Properties

Label 544.2.cc.b.175.1
Level $544$
Weight $2$
Character 544.175
Analytic conductor $4.344$
Analytic rank $0$
Dimension $8$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [544,2,Mod(79,544)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(544, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 8, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("544.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 544 = 2^{5} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 544.cc (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.34386186996\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: $\mathrm{U}(1)[D_{16}]$

Embedding invariants

Embedding label 175.1
Root \(-0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 544.175
Dual form 544.2.cc.b.143.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39635 - 2.08979i) q^{3} +(-1.26937 + 3.06453i) q^{9} +(-4.72705 - 3.15851i) q^{11} +(-3.76118 - 1.68925i) q^{17} +(2.83730 + 6.84984i) q^{19} +(-4.61940 - 1.91342i) q^{25} +(0.781491 - 0.155448i) q^{27} +14.2889i q^{33} +(0.252982 + 1.27183i) q^{41} +(-4.46447 + 10.7782i) q^{43} +(-6.46716 + 2.67878i) q^{49} +(1.72176 + 10.2189i) q^{51} +(10.3529 - 15.4942i) q^{57} +(-9.94975 - 4.12132i) q^{59} -16.1815i q^{67} +(2.96960 - 14.9292i) q^{73} +(2.45167 + 12.3254i) q^{75} +(5.62038 + 5.62038i) q^{81} +(14.3640 - 5.94975i) q^{83} +(8.56628 - 8.56628i) q^{89} +(-14.4112 - 2.86657i) q^{97} +(15.6797 - 10.4769i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} + 16 q^{9} + 32 q^{27} - 32 q^{41} - 64 q^{43} + 40 q^{51} - 40 q^{57} - 40 q^{59} + 48 q^{73} + 56 q^{81} + 64 q^{83} + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/544\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(511\) \(513\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.39635 2.08979i −0.806185 1.20654i −0.975287 0.220942i \(-0.929087\pi\)
0.169102 0.985599i \(-0.445913\pi\)
\(4\) 0 0
\(5\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(6\) 0 0
\(7\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(8\) 0 0
\(9\) −1.26937 + 3.06453i −0.423124 + 1.02151i
\(10\) 0 0
\(11\) −4.72705 3.15851i −1.42526 0.952327i −0.998857 0.0477934i \(-0.984781\pi\)
−0.426401 0.904534i \(-0.640219\pi\)
\(12\) 0 0
\(13\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.76118 1.68925i −0.912219 0.409702i
\(18\) 0 0
\(19\) 2.83730 + 6.84984i 0.650921 + 1.57146i 0.811445 + 0.584429i \(0.198682\pi\)
−0.160524 + 0.987032i \(0.551318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(24\) 0 0
\(25\) −4.61940 1.91342i −0.923880 0.382683i
\(26\) 0 0
\(27\) 0.781491 0.155448i 0.150398 0.0299160i
\(28\) 0 0
\(29\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(30\) 0 0
\(31\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(32\) 0 0
\(33\) 14.2889i 2.48738i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.252982 + 1.27183i 0.0395091 + 0.198626i 0.995499 0.0947747i \(-0.0302131\pi\)
−0.955990 + 0.293400i \(0.905213\pi\)
\(42\) 0 0
\(43\) −4.46447 + 10.7782i −0.680825 + 1.64366i 0.0816682 + 0.996660i \(0.473975\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) 0 0
\(49\) −6.46716 + 2.67878i −0.923880 + 0.382683i
\(50\) 0 0
\(51\) 1.72176 + 10.2189i 0.241095 + 1.43093i
\(52\) 0 0
\(53\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 10.3529 15.4942i 1.37127 2.05225i
\(58\) 0 0
\(59\) −9.94975 4.12132i −1.29535 0.536550i −0.374772 0.927117i \(-0.622279\pi\)
−0.920575 + 0.390567i \(0.872279\pi\)
\(60\) 0 0
\(61\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 16.1815i 1.97688i −0.151601 0.988442i \(-0.548443\pi\)
0.151601 0.988442i \(-0.451557\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(72\) 0 0
\(73\) 2.96960 14.9292i 0.347565 1.74733i −0.271921 0.962319i \(-0.587659\pi\)
0.619486 0.785007i \(-0.287341\pi\)
\(74\) 0 0
