.207798 0.207798i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(128\) 4.32957 + 10.4525i 0.382683 + 0.923880i
\(129\) 28.7581 + 5.72034i 2.53201 + 0.503648i
\(130\) 0 0
\(131\) 22.3849 4.45262i 1.95577 0.389028i 0.962900 0.269858i \(-0.0869767\pi\)
0.992874 0.119170i \(-0.0380233\pi\)
\(132\) −20.2076 + 20.2076i −1.75885 + 1.75885i
\(133\) 0 0
\(134\) 21.1421 + 8.75736i 1.82640 + 0.756521i
\(135\) 0 0
\(136\) −8.00000 + 8.48528i −0.685994 + 0.727607i
\(137\) −11.7574 −1.00450 −0.502249 0.864723i \(-0.667494\pi\)
−0.502249 + 0.864723i \(0.667494\pi\)
\(138\) 0 0
\(139\) 2.23909 3.35103i 0.189917 0.284231i −0.724276 0.689510i \(-0.757826\pi\)
0.914193 + 0.405279i \(0.132826\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 12.2581 5.07748i 1.02151 0.423124i
\(145\) 0 0
\(146\) −21.1130 4.19964i −1.74733 0.347565i
\(147\) −14.6285 + 9.77447i −1.20654 + 0.806185i
\(148\) 0 0
\(149\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(150\) −14.7770 9.87371i −1.20654 0.806185i
\(151\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(152\) 20.9706i 1.70094i
\(153\) 9.95108 + 9.38196i 0.804497 + 0.758487i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 4.30165 + 10.3851i 0.337970 + 0.815931i
\(163\) −24.8697 4.94689i −1.94794 0.387470i −0.996928 0.0783260i \(-0.975042\pi\)
−0.951015 0.309144i \(-0.899958\pi\)
\(164\) −2.15640 + 1.44086i −0.168387 + 0.112512i
\(165\) 0 0
\(166\) 15.5474 15.5474i 1.20672 1.20672i
\(167\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 0 0
\(171\) 24.5931 1.88068
\(172\) 8.92893 21.5563i 0.680825 1.64366i
\(173\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 12.6341 + 18.9082i 0.952327 + 1.42526i
\(177\) 5.28067 26.5477i 0.396919 1.99545i
\(178\) −15.8284 + 6.55635i −1.18639 + 0.491419i
\(179\) 0.486803 + 1.17525i 0.0363854 + 0.0878421i 0.941028 0.338330i \(-0.109862\pi\)
−0.904642 + 0.426172i \(0.859862\pi\)
\(180\) 0 0
\(181\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −12.4438 + 19.8649i −0.909978 + 1.45266i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(192\) −3.92267 19.7206i −0.283094 1.42321i
\(193\) −10.1483 15.1880i −0.730492 1.09326i −0.991775 0.127996i \(-0.959146\pi\)
0.261283 0.965262i \(-0.415854\pi\)
\(194\) 4.05395 20.3806i 0.291057 1.46324i
\(195\) 0 0
\(196\) 5.35757 + 12.9343i 0.382683 + 0.923880i
\(197\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(198\) 22.1745 14.8165i 1.57587 1.05296i
\(199\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(200\) −10.0000 + 10.0000i −0.707107 + 0.707107i
\(201\) −33.8159 22.5951i −2.38519 1.59373i
\(202\) 0 0
\(203\) 0 0
\(204\) 16.8866 12.0167i 1.18230 0.841338i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8.22327 + 41.3412i 0.568815 + 2.85963i
\(210\) 0 0
\(211\) −2.61183 + 13.1305i −0.179806 + 0.903943i 0.780535 + 0.625112i \(0.214947\pi\)
−0.960340 + 0.278831i \(0.910053\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 25.3107 + 5.03462i 1.73021 + 0.344159i
\(215\) 0 0
\(216\) −2.21039 + 0.439674i −0.150398 + 0.0299160i
\(217\) 0 0
\(218\) 0 0
\(219\) 35.3454 + 14.6406i 2.38842 + 0.989317i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(224\) 0 0
\(225\) 11.7275 + 11.7275i 0.781830 + 0.781830i
\(226\) −2.09261 10.5203i −0.139198 0.699798i
\(227\) −1.71040 2.55979i −0.113523 0.169899i 0.770357 0.637613i \(-0.220078\pi\)
−0.883880 + 0.467714i \(0.845078\pi\)
