Properties

Label 136.2.s
Level $136$
Weight $2$
Character orbit 136.s
Rep. character $\chi_{136}(3,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $128$
Newform subspaces $3$
Sturm bound $36$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 136 = 2^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 136.s (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 136 \)
Character field: \(\Q(\zeta_{16})\)
Newform subspaces: \( 3 \)
Sturm bound: \(36\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(136, [\chi])\).

Total New Old
Modular forms 160 160 0
Cusp forms 128 128 0
Eisenstein series 32 32 0

Trace form

\( 128 q - 8 q^{2} - 16 q^{3} - 8 q^{4} - 8 q^{6} - 8 q^{8} - 16 q^{9} - 8 q^{10} - 16 q^{11} - 8 q^{12} - 8 q^{14} - 16 q^{17} - 16 q^{18} - 16 q^{19} - 8 q^{20} - 8 q^{22} + 8 q^{24} - 16 q^{25} - 40 q^{26}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(136, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
136.2.s.a 136.s 136.s $8$ $1.086$ \(\Q(\zeta_{16})\) \(\Q(\sqrt{-2}) \) 136.2.s.a \(0\) \(-8\) \(0\) \(0\) $\mathrm{U}(1)[D_{16}]$ \(q+(-\zeta_{16}+\zeta_{16}^{5})q^{2}+(-1-\zeta_{16}+\cdots)q^{3}+\cdots\)
136.2.s.b 136.s 136.s $8$ $1.086$ \(\Q(\zeta_{16})\) \(\Q(\sqrt{-2}) \) 136.2.s.b \(0\) \(8\) \(0\) \(0\) $\mathrm{U}(1)[D_{16}]$ \(q+(\zeta_{16}-\zeta_{16}^{5})q^{2}+(1+\zeta_{16}-\zeta_{16}^{2}+\cdots)q^{3}+\cdots\)
136.2.s.c 136.s 136.s $112$ $1.086$ None 136.2.s.c \(-8\) \(-16\) \(0\) \(0\) $\mathrm{SU}(2)[C_{16}]$