\(75\) 2.45167 + 12.3254i 0.283094 + 1.42321i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(80\) 0 0
\(81\) 5.62038 + 5.62038i 0.624487 + 0.624487i
\(82\) 0 0
\(83\) 14.3640 5.94975i 1.57665 0.653070i 0.588771 0.808300i \(-0.299612\pi\)
0.987878 + 0.155230i \(0.0496119\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.56628 8.56628i 0.908024 0.908024i −0.0880885 0.996113i \(-0.528076\pi\)
0.996113 + 0.0880885i \(0.0280758\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −14.4112 2.86657i −1.46324 0.291057i −0.601690 0.798730i \(-0.705506\pi\)
−0.861550 + 0.507673i \(0.830506\pi\)
\(98\) 0 0
\(99\) 15.6797 10.4769i 1.57587 1.05296i
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.56001 17.8974i 0.344159 1.73021i −0.290021 0.957020i \(-0.593662\pi\)
0.634180 0.773185i \(-0.281338\pi\)
\(108\) 0 0
\(109\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.30644 4.21383i −0.593260 0.396404i 0.222383 0.974959i \(-0.428617\pi\)
−0.815643 + 0.578556i \(0.803617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 8.15927 + 19.6982i 0.741751 + 1.79075i
\(122\) 0 0
\(123\) 2.30460 2.30460i 0.207798 0.207798i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(128\) 0 0
\(129\) 28.7581 5.72034i 2.53201 0.503648i
\(130\) 0 0
\(131\) −22.3849 4.45262i −1.95577 0.389028i −0.992874 0.119170i \(-0.961977\pi\)
−0.962900 0.269858i \(-0.913023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −11.7574 −1.00450 −0.502249 0.864723i \(-0.667494\pi\)
−0.502249 + 0.864723i \(0.667494\pi\)
\(138\) 0 0
\(139\) −2.23909 3.35103i −0.189917 0.284231i 0.724276 0.689510i \(-0.242174\pi\)
−0.914193 + 0.405279i \(0.867174\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 14.6285 + 9.77447i 1.20654 + 0.806185i
\(148\) 0 0
\(149\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(150\) 0 0
\(151\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(152\) 0 0
\(153\) 9.95108 9.38196i 0.804497 0.758487i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 24.8697 4.94689i 1.94794 0.387470i 0.951015 0.309144i \(-0.100042\pi\)
0.996928 0.0783260i \(-0.0249575\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 0 0
\(171\) −24.5931 −1.88068
\(172\) 0 0
\(173\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5.28067 + 26.5477i 0.396919 + 1.99545i
\(178\) 0 0
\(179\) −0.486803 + 1.17525i −0.0363854 + 0.0878421i −0.941028 0.338330i \(-0.890138\pi\)
0.904642 + 0.426172i \(0.140138\pi\)
\(180\) 0 0
\(181\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 12.4438 + 19.8649i 0.909978 + 1.45266i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(192\) 0 0
\(193\) −10.1483 + 15.1880i −0.730492 + 1.09326i 0.261283 + 0.965262i \(0.415854\pi\)
−0.991775 + 0.127996i \(0.959146\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(198\) 0 0
\(199\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(200\) 0 0
\(201\) −33.8159 + 22.5951i −2.38519 + 1.59373i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8.22327 41.3412i 0.568815 2.85963i
\(210\) 0 0
\(211\) 2.61183 + 13.1305i 0.179806 + 0.903943i 0.960340 + 0.278831i \(0.0899469\pi\)
−0.780535 + 0.625112i \(0.785053\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −35.3454 + 14.6406i −2.38842 + 0.989317i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(224\) 0 0
\(225\) 11.7275 11.7275i 0.781830 0.781830i
\(226\) 0 0
\(227\) 1.71040 2.55979i 0.113523 0.169899i −0.770357 0.637613i \(-0.779922\pi\)
0.883880 + 0.467714i \(0.154922\pi\)
\(228\) 0 0
\(229\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 27.7758 + 5.52495i 1.81965 + 0.361952i 0.982683 0.185296i \(-0.0593245\pi\)
0.836971 + 0.547248i \(0.184325\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −6.77233 10.1355i −0.436244 0.652885i 0.546585 0.837404i \(-0.315928\pi\)
−0.982829 + 0.184518i \(0.940928\pi\)
\(242\) 0 0