\(228\) 7.27088 36.5532i 0.481526 2.42079i
\(229\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 27.7758 5.52495i 1.81965 0.361952i 0.836971 0.547248i \(-0.184325\pi\)
0.982683 + 0.185296i \(0.0593245\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −19.8995 8.24264i −1.29535 0.536550i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −6.77233 + 10.1355i −0.436244 + 0.652885i −0.982829 0.184518i \(-0.940928\pi\)
0.546585 + 0.837404i \(0.315928\pi\)
\(242\) 21.3212 + 21.3212i 1.37058 + 1.37058i
\(243\) −4.36373 21.9379i −0.279933 1.40732i
\(244\) 0 0
\(245\) 0 0
\(246\) 4.25834 1.76386i 0.271502 0.112460i
\(247\) 0 0
\(248\) 0 0
\(249\) −32.4909 + 21.7097i −2.05903 + 1.37580i
\(250\) 0 0
\(251\) 12.3387 12.3387i 0.778813 0.778813i −0.200816 0.979629i \(-0.564359\pi\)
0.979629 + 0.200816i \(0.0643592\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −16.0000 −1.00000
\(257\) −12.2635 + 29.6066i −0.764973 + 1.84681i −0.352865 + 0.935674i \(0.614792\pi\)
−0.412108 + 0.911135i \(0.635208\pi\)
\(258\) −23.0378 + 34.4784i −1.43427 + 2.14653i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −6.29696 + 31.6570i −0.389028 + 1.95577i
\(263\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(264\) −15.4662 37.3388i −0.951881 2.29804i
\(265\) 0 0
\(266\) 0 0
\(267\) 29.8633 5.94018i 1.82760 0.363533i
\(268\) −22.8841 + 22.8841i −1.39787 + 1.39787i
\(269\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) −6.75699 15.0447i −0.409702 0.912219i
\(273\) 0 0
\(274\) 6.36304 15.3617i 0.384405 0.928036i
\(275\) −15.7926 + 23.6352i −0.952327 + 1.42526i
\(276\) 0 0
\(277\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(278\) 3.16655 + 4.73907i 0.189917 + 0.284231i
\(279\) 0 0
\(280\) 0 0
\(281\) −12.5244 30.2367i −0.747145 1.80377i −0.573969 0.818877i \(-0.694597\pi\)
−0.173176 0.984891i \(-0.555403\pi\)
\(282\) 0 0
\(283\) −3.45045 + 2.30552i −0.205108 + 0.137049i −0.653882 0.756596i \(-0.726861\pi\)
0.448774 + 0.893645i \(0.351861\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 18.7639i 1.10568i
\(289\) 11.2929 12.7071i 0.664288 0.747477i
\(290\) 0 0
\(291\) −14.1326 + 34.1192i −0.828470 + 2.00010i
\(292\) 16.9134 25.3127i 0.989781 1.48131i
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) −4.85406 24.4030i −0.283094 1.42321i
\(295\) 0 0
\(296\) 0 0
\(297\) −4.18513 + 1.73354i −0.242846 + 0.100590i
\(298\) 0 0
\(299\) 0 0
\(300\) 20.8979 13.9635i 1.20654 0.806185i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −27.3994 11.3492i −1.57146 0.650921i
\(305\) 0 0
\(306\) −17.6436 + 7.92422i −1.00862 + 0.452998i
\(307\) 8.48528 0.484281 0.242140 0.970241i \(-0.422151\pi\)
0.242140 + 0.970241i \(0.422151\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(312\) 0 0
\(313\) −0.621610 + 3.12504i −0.0351355 + 0.176638i −0.994368 0.105979i \(-0.966202\pi\)
0.959233 + 0.282617i \(0.0912024\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −42.3728 17.5514i −2.36502 0.979623i
\(322\) 0 0
\(323\) −0.899495 30.5563i −0.0500492 1.70020i
\(324\) −15.8968 −0.883158
\(325\) 0 0
\(326\) 19.9228 29.8166i 1.10342 1.65139i
\(327\) 0 0
\(328\) −0.715541 3.59727i −0.0395091 0.198626i
\(329\) 0 0
\(330\) 0 0
\(331\) 13.1924 5.46447i 0.725119 0.300354i 0.0105746 0.999944i \(-0.496634\pi\)
0.714545 + 0.699590i \(0.246634\pi\)
\(332\) 11.8995 + 28.7279i 0.653070 + 1.57665i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 29.9497 + 20.0118i 1.63147 + 1.09011i 0.923312 + 0.384052i \(0.125472\pi\)
