Properties

Label 136.2.s.a
Level $136$
Weight $2$
Character orbit 136.s
Analytic conductor $1.086$
Analytic rank $0$
Dimension $8$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [136,2,Mod(3,136)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(136, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 8, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("136.3"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 136 = 2^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 136.s (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.08596546749\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{16}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{16}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{16}^{5} - \zeta_{16}) q^{2} + (\zeta_{16}^{7} - \zeta_{16}^{5} + \cdots - 1) q^{3} - 2 \zeta_{16}^{6} q^{4} + ( - \zeta_{16}^{7} - 2 \zeta_{16}^{5} + \cdots + 1) q^{6} + (2 \zeta_{16}^{7} + 2 \zeta_{16}^{3}) q^{8} + \cdots + (3 \zeta_{16}^{7} + 4 \zeta_{16}^{6} + \cdots - 6) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{3} + 8 q^{6} + 16 q^{9} - 16 q^{12} - 24 q^{22} + 32 q^{24} - 32 q^{27} - 24 q^{34} + 32 q^{36} - 48 q^{38} - 32 q^{41} + 64 q^{43} - 16 q^{44} + 32 q^{48} - 40 q^{51} + 40 q^{54} - 40 q^{57}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/136\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(103\) \(105\)
\(\chi(n)\) \(-1\) \(-1\) \(\zeta_{16}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
0.923880 + 0.382683i
−0.923880 + 0.382683i
0.382683 + 0.923880i
−0.382683 0.923880i
0.923880 0.382683i
−0.923880 0.382683i
−0.382683 + 0.923880i
0.382683 0.923880i
−1.30656 + 0.541196i −3.17218 0.630986i 1.41421 1.41421i 0 4.48614 0.892349i 0 −1.08239 + 2.61313i 6.89296 + 2.85516i 0
11.1 1.30656 + 0.541196i −0.242031 1.21677i 1.41421 + 1.41421i 0 0.342284 1.72078i 0 1.08239 + 2.61313i 1.34968 0.559056i 0
27.1 0.541196 1.30656i −1.98214 1.32442i −1.41421 1.41421i 0 −2.80317 + 1.87302i 0 −2.61313 + 1.08239i 1.02673 + 2.47875i 0
75.1 −0.541196 + 1.30656i 1.39635 2.08979i −1.41421 1.41421i 0 1.97474 + 2.95541i 0 2.61313 1.08239i −1.26937 3.06453i 0
91.1 −1.30656 0.541196i −3.17218 + 0.630986i 1.41421 + 1.41421i 0 4.48614 + 0.892349i 0 −1.08239 2.61313i 6.89296 2.85516i 0
99.1 1.30656 0.541196i −0.242031 + 1.21677i 1.41421 1.41421i 0 0.342284 + 1.72078i 0 1.08239 2.61313i 1.34968 + 0.559056i 0
107.1 −0.541196 1.30656i 1.39635 + 2.08979i −1.41421 + 1.41421i 0 1.97474 2.95541i 0 2.61313 + 1.08239i −1.26937 + 3.06453i 0
131.1 0.541196 + 1.30656i −1.98214 + 1.32442i −1.41421 + 1.41421i 0 −2.80317 1.87302i 0 −2.61313 1.08239i 1.02673 2.47875i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
17.e odd 16 1 inner
136.s even 16 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 136.2.s.a 8
4.b odd 2 1 544.2.cc.b 8
8.b even 2 1 544.2.cc.b 8
8.d odd 2 1 CM 136.2.s.a 8
17.e odd 16 1 inner 136.2.s.a 8
68.i even 16 1 544.2.cc.b 8
136.q odd 16 1 544.2.cc.b 8
136.s even 16 1 inner 136.2.s.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
136.2.s.a 8 1.a even 1 1 trivial
136.2.s.a 8 8.d odd 2 1 CM
136.2.s.a 8 17.e odd 16 1 inner
136.2.s.a 8 136.s even 16 1 inner
544.2.cc.b 8 4.b odd 2 1
544.2.cc.b 8 8.b even 2 1
544.2.cc.b 8 68.i even 16 1
544.2.cc.b 8 136.q odd 16 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + 8T_{3}^{7} + 24T_{3}^{6} + 48T_{3}^{5} + 146T_{3}^{4} + 416T_{3}^{3} + 692T_{3}^{2} + 680T_{3} + 578 \) acting on \(S_{2}^{\mathrm{new}}(136, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 16 \) Copy content Toggle raw display
$3$ \( T^{8} + 8 T^{7} + \cdots + 578 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} + 4 T^{6} + \cdots + 167042 \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( T^{8} - 48 T^{6} + \cdots + 83521 \) Copy content Toggle raw display
$19$ \( T^{8} + 48 T^{6} + \cdots + 1336336 \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} + 32 T^{7} + \cdots + 555458 \) Copy content Toggle raw display
$43$ \( (T^{4} - 32 T^{3} + \cdots + 21218)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( (T^{4} - 20 T^{3} + 118 T^{2} + \cdots + 2)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( (T^{4} + 436 T^{2} + 45602)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( T^{8} - 48 T^{7} + \cdots + 7380482 \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( (T^{4} + 32 T^{3} + \cdots + 4418)^{2} \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 2687592964 \) Copy content Toggle raw display
$97$ \( T^{8} + 52 T^{6} + \cdots + 856069442 \) Copy content Toggle raw display
show more
show less