Properties

Label 136.2.k.d.89.1
Level $136$
Weight $2$
Character 136.89
Analytic conductor $1.086$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [136,2,Mod(81,136)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(136, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("136.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 136 = 2^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 136.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,4,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.08596546749\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 89.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 136.89
Dual form 136.2.k.d.81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 - 2.00000i) q^{3} +(-1.00000 + 1.00000i) q^{5} +(2.00000 + 2.00000i) q^{7} -5.00000i q^{9} +(-2.00000 - 2.00000i) q^{11} -4.00000 q^{13} +4.00000i q^{15} +(-1.00000 - 4.00000i) q^{17} +8.00000i q^{19} +8.00000 q^{21} +(2.00000 + 2.00000i) q^{23} +3.00000i q^{25} +(-4.00000 - 4.00000i) q^{27} +(-3.00000 + 3.00000i) q^{29} +(6.00000 - 6.00000i) q^{31} -8.00000 q^{33} -4.00000 q^{35} +(-5.00000 + 5.00000i) q^{37} +(-8.00000 + 8.00000i) q^{39} +(1.00000 + 1.00000i) q^{41} -8.00000i q^{43} +(5.00000 + 5.00000i) q^{45} +1.00000i q^{49} +(-10.0000 - 6.00000i) q^{51} -12.0000i q^{53} +4.00000 q^{55} +(16.0000 + 16.0000i) q^{57} -8.00000i q^{59} +(-1.00000 - 1.00000i) q^{61} +(10.0000 - 10.0000i) q^{63} +(4.00000 - 4.00000i) q^{65} +12.0000 q^{67} +8.00000 q^{69} +(-6.00000 + 6.00000i) q^{71} +(-3.00000 + 3.00000i) q^{73} +(6.00000 + 6.00000i) q^{75} -8.00000i q^{77} +(-2.00000 - 2.00000i) q^{79} -1.00000 q^{81} +(5.00000 + 3.00000i) q^{85} +12.0000i q^{87} -8.00000 q^{89} +(-8.00000 - 8.00000i) q^{91} -24.0000i q^{93} +(-8.00000 - 8.00000i) q^{95} +(3.00000 - 3.00000i) q^{97} +(-10.0000 + 10.0000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} - 2 q^{5} + 4 q^{7} - 4 q^{11} - 8 q^{13} - 2 q^{17} + 16 q^{21} + 4 q^{23} - 8 q^{27} - 6 q^{29} + 12 q^{31} - 16 q^{33} - 8 q^{35} - 10 q^{37} - 16 q^{39} + 2 q^{41} + 10 q^{45} - 20 q^{51}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/136\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(103\) \(105\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000 2.00000i 1.15470 1.15470i 0.169102 0.985599i \(-0.445913\pi\)
0.985599 0.169102i \(-0.0540867\pi\)
\(4\) 0 0
\(5\) −1.00000 + 1.00000i −0.447214 + 0.447214i −0.894427 0.447214i \(-0.852416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) 2.00000 + 2.00000i 0.755929 + 0.755929i 0.975579 0.219650i \(-0.0704915\pi\)
−0.219650 + 0.975579i \(0.570491\pi\)
\(8\) 0 0
\(9\) 5.00000i 1.66667i
\(10\) 0 0
\(11\) −2.00000 2.00000i −0.603023 0.603023i 0.338091 0.941113i \(-0.390219\pi\)
−0.941113 + 0.338091i \(0.890219\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 4.00000i 1.03280i
\(16\) 0 0
\(17\) −1.00000 4.00000i −0.242536 0.970143i
\(18\) 0 0
\(19\) 8.00000i 1.83533i 0.397360 + 0.917663i \(0.369927\pi\)
−0.397360 + 0.917663i \(0.630073\pi\)
\(20\) 0 0
\(21\) 8.00000 1.74574
\(22\) 0 0