0.708154 + 0.706058i \(0.249528\pi\)
\(338\) 16.9853 + 7.03555i 0.923880 + 0.382683i
\(339\) 19.0631i 1.03537i
\(340\) 0 0
\(341\) 0 0
\(342\) −13.3097 + 32.1325i −0.719707 + 1.73753i
\(343\) 0 0
\(344\) 23.3324 + 23.3324i 1.25800 + 1.25800i
\(345\) 0 0
\(346\) 0 0
\(347\) −4.95859 + 24.9285i −0.266191 + 1.33823i 0.583998 + 0.811755i \(0.301488\pi\)
−0.850189 + 0.526477i \(0.823512\pi\)
\(348\) 0 0
\(349\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −31.5422 + 6.27414i −1.68121 + 0.334413i
\(353\) −6.66413 + 6.66413i −0.354696 + 0.354696i −0.861853 0.507157i \(-0.830696\pi\)
0.507157 + 0.861853i \(0.330696\pi\)
\(354\) 31.8284 + 21.2670i 1.69166 + 1.13033i
\(355\) 0 0
\(356\) 24.2291i 1.28414i
\(357\) 0 0
\(358\) −1.79899 −0.0950796
\(359\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(360\) 0 0
\(361\) −25.4350 25.4350i −1.33869 1.33869i
\(362\) 0 0
\(363\) −29.7719 44.5568i −1.56262 2.33863i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(368\) 0 0
\(369\) −4.21868 + 0.839147i −0.219616 + 0.0436843i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) −19.2202 27.0093i −0.993853 1.39662i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 7.08373 + 35.6123i 0.363867 + 1.82928i 0.536011 + 0.844211i \(0.319930\pi\)
−0.172145 + 0.985072i \(0.555070\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(384\) 27.8891 + 5.54750i 1.42321 + 0.283094i
\(385\) 0 0
\(386\) 25.3363 5.03971i 1.28959 0.256515i
\(387\) 27.3630 27.3630i 1.39094 1.39094i
\(388\) 24.4345 + 16.3266i 1.24047 + 0.828859i
\(389\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −19.7990 −1.00000
\(393\) 21.9521 52.9971i 1.10734 2.67335i
\(394\) 0 0
\(395\) 0 0
\(396\) 7.35797 + 36.9910i 0.369752 + 1.85887i
\(397\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −7.65367 18.4776i −0.382683 0.923880i
\(401\) 1.80511 + 0.359058i 0.0901427 + 0.0179305i 0.239956 0.970784i \(-0.422867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 47.8229 31.9543i 2.38519 1.59373i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 6.56163 + 28.5668i 0.324849 + 1.41427i
\(409\) 33.3141 1.64727 0.823637 0.567117i \(-0.191941\pi\)
0.823637 + 0.567117i \(0.191941\pi\)
\(410\) 0 0
\(411\) −16.4174 + 24.5704i −0.809812 + 1.21197i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −3.87640 9.35845i −0.189828 0.458285i
\(418\) −58.4652 11.6295i −2.85963 0.568815i
\(419\) 32.9051 21.9865i 1.60752 1.07411i 0.661529 0.749919i \(-0.269908\pi\)
0.945991 0.324192i \(-0.105092\pi\)
\(420\) 0 0
\(421\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(422\) −15.7424 10.5187i −0.766326 0.512043i
\(423\) 0 0
\(424\) 0 0
\(425\) 14.1421 15.0000i 0.685994 0.727607i
\(426\) 0 0
\(427\) 0 0
\(428\) −20.2761 + 30.3453i −0.980083 + 1.46680i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(432\) 0.621793 3.12597i 0.0299160 0.150398i
\(433\) 35.9113 14.8749i 1.72578 0.714843i 0.726158 0.687528i \(-0.241304\pi\)
0.999627 0.0273152i \(-0.00869578\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −38.2576 + 38.2576i −1.82802 + 1.82802i
\(439\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(440\) 0 0
\(441\) 23.2192i 1.10568i
\(442\) 0 0
\(443\) 13.4596 0.639484 0.319742 0.947505i \(-0.396404\pi\)
0.319742 + 0.947505i \(0.396404\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.68092 13.4779i 0.126521 0.636062i −0.864531 0.502580i \(-0.832384\pi\)