\(243\) 4.36373 21.9379i 0.279933 1.40732i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −32.4909 21.7097i −2.05903 1.37580i
\(250\) 0 0
\(251\) −12.3387 12.3387i −0.778813 0.778813i 0.200816 0.979629i \(-0.435641\pi\)
−0.979629 + 0.200816i \(0.935641\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −12.2635 29.6066i −0.764973 1.84681i −0.412108 0.911135i \(-0.635208\pi\)
−0.352865 0.935674i \(-0.614792\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −29.8633 5.94018i −1.82760 0.363533i
\(268\) 0 0
\(269\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 15.7926 + 23.6352i 0.952327 + 1.42526i
\(276\) 0 0
\(277\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.5244 + 30.2367i −0.747145 + 1.80377i −0.173176 + 0.984891i \(0.555403\pi\)
−0.573969 + 0.818877i \(0.694597\pi\)
\(282\) 0 0
\(283\) 3.45045 + 2.30552i 0.205108 + 0.137049i 0.653882 0.756596i \(-0.273139\pi\)
−0.448774 + 0.893645i \(0.648139\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 11.2929 + 12.7071i 0.664288 + 0.747477i
\(290\) 0 0
\(291\) 14.1326 + 34.1192i 0.828470 + 2.00010i
\(292\) 0 0
\(293\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −4.18513 1.73354i −0.242846 0.100590i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −8.48528 −0.484281 −0.242140 0.970241i \(-0.577849\pi\)
−0.242140 + 0.970241i \(0.577849\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(312\) 0 0
\(313\) −0.621610 3.12504i −0.0351355 0.176638i 0.959233 0.282617i \(-0.0912024\pi\)
−0.994368 + 0.105979i \(0.966202\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −42.3728 + 17.5514i −2.36502 + 0.979623i
\(322\) 0 0
\(323\) 0.899495 30.5563i 0.0500492 1.70020i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −13.1924 5.46447i −0.725119 0.300354i −0.0105746 0.999944i \(-0.503366\pi\)
−0.714545 + 0.699590i \(0.753366\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 29.9497 20.0118i 1.63147 1.09011i 0.708154 0.706058i \(-0.249528\pi\)
0.923312 0.384052i \(-0.125472\pi\)
\(338\) 0 0
\(339\) 19.0631i 1.03537i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.95859 + 24.9285i 0.266191 + 1.33823i 0.850189 + 0.526477i \(0.176488\pi\)
−0.583998 + 0.811755i \(0.698512\pi\)
\(348\) 0 0
\(349\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.66413 6.66413i −0.354696 0.354696i 0.507157 0.861853i \(-0.330696\pi\)
−0.861853 + 0.507157i \(0.830696\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(360\) 0 0
\(361\) −25.4350 + 25.4350i −1.33869 + 1.33869i
\(362\) 0 0
\(363\) 29.7719 44.5568i 1.56262 2.33863i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(368\) 0 0
\(369\) −4.21868 0.839147i −0.219616 0.0436843i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −7.08373 + 35.6123i −0.363867 + 1.82928i 0.172145 + 0.985072i \(0.444930\pi\)
−0.536011 + 0.844211i \(0.680070\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −27.3630 27.3630i −1.39094 1.39094i
\(388\) 0 0
\(389\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 21.9521 + 52.9971i 1.10734 + 2.67335i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.80511 0.359058i 0.0901427 0.0179305i −0.149813 0.988714i \(-0.547867\pi\)
0.239956 + 0.970784i \(0.422867\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 33.3141 1.64727 0.823637 0.567117i \(-0.191941\pi\)
0.823637 + 0.567117i \(0.191941\pi\)
\(410\) 0 0
\(411\) 16.4174 + 24.5704i 0.809812 + 1.21197i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −3.87640 + 9.35845i −0.189828 + 0.458285i
\(418\) 0 0
\(419\) −32.9051 21.9865i −1.60752 1.07411i −0.945991 0.324192i \(-0.894908\pi\)
−0.661529 0.749919i \(-0.730092\pi\)
\(420\) 0 0
\(421\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 14.1421 + 15.0000i 0.685994 + 0.727607i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(432\) 0 0
\(433\) 35.9113 + 14.8749i 1.72578 + 0.714843i 0.999627 + 0.0273152i \(0.00869578\pi\)