\(23\) 2.00000 + 2.00000i 0.417029 + 0.417029i 0.884178 0.467150i \(-0.154719\pi\)
−0.467150 + 0.884178i \(0.654719\pi\)
\(24\) 0 0
\(25\) 3.00000i 0.600000i
\(26\) 0 0
\(27\) −4.00000 4.00000i −0.769800 0.769800i
\(28\) 0 0
\(29\) −3.00000 + 3.00000i −0.557086 + 0.557086i −0.928477 0.371391i \(-0.878881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) 6.00000 6.00000i 1.07763 1.07763i 0.0809104 0.996721i \(-0.474217\pi\)
0.996721 0.0809104i \(-0.0257828\pi\)
\(32\) 0 0
\(33\) −8.00000 −1.39262
\(34\) 0 0
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) −5.00000 + 5.00000i −0.821995 + 0.821995i −0.986394 0.164399i \(-0.947432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) −8.00000 + 8.00000i −1.28103 + 1.28103i
\(40\) 0 0
\(41\) 1.00000 + 1.00000i 0.156174 + 0.156174i 0.780869 0.624695i \(-0.214777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) 8.00000i 1.21999i −0.792406 0.609994i \(-0.791172\pi\)
0.792406 0.609994i \(-0.208828\pi\)
\(44\) 0 0
\(45\) 5.00000 + 5.00000i 0.745356 + 0.745356i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) −10.0000 6.00000i −1.40028 0.840168i
\(52\) 0 0
\(53\) 12.0000i 1.64833i −0.566352 0.824163i \(-0.691646\pi\)
0.566352 0.824163i \(-0.308354\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 16.0000 + 16.0000i 2.11925 + 2.11925i
\(58\) 0 0
\(59\) 8.00000i 1.04151i −0.853706 0.520756i \(-0.825650\pi\)
0.853706 0.520756i \(-0.174350\pi\)
\(60\) 0 0
\(61\) −1.00000 1.00000i −0.128037 0.128037i 0.640184 0.768221i \(-0.278858\pi\)
−0.768221 + 0.640184i \(0.778858\pi\)
\(62\) 0 0
\(63\) 10.0000 10.0000i 1.25988 1.25988i
\(64\) 0 0
\(65\) 4.00000 4.00000i 0.496139 0.496139i
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) 8.00000 0.963087
\(70\) 0 0
\(71\) −6.00000 + 6.00000i −0.712069 + 0.712069i −0.966968 0.254899i \(-0.917958\pi\)
0.254899 + 0.966968i \(0.417958\pi\)
\(72\) 0 0
\(73\) −3.00000 + 3.00000i −0.351123 + 0.351123i −0.860527 0.509404i \(-0.829866\pi\)
0.509404 + 0.860527i \(0.329866\pi\)
\(74\) 0 0
\(75\) 6.00000 + 6.00000i 0.692820 + 0.692820i
\(76\) 0 0
\(77\) 8.00000i 0.911685i
\(78\) 0 0
\(79\) −2.00000 2.00000i −0.225018 0.225018i 0.585590 0.810607i \(-0.300863\pi\)
−0.810607 + 0.585590i \(0.800863\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 5.00000 + 3.00000i 0.542326 + 0.325396i
\(86\) 0 0
\(87\) 12.0000i 1.28654i
\(88\) 0 0
\(89\) −8.00000 −0.847998 −0.423999 0.905663i \(-0.639374\pi\)
−0.423999 + 0.905663i \(0.639374\pi\)
\(90\) 0 0
\(91\) −8.00000 8.00000i −0.838628 0.838628i
\(92\) 0 0
\(93\) 24.0000i 2.48868i
\(94\) 0 0
\(95\) −8.00000 8.00000i −0.820783 0.820783i
\(96\) 0 0
\(97\) 3.00000 3.00000i 0.304604 0.304604i −0.538208 0.842812i \(-0.680899\pi\)
0.842812 + 0.538208i \(0.180899\pi\)
\(98\) 0 0
\(99\) −10.0000 + 10.0000i −1.00504 + 1.00504i
\(100\) 0 0
\(101\) −12.0000 −1.19404 −0.597022 0.802225i \(-0.703650\pi\)
−0.597022 + 0.802225i \(0.703650\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) −8.00000 + 8.00000i −0.780720 + 0.780720i
\(106\) 0 0