0.991051 0.133482i \(-0.0426157\pi\)
\(450\) −21.6695 + 8.97581i −1.02151 + 0.423124i
\(451\) −2.82122 6.81103i −0.132846 0.320719i
\(452\) 14.8779 + 2.95940i 0.699798 + 0.139198i
\(453\) 0 0
\(454\) 4.27018 0.849392i 0.200410 0.0398639i
\(455\) 0 0
\(456\) 43.8241 + 29.2823i 2.05225 + 1.37127i
\(457\) −5.18779 2.14885i −0.242675 0.100519i 0.258031 0.966137i \(-0.416926\pi\)
−0.500706 + 0.865617i \(0.666926\pi\)
\(458\) 0 0
\(459\) 3.20192 0.735463i 0.149453 0.0343285i
\(460\) 0 0
\(461\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(462\) 0 0
\(463\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −7.81346 + 39.2809i −0.361952 + 1.81965i
\(467\) −39.9238 + 16.5370i −1.84745 + 0.765240i −0.916760 + 0.399439i \(0.869205\pi\)
−0.930693 + 0.365801i \(0.880795\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 21.5391 21.5391i 0.991416 0.991416i
\(473\) 55.1467 + 36.8479i 2.53565 + 1.69427i
\(474\) 0 0
\(475\) 37.0711i 1.70094i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −9.57752 14.3338i −0.436244 0.652885i
\(483\) 0 0
\(484\) −39.3964 + 16.3185i −1.79075 + 0.741751i
\(485\) 0 0
\(486\) 31.0249 + 6.17124i 1.40732 + 0.279933i
\(487\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(488\) 0 0
\(489\) −45.0648 + 45.0648i −2.03790 + 2.03790i
\(490\) 0 0
\(491\) −18.1990 7.53828i −0.821311 0.340198i −0.0678537 0.997695i \(-0.521615\pi\)
−0.753457 + 0.657497i \(0.771615\pi\)
\(492\) 6.51838i 0.293871i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −10.7812 54.2006i −0.483116 2.42879i
\(499\) −6.62811 9.91966i −0.296715 0.444065i 0.652919 0.757428i \(-0.273544\pi\)
−0.949633 + 0.313363i \(0.898544\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 9.44365 + 22.7990i 0.421491 + 1.01757i
\(503\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −27.1673 18.1526i −1.20654 0.806185i
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 8.65914 20.9050i 0.382683 0.923880i
\(513\) 3.28212 4.91204i 0.144909 0.216872i
\(514\) −32.0460 32.0460i −1.41349 1.41349i
\(515\) 0 0
\(516\) −32.5803 48.7599i −1.43427 2.14653i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −28.5149 + 19.0531i −1.24926 + 0.834730i −0.991325 0.131432i \(-0.958042\pi\)
−0.257936 + 0.966162i \(0.583042\pi\)
\(522\) 0 0
\(523\) 6.34711 6.34711i 0.277540 0.277540i −0.554587 0.832126i \(-0.687124\pi\)
0.832126 + 0.554587i \(0.187124\pi\)
\(524\) −37.9539 25.3600i −1.65803 1.10786i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 57.1558 2.48738
\(529\) −8.80172 + 21.2492i −0.382683 + 0.923880i
\(530\) 0 0
\(531\) −25.2598 25.2598i −1.09618 1.09618i
\(532\) 0 0
\(533\) 0 0
\(534\) −8.40068 + 42.2331i −0.363533 + 1.82760i
\(535\) 0 0
\(536\) −17.5147 42.2843i −0.756521 1.82640i
\(537\) 3.13577 + 0.623743i 0.135318 + 0.0269165i
\(538\) 0 0
\(539\) −39.0315 + 7.76386i −1.68121 + 0.334413i
\(540\) 0 0
\(541\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 23.3137 0.686292i 0.999567 0.0294245i
\(545\) 0 0
\(546\) 0 0
\(547\) 9.60936 14.3814i 0.410867 0.614905i −0.567104 0.823646i \(-0.691936\pi\)
0.977971 + 0.208741i \(0.0669364\pi\)
\(548\) 16.6274 + 16.6274i 0.710288 + 0.710288i
\(549\) 0 0
\(550\) −22.3341 33.4253i −0.952327 1.42526i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −7.90562 + 1.57253i −0.335273 + 0.0666900i