0.726158 + 0.687528i \(0.241304\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(440\) 0 0
\(441\) 23.2192i 1.10568i
\(442\) 0 0
\(443\) −13.4596 −0.639484 −0.319742 0.947505i \(-0.603596\pi\)
−0.319742 + 0.947505i \(0.603596\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.68092 + 13.4779i 0.126521 + 0.636062i 0.991051 + 0.133482i \(0.0426157\pi\)
−0.864531 + 0.502580i \(0.832384\pi\)
\(450\) 0 0
\(451\) 2.82122 6.81103i 0.132846 0.320719i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5.18779 + 2.14885i −0.242675 + 0.100519i −0.500706 0.865617i \(-0.666926\pi\)
0.258031 + 0.966137i \(0.416926\pi\)
\(458\) 0 0
\(459\) −3.20192 0.735463i −0.149453 0.0343285i
\(460\) 0 0
\(461\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 39.9238 + 16.5370i 1.84745 + 0.765240i 0.930693 + 0.365801i \(0.119205\pi\)
0.916760 + 0.399439i \(0.130795\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 55.1467 36.8479i 2.53565 1.69427i
\(474\) 0 0
\(475\) 37.0711i 1.70094i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(488\) 0 0
\(489\) −45.0648 45.0648i −2.03790 2.03790i
\(490\) 0 0
\(491\) 18.1990 7.53828i 0.821311 0.340198i 0.0678537 0.997695i \(-0.478385\pi\)
0.753457 + 0.657497i \(0.228385\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 6.62811 9.91966i 0.296715 0.444065i −0.652919 0.757428i \(-0.726456\pi\)
0.949633 + 0.313363i \(0.101456\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 27.1673 18.1526i 1.20654 0.806185i
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 3.28212 + 4.91204i 0.144909 + 0.216872i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −28.5149 19.0531i −1.24926 0.834730i −0.257936 0.966162i \(-0.583042\pi\)
−0.991325 + 0.131432i \(0.958042\pi\)
\(522\) 0 0
\(523\) −6.34711 6.34711i −0.277540 0.277540i 0.554587 0.832126i \(-0.312876\pi\)
−0.832126 + 0.554587i \(0.812876\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −8.80172 21.2492i −0.382683 0.923880i
\(530\) 0 0
\(531\) 25.2598 25.2598i 1.09618 1.09618i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 3.13577 0.623743i 0.135318 0.0269165i
\(538\) 0 0
\(539\) 39.0315 + 7.76386i 1.68121 + 0.334413i
\(540\) 0 0
\(541\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −9.60936 14.3814i −0.410867 0.614905i 0.567104 0.823646i \(-0.308064\pi\)
−0.977971 + 0.208741i \(0.933064\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 24.1375 53.7432i 1.01909 2.26904i
\(562\) 0 0
\(563\) 5.22183 + 12.6066i 0.220074 + 0.531305i 0.994900 0.100870i \(-0.0321625\pi\)
−0.774826 + 0.632175i \(0.782163\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −27.8492 11.5355i −1.16750 0.483595i −0.287135 0.957890i \(-0.592703\pi\)
−0.880366 + 0.474295i \(0.842703\pi\)
\(570\) 0 0
\(571\) −46.5861 + 9.26656i −1.94957 + 0.387793i −0.953237 + 0.302224i \(0.902271\pi\)
−0.996332 + 0.0855694i \(0.972729\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 33.9411i 1.41299i −0.707719 0.706494i \(-0.750276\pi\)
0.707719 0.706494i \(-0.249724\pi\)
\(578\) 0 0
\(579\) 45.9104 1.90797
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.29610 5.54328i 0.0947702 0.228796i −0.869385 0.494136i \(-0.835484\pi\)
0.964155 + 0.265341i \(0.0854844\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −31.3640 + 12.9914i −1.28796 + 0.533492i −0.918378 0.395705i \(-0.870500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(600\) 0 0
\(601\) 26.9046 40.2655i 1.09746 1.64246i 0.418655 0.908145i \(-0.362502\pi\)
0.678804 0.734319i \(-0.262498\pi\)
\(602\) 0 0
\(603\) 49.5887 + 20.5403i 2.01941 + 0.836466i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −9.15823 + 46.0415i −0.368697 + 1.85356i 0.136613 + 0.990624i \(0.456378\pi\)
−0.505310 + 0.862938i \(0.668622\pi\)
\(618\) 0 0
\(619\) 9.10751 + 45.7865i 0.366062 + 1.84032i 0.522514 + 0.852631i \(0.324994\pi\)
