Defining parameters
Level: | \( N \) | \(=\) | \( 544 = 2^{5} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 544.cc (of order \(16\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 136 \) |
Character field: | \(\Q(\zeta_{16})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(544, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 640 | 160 | 480 |
Cusp forms | 512 | 128 | 384 |
Eisenstein series | 128 | 32 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(544, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
544.2.cc.a | $8$ | $4.344$ | \(\Q(\zeta_{16})\) | \(\Q(\sqrt{-2}) \) | \(0\) | \(-8\) | \(0\) | \(0\) | \(q+(-1-\zeta_{16}+\zeta_{16}^{2}+\zeta_{16}^{4}-\zeta_{16}^{5}+\cdots)q^{3}+\cdots\) |
544.2.cc.b | $8$ | $4.344$ | \(\Q(\zeta_{16})\) | \(\Q(\sqrt{-2}) \) | \(0\) | \(8\) | \(0\) | \(0\) | \(q+(1+\zeta_{16}+\zeta_{16}^{2}-\zeta_{16}^{4}+\zeta_{16}^{5}+\cdots)q^{3}+\cdots\) |
544.2.cc.c | $112$ | $4.344$ | None | \(0\) | \(16\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(544, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(544, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(136, [\chi])\)\(^{\oplus 3}\)