\(557\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 24.1375 + 53.7432i 1.01909 + 2.26904i
\(562\) 46.2843 1.95238
\(563\) −5.22183 + 12.6066i −0.220074 + 0.531305i −0.994900 0.100870i \(-0.967837\pi\)
0.774826 + 0.632175i \(0.217837\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1.14493 5.75597i −0.0481251 0.241941i
\(567\) 0 0
\(568\) 0 0
\(569\) −27.8492 + 11.5355i −1.16750 + 0.483595i −0.880366 0.474295i \(-0.842703\pi\)
−0.287135 + 0.957890i \(0.592703\pi\)
\(570\) 0 0
\(571\) 46.5861 + 9.26656i 1.94957 + 0.387793i 0.996332 + 0.0855694i \(0.0272709\pi\)
0.953237 + 0.302224i \(0.0977291\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −24.5163 10.1550i −1.02151 0.423124i
\(577\) 33.9411i 1.41299i 0.707719 + 0.706494i \(0.249724\pi\)
−0.707719 + 0.706494i \(0.750276\pi\)
\(578\) 10.4910 + 21.6319i 0.436367 + 0.899769i
\(579\) −45.9104 −1.90797
\(580\) 0 0
\(581\) 0 0
\(582\) −36.9304 36.9304i −1.53081 1.53081i
\(583\) 0 0
\(584\) 23.9191 + 35.7975i 0.989781 + 1.48131i
\(585\) 0 0
\(586\) 0 0
\(587\) −2.29610 5.54328i −0.0947702 0.228796i 0.869385 0.494136i \(-0.164516\pi\)
−0.964155 + 0.265341i \(0.914516\pi\)
\(588\) 34.5111 + 6.86468i 1.42321 + 0.283094i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −31.3640 12.9914i −1.28796 0.533492i −0.369586 0.929197i \(-0.620500\pi\)
−0.918378 + 0.395705i \(0.870500\pi\)
\(594\) 6.40632i 0.262855i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(600\) 6.93437 + 34.8614i 0.283094 + 1.42321i
\(601\) 26.9046 + 40.2655i 1.09746 + 1.64246i 0.678804 + 0.734319i \(0.262498\pi\)
0.418655 + 0.908145i \(0.362502\pi\)
\(602\) 0 0
\(603\) −49.5887 + 20.5403i −2.01941 + 0.836466i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(608\) 29.6569 29.6569i 1.20274 1.20274i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.804845 27.3410i −0.0325339 1.10520i
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) −4.59220 + 11.0866i −0.185326 + 0.447417i
\(615\) 0 0
\(616\) 0 0
\(617\) −9.15823 46.0415i −0.368697 1.85356i −0.505310 0.862938i \(-0.668622\pi\)
0.136613 0.990624i \(-0.456378\pi\)
\(618\) 0 0
\(619\) −9.10751 + 45.7865i −0.366062 + 1.84032i 0.156452 + 0.987685i \(0.449994\pi\)
−0.522514 + 0.852631i \(0.675006\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 17.6777 17.6777i 0.707107 0.707107i
\(626\) −3.74665 2.50343i −0.149746 0.100057i
\(627\) 97.8769 + 40.5420i 3.90883 + 1.61909i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(632\) 0 0
\(633\) 23.7930 + 23.7930i 0.945688 + 0.945688i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.180035 0.0358112i 0.00711096 0.00141446i −0.191534 0.981486i \(-0.561346\pi\)
0.198645 + 0.980072i \(0.436346\pi\)
\(642\) 45.8640 45.8640i 1.81011 1.81011i
\(643\) 17.2308 + 11.5132i 0.679515 + 0.454037i 0.846828 0.531866i \(-0.178509\pi\)
−0.167313 + 0.985904i \(0.553509\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 40.4106 + 15.3617i 1.58993 + 0.604399i
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 8.60331 20.7702i 0.337970 0.815931i
\(649\) 34.0157 50.9081i 1.33523 1.99832i
\(650\) 0 0
\(651\) 0 0
\(652\) 28.1751 + 42.1670i 1.10342 + 1.65139i
\(653\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 5.08730 + 1.01193i 0.198626 + 0.0395091i
\(657\) 41.9814 28.0511i 1.63785 1.09438i
\(658\) 0 0
\(659\) −12.7279 + 12.7279i −0.495809 + 0.495809i −0.910131 0.414321i \(-0.864019\pi\)
0.414321 + 0.910131i \(0.364019\pi\)