−0.156452 + 0.987685i \(0.550006\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 17.6777 + 17.6777i 0.707107 + 0.707107i
\(626\) 0 0
\(627\) −97.8769 + 40.5420i −3.90883 + 1.61909i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(632\) 0 0
\(633\) 23.7930 23.7930i 0.945688 0.945688i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.180035 + 0.0358112i 0.00711096 + 0.00141446i 0.198645 0.980072i \(-0.436346\pi\)
−0.191534 + 0.981486i \(0.561346\pi\)
\(642\) 0 0
\(643\) −17.2308 + 11.5132i −0.679515 + 0.454037i −0.846828 0.531866i \(-0.821491\pi\)
0.167313 + 0.985904i \(0.446491\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 34.0157 + 50.9081i 1.33523 + 1.99832i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 41.9814 + 28.0511i 1.63785 + 1.09438i
\(658\) 0 0
\(659\) 12.7279 + 12.7279i 0.495809 + 0.495809i 0.910131 0.414321i \(-0.135981\pi\)
−0.414321 + 0.910131i \(0.635981\pi\)
\(660\) 0 0
\(661\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −19.5866 + 3.89602i −0.755008 + 0.150180i −0.557564 0.830134i \(-0.688264\pi\)
−0.197444 + 0.980314i \(0.563264\pi\)
\(674\) 0 0
\(675\) −3.90746 0.777242i −0.150398 0.0299160i
\(676\) 0 0
\(677\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −7.73773 −0.296511
\(682\) 0 0
\(683\) −9.79828 14.6642i −0.374921 0.561108i 0.595247 0.803543i \(-0.297054\pi\)
−0.970168 + 0.242434i \(0.922054\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −43.5608 29.1064i −1.65713 1.10726i −0.874961 0.484193i \(-0.839113\pi\)
−0.782169 0.623066i \(-0.785887\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.19692 5.21091i 0.0453365 0.197377i
\(698\) 0 0
\(699\) −27.2388 65.7604i −1.03027 2.48729i
\(700\) 0 0
\(701\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −11.7245 + 28.3055i −0.436040 + 1.05269i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(728\) 0 0
\(729\) −29.9088 + 12.3886i −1.10773 + 0.458839i
\(730\) 0 0
\(731\) 34.9986 32.9970i 1.29447 1.22044i
\(732\) 0 0
\(733\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −51.1094 + 76.4907i −1.88264 + 2.81757i
\(738\) 0 0
\(739\) 39.1969 + 16.2359i 1.44188 + 0.597247i 0.960253 0.279129i \(-0.0900459\pi\)
0.481627 + 0.876376i \(0.340046\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 51.5713i 1.88689i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(752\) 0 0
\(753\) −8.55613 + 43.0146i −0.311803 + 1.56754i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21.3431 21.3431i −0.773688 0.773688i 0.205061 0.978749i \(-0.434261\pi\)
−0.978749 + 0.205061i \(0.934261\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −14.4558 + 14.4558i −0.521291 + 0.521291i −0.917961 0.396670i \(-0.870166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 0 0
\(771\) −44.7475 + 66.9693i −1.61154 + 2.41184i
\(772\) 0 0
\(773\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7.99402 + 5.34143i −0.286415 + 0.191377i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 8.59823 43.2262i 0.306494 1.54085i −0.453701 0.891154i \(-0.649897\pi\)
0.760195 0.649695i \(-0.225103\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 15.3779 + 37.1254i 0.543350 + 1.31176i
\(802\) 0 0
\(803\) −61.1914 + 61.1914i −2.15940 + 2.15940i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −16.5956 + 3.30106i −0.583469 + 0.116059i −0.477994 0.878363i \(-0.658636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) 28.4358 + 5.65623i 0.998515 + 0.198617i 0.667180 0.744896i \(-0.267501\pi\)
0.331335 + 0.943513i \(0.392501\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −86.4958 −3.02610
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(822\) 0 0
\(823\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(824\) 0 0
\(825\) 27.3407 66.0063i 0.951881 2.29804i
\(826\) 0 0
\(827\) −40.8250 27.2784i −1.41962 0.948563i −0.999148 0.0412591i \(-0.986863\pi\)
−0.420476 0.907304i \(-0.638137\pi\)