\(660\) 0 0
\(661\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(662\) 20.1940i 0.784863i
\(663\) 0 0
\(664\) −43.9748 −1.70655
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −19.5866 3.89602i −0.755008 0.150180i −0.197444 0.980314i \(-0.563264\pi\)
−0.557564 + 0.830134i \(0.688264\pi\)
\(674\) −42.3553 + 28.3009i −1.63147 + 1.09011i
\(675\) 3.90746 0.777242i 0.150398 0.0299160i
\(676\) −18.3848 + 18.3848i −0.707107 + 0.707107i
\(677\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(678\) −24.9072 10.3169i −0.956555 0.396218i
\(679\) 0 0
\(680\) 0 0
\(681\) −7.73773 −0.296511
\(682\) 0 0
\(683\) 9.79828 14.6642i 0.374921 0.561108i −0.595247 0.803543i \(-0.702946\pi\)
0.970168 + 0.242434i \(0.0779459\pi\)
\(684\) −34.7799 34.7799i −1.32984 1.32984i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −43.1127 + 17.8579i −1.64366 + 0.680825i
\(689\) 0 0
\(690\) 0 0
\(691\) 43.5608 29.1064i 1.65713 1.10726i 0.782169 0.623066i \(-0.214113\pi\)
0.874961 0.484193i \(-0.160887\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −29.8871 19.9699i −1.13450 0.758048i
\(695\) 0 0
\(696\) 0 0
\(697\) 1.19692 + 5.21091i 0.0453365 + 0.197377i
\(698\) 0 0
\(699\) 27.2388 65.7604i 1.03027 2.48729i
\(700\) 0 0
\(701\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 8.87298 44.6075i 0.334413 1.68121i
\(705\) 0 0
\(706\) −5.10051 12.3137i −0.191960 0.463433i
\(707\) 0 0
\(708\) −45.0121 + 30.0761i −1.69166 + 1.13033i
\(709\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 31.6569 + 13.1127i 1.18639 + 0.491419i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.973606 2.35049i 0.0363854 0.0878421i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 46.9978 19.4671i 1.74908 0.724491i
\(723\) 11.7245 + 28.3055i 0.436040 + 1.05269i
\(724\) 0 0
\(725\) 0 0
\(726\) 74.3287 14.7849i 2.75860 0.548719i
\(727\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(728\) 0 0
\(729\) −29.9088 12.3886i −1.10773 0.458839i
\(730\) 0 0
\(731\) −34.9986 32.9970i −1.29447 1.22044i
\(732\) 0 0
\(733\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −51.1094 76.4907i −1.88264 2.81757i
\(738\) 1.18673 5.96611i 0.0436843 0.219616i
\(739\) −39.1969 + 16.2359i −1.44188 + 0.597247i −0.960253 0.279129i \(-0.909954\pi\)
−0.481627 + 0.876376i \(0.659954\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 51.5713i 1.88689i
\(748\) 45.6913 10.4950i 1.67064 0.383737i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(752\) 0 0
\(753\) −8.55613 43.0146i −0.311803 1.56754i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(758\) −50.3634 10.0179i −1.82928 0.363867i
\(759\) 0 0
\(760\) 0 0
\(761\) −21.3431 + 21.3431i −0.773688 + 0.773688i −0.978749 0.205061i \(-0.934261\pi\)
0.205061 + 0.978749i \(0.434261\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −22.3417 + 33.4366i −0.806185 + 1.20654i
\(769\) −14.4558 14.4558i −0.521291 0.521291i 0.396670 0.917961i \(-0.370166\pi\)
−0.917961 + 0.396670i \(0.870166\pi\)
\(770\) 0 0
\(771\) 44.7475 + 66.9693i 1.61154 + 2.41184i
\(772\) −7.12723 + 35.8310i −0.256515 + 1.28959i
\(773\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(774\) 20.9427 + 50.5602i 0.752771 + 1.81735i
\(775\) 0 0
\(776\) −34.5556 + 23.0893i −1.24047 + 0.828859i
\(777\) 0 0
\(778\) 0 0
\(779\) 7.99402 + 5.34143i 0.286415 + 0.191377i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 10.7151 25.8686i 0.382683 0.923880i
\(785\) 0 0
\(786\) 57.3636 + 57.3636i 2.04609 + 2.04609i
\(787\) −8.59823 43.2262i −0.306494 1.54085i −0.760195 0.649695i \(-0.774897\pi\)
0.453701 0.891154i \(-0.350103\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −52.3132 10.4057i −1.85887 0.369752i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 28.2843 1.00000
\(801\) 15.3779 37.1254i 0.543350 1.31176i
\(802\) −1.44605 + 2.16416i −0.0510618 + 0.0764193i
\(803\) 61.1914 + 61.1914i 2.15940 + 2.15940i
\(804\) 15.8687 + 79.7772i 0.559645 + 2.81352i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −16.5956 3.30106i −0.583469 0.116059i −0.105474 0.994422i \(-0.533636\pi\)
−0.477994 + 0.878363i \(0.658636\pi\)
\(810\) 0 0
\(811\) −28.4358 + 5.65623i −0.998515 + 0.198617i −0.667180 0.744896i \(-0.732499\pi\)
−0.331335 + 0.943513i \(0.607499\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) −40.8754 6.88704i −1.43093 0.241095i
\(817\) −86.4958 −3.02610
\(818\) −18.0294 + 43.5269i −0.630384 + 1.52188i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(822\) −23.2177 34.7478i −0.809812 1.21197i
\(823\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(824\) 0 0
\(825\) 27.3407 + 66.0063i 0.951881 + 2.29804i
\(826\) 0 0
\(827\) 40.8250 27.2784i 1.41962 0.948563i 0.420476 0.907304i \(-0.361863\pi\)
0.999148 0.0412591i \(-0.0131369\pi\)
\(828\) 0 0
\(829\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 28.8492 0.849242i 0.999567 0.0294245i
\(834\) 14.3253 0.496044
\(835\) 0 0
\(836\) 46.8358 70.0947i 1.61985 2.42428i
\(837\) 0 0
\(838\) 10.9186 + 54.8916i 0.377178 + 1.89620i
\(839\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(840\) 0 0
\(841\) 26.7925 11.0978i 0.923880 0.382683i
\(842\) 0 0
\(843\) −80.6768 16.0476i −2.77866 0.552709i
\(844\) 22.2631 14.8757i 0.766326 0.512043i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 10.4300i 0.357958i
\(850\) 11.9448 + 26.5955i 0.409702 + 0.912219i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −28.6747 42.9148i −0.980083 1.46680i
\(857\) −2.18243 + 10.9718i −0.0745505 + 0.374791i −0.999992 0.00410087i \(-0.998695\pi\)
0.925441 + 0.378892i \(0.123695\pi\)
\(858\) 0 0
\(859\) −5.49390 13.2635i −0.187450 0.452543i 0.802018 0.597300i \(-0.203760\pi\)
−0.989467 + 0.144757i \(0.953760\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(864\) 3.74776 + 2.50417i 0.127501 + 0.0851937i
\(865\) 0 0
\(866\) 54.9706i 1.86798i
\(867\) −10.7863 41.3434i −0.366323 1.40410i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 27.0779 + 40.5250i 0.916449 + 1.37156i
\(874\) 0 0
\(875\) 0 0
\(876\) −29.2811 70.6909i −0.989317 2.38842i
\(877\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −47.4231 31.6871i −1.59773 1.06757i −0.952921 0.303218i \(-0.901939\pi\)
−0.644804 0.764348i \(-0.723061\pi\)
\(882\) −30.3373 12.5661i −1.02151 0.423124i
\(883\) 55.6410i 1.87247i −0.351376 0.936235i \(-0.614286\pi\)
0.351376 0.936235i \(-0.385714\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −7.28427 + 17.5858i −0.244720 + 0.590806i
\(887\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 8.81577 44.3199i 0.295339 1.48477i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 16.1588 + 10.7970i 0.539227 + 0.360300i
\(899\) 0 0
\(900\) 33.1703i 1.10568i
\(901\) 0 0
\(902\) 10.4259 0.347143
\(903\) 0 0
\(904\) −11.9185 + 17.8373i −0.396404 + 0.593260i
\(905\) 0 0
\(906\) 0 0