\(828\) 0 0
\(829\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 28.8492 + 0.849242i 0.999567 + 0.0294245i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(840\) 0 0
\(841\) 26.7925 + 11.0978i 0.923880 + 0.382683i
\(842\) 0 0
\(843\) 80.6768 16.0476i 2.77866 0.552709i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 10.4300i 0.357958i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.18243 10.9718i −0.0745505 0.374791i 0.925441 0.378892i \(-0.123695\pi\)
−0.999992 + 0.00410087i \(0.998695\pi\)
\(858\) 0 0
\(859\) 5.49390 13.2635i 0.187450 0.452543i −0.802018 0.597300i \(-0.796240\pi\)
0.989467 + 0.144757i \(0.0462401\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 10.7863 41.3434i 0.366323 1.40410i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 27.0779 40.5250i 0.916449 1.37156i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −47.4231 + 31.6871i −1.59773 + 1.06757i −0.644804 + 0.764348i \(0.723061\pi\)
−0.952921 + 0.303218i \(0.901939\pi\)
\(882\) 0 0
\(883\) 55.6410i 1.87247i −0.351376 0.936235i \(-0.614286\pi\)
0.351376 0.936235i \(-0.385714\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −8.81577 44.3199i −0.295339 1.48477i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −24.3512 + 36.4442i −0.808570 + 1.21011i 0.166022 + 0.986122i \(0.446908\pi\)
−0.974592 + 0.223988i \(0.928092\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(912\) 0 0
\(913\) −86.6915 17.2440i −2.86907 0.570693i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 11.8484 + 17.7325i 0.390420 + 0.584304i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 48.6247 + 32.4900i 1.59532 + 1.06596i 0.954474 + 0.298295i \(0.0964179\pi\)
0.640850 + 0.767666i \(0.278582\pi\)
\(930\) 0 0
\(931\) −36.6985 36.6985i −1.20274 1.20274i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −19.4831 47.0363i −0.636484 1.53661i −0.831333 0.555775i \(-0.812422\pi\)
0.194849 0.980833i \(-0.437578\pi\)
\(938\) 0 0
\(939\) −5.66270 + 5.66270i −0.184795 + 0.184795i
\(940\) 0 0
\(941\) 0 0 0.555570 0.831470i \(-0.312500\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −18.5755 3.69489i −0.603622 0.120068i −0.116187 0.993227i \(-0.537067\pi\)
−0.487435 + 0.873160i \(0.662067\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 57.8827 1.87501 0.937503 0.347978i \(-0.113132\pi\)
0.937503 + 0.347978i \(0.113132\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 11.8632 28.6403i 0.382683 0.923880i
\(962\) 0 0
\(963\) 50.3281 + 33.6282i 1.62180 + 1.08365i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(968\) 0 0
\(969\) −65.1124 + 40.7877i −2.09171 + 1.31029i
\(970\) 0 0
\(971\) 3.09188 + 7.46447i 0.0992233 + 0.239546i 0.965694 0.259681i \(-0.0836174\pi\)
−0.866471 + 0.499227i \(0.833617\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 50.9914 + 21.1213i 1.63136 + 0.675731i 0.995383 0.0959785i \(-0.0305980\pi\)
0.635975 + 0.771709i \(0.280598\pi\)
\(978\) 0 0
\(979\) −67.5499 + 13.4365i −2.15891 + 0.429433i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 0.831470 0.555570i \(-0.187500\pi\)
−0.831470 + 0.555570i \(0.812500\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(992\) 0 0
\(993\) 7.00165 + 35.1996i 0.222190 + 1.11703i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 544.2.cc.b.175.1 8
4.3 odd 2 136.2.s.a.107.1 yes 8
8.3 odd 2 CM 544.2.cc.b.175.1 8
8.5 even 2 136.2.s.a.107.1 yes 8
17.7 odd 16 inner 544.2.cc.b.143.1 8
68.7 even 16 136.2.s.a.75.1 8
136.75 even 16 inner 544.2.cc.b.143.1 8
136.109 odd 16 136.2.s.a.75.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.s.a.75.1 8 68.7 even 16
136.2.s.a.75.1 8 136.109 odd 16
136.2.s.a.107.1 yes 8 4.3 odd 2
136.2.s.a.107.1 yes 8 8.5 even 2
544.2.cc.b.143.1 8 17.7 odd 16 inner
544.2.cc.b.143.1 8 136.75 even 16 inner
544.2.cc.b.175.1 8 1.1 even 1 trivial
544.2.cc.b.175.1 8 8.3 odd 2 CM