\(907\) 24.3512 + 36.4442i 0.808570 + 1.21011i 0.974592 + 0.223988i \(0.0719076\pi\)
−0.166022 + 0.986122i \(0.553092\pi\)
\(908\) −1.20122 + 6.03895i −0.0398639 + 0.200410i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(912\) −61.9766 + 41.4114i −2.05225 + 1.37127i
\(913\) −86.6915 + 17.2440i −2.86907 + 0.570693i
\(914\) 5.61522 5.61522i 0.185735 0.185735i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) −0.771936 + 4.58154i −0.0254777 + 0.151213i
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 11.8484 17.7325i 0.390420 0.584304i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 48.6247 32.4900i 1.59532 1.06596i 0.640850 0.767666i \(-0.278582\pi\)
0.954474 0.298295i \(-0.0964179\pi\)
\(930\) 0 0
\(931\) 36.6985 36.6985i 1.20274 1.20274i
\(932\) −47.0944 31.4675i −1.54263 1.03075i
\(933\) 0 0
\(934\) 61.1127i 1.99967i
\(935\) 0 0
\(936\) 0 0
\(937\) −19.4831 + 47.0363i −0.636484 + 1.53661i 0.194849 + 0.980833i \(0.437578\pi\)
−0.831333 + 0.555775i \(0.812422\pi\)
\(938\) 0 0
\(939\) 5.66270 + 5.66270i 0.184795 + 0.184795i
\(940\) 0 0
\(941\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 16.4853 + 39.7990i 0.536550 + 1.29535i
\(945\) 0 0
\(946\) −77.9893 + 52.1108i −2.53565 + 1.69427i
\(947\) 18.5755 3.69489i 0.603622 0.120068i 0.116187 0.993227i \(-0.462933\pi\)
0.487435 + 0.873160i \(0.337933\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 48.4357 + 20.0627i 1.57146 + 0.650921i
\(951\) 0 0
\(952\) 0 0
\(953\) 57.8827 1.87501 0.937503 0.347978i \(-0.113132\pi\)
0.937503 + 0.347978i \(0.113132\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 11.8632 + 28.6403i 0.382683 + 0.923880i
\(962\) 0 0
\(963\) −50.3281 + 33.6282i −1.62180 + 1.08365i
\(964\) 23.9113 4.75625i 0.770131 0.153189i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(968\) 60.3054i 1.93829i
\(969\) −65.1124 40.7877i −2.09171 1.31029i
\(970\) 0 0
\(971\) −3.09188 + 7.46447i −0.0992233 + 0.239546i −0.965694 0.259681i \(-0.916383\pi\)
0.866471 + 0.499227i \(0.166383\pi\)
\(972\) −24.8537 + 37.1962i −0.797182 + 1.19307i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 50.9914 21.1213i 1.63136 0.675731i 0.635975 0.771709i \(-0.280598\pi\)
0.995383 + 0.0959785i \(0.0305980\pi\)
\(978\) −34.4911 83.2689i −1.10290 2.66265i
\(979\) 67.5499 + 13.4365i 2.15891 + 0.429433i
\(980\) 0 0
\(981\) 0 0
\(982\) 19.6985 19.6985i 0.628604 0.628604i
\(983\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(984\) −8.51668 3.52772i −0.271502 0.112460i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(992\) 0 0
\(993\) 7.00165 35.1996i 0.222190 1.11703i
\(994\) 0 0
\(995\) 0 0
\(996\) 76.6512 + 15.2469i 2.42879 + 0.483116i
\(997\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(998\) 16.5478 3.29156i 0.523810 0.104192i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 136.2.s.a.75.1 8
4.3 odd 2 544.2.cc.b.143.1 8
8.3 odd 2 CM 136.2.s.a.75.1 8
8.5 even 2 544.2.cc.b.143.1 8
17.5 odd 16 inner 136.2.s.a.107.1 yes 8
68.39 even 16 544.2.cc.b.175.1 8
136.5 odd 16 544.2.cc.b.175.1 8
136.107 even 16 inner 136.2.s.a.107.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.s.a.75.1 8 1.1 even 1 trivial
136.2.s.a.75.1 8 8.3 odd 2 CM
136.2.s.a.107.1 yes 8 17.5 odd 16 inner
136.2.s.a.107.1 yes 8 136.107 even 16 inner
544.2.cc.b.143.1 8 4.3 odd 2
544.2.cc.b.143.1 8 8.5 even 2
544.2.cc.b.175.1 8 68.39 even 16
544.2.cc.b.175.1 8 136.5 odd 16