\(107\) 2.00000 2.00000i 0.193347 0.193347i −0.603793 0.797141i \(-0.706345\pi\)
0.797141 + 0.603793i \(0.206345\pi\)
\(108\) 0 0
\(109\) 3.00000 + 3.00000i 0.287348 + 0.287348i 0.836031 0.548683i \(-0.184871\pi\)
−0.548683 + 0.836031i \(0.684871\pi\)
\(110\) 0 0
\(111\) 20.0000i 1.89832i
\(112\) 0 0
\(113\) 7.00000 + 7.00000i 0.658505 + 0.658505i 0.955026 0.296522i \(-0.0958267\pi\)
−0.296522 + 0.955026i \(0.595827\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) 0 0
\(117\) 20.0000i 1.84900i
\(118\) 0 0
\(119\) 6.00000 10.0000i 0.550019 0.916698i
\(120\) 0 0
\(121\) 3.00000i 0.272727i
\(122\) 0 0
\(123\) 4.00000 0.360668
\(124\) 0 0
\(125\) −8.00000 8.00000i −0.715542 0.715542i
\(126\) 0 0
\(127\) 4.00000i 0.354943i 0.984126 + 0.177471i \(0.0567917\pi\)
−0.984126 + 0.177471i \(0.943208\pi\)
\(128\) 0 0
\(129\) −16.0000 16.0000i −1.40872 1.40872i
\(130\) 0 0
\(131\) −2.00000 + 2.00000i −0.174741 + 0.174741i −0.789059 0.614318i \(-0.789431\pi\)
0.614318 + 0.789059i \(0.289431\pi\)
\(132\) 0 0
\(133\) −16.0000 + 16.0000i −1.38738 + 1.38738i
\(134\) 0 0
\(135\) 8.00000 0.688530
\(136\) 0 0
\(137\) 16.0000 1.36697 0.683486 0.729964i \(-0.260463\pi\)
0.683486 + 0.729964i \(0.260463\pi\)
\(138\) 0 0
\(139\) −2.00000 + 2.00000i −0.169638 + 0.169638i −0.786820 0.617182i \(-0.788274\pi\)
0.617182 + 0.786820i \(0.288274\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.00000 + 8.00000i 0.668994 + 0.668994i
\(144\) 0 0
\(145\) 6.00000i 0.498273i
\(146\) 0 0
\(147\) 2.00000 + 2.00000i 0.164957 + 0.164957i
\(148\) 0 0
\(149\) 22.0000 1.80231 0.901155 0.433497i \(-0.142720\pi\)
0.901155 + 0.433497i \(0.142720\pi\)
\(150\) 0 0
\(151\) 12.0000i 0.976546i −0.872691 0.488273i \(-0.837627\pi\)
0.872691 0.488273i \(-0.162373\pi\)
\(152\) 0 0
\(153\) −20.0000 + 5.00000i −1.61690 + 0.404226i
\(154\) 0 0
\(155\) 12.0000i 0.963863i
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) −24.0000 24.0000i −1.90332 1.90332i
\(160\) 0 0
\(161\) 8.00000i 0.630488i
\(162\) 0 0
\(163\) 6.00000 + 6.00000i 0.469956 + 0.469956i 0.901900 0.431944i \(-0.142172\pi\)
−0.431944 + 0.901900i \(0.642172\pi\)
\(164\) 0 0
\(165\) 8.00000 8.00000i 0.622799 0.622799i
\(166\) 0 0
\(167\) −10.0000 + 10.0000i −0.773823 + 0.773823i −0.978773 0.204949i \(-0.934297\pi\)
0.204949 + 0.978773i \(0.434297\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 40.0000 3.05888
\(172\) 0 0
\(173\) −11.0000 + 11.0000i −0.836315 + 0.836315i −0.988372 0.152057i \(-0.951410\pi\)
0.152057 + 0.988372i \(0.451410\pi\)
\(174\) 0 0
\(175\) −6.00000 + 6.00000i −0.453557 + 0.453557i
\(176\) 0 0
\(177\) −16.0000 16.0000i −1.20263 1.20263i
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) −5.00000 5.00000i −0.371647 0.371647i 0.496430 0.868077i \(-0.334644\pi\)
−0.868077 + 0.496430i \(0.834644\pi\)
\(182\) 0 0
\(183\) −4.00000 −0.295689
\(184\) 0 0
\(185\) 10.0000i 0.735215i
\(186\) 0 0
\(187\) −6.00000 + 10.0000i −0.438763 + 0.731272i
\(188\) 0 0
\(189\) 16.0000i 1.16383i
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) −3.00000 3.00000i −0.215945 0.215945i 0.590842 0.806787i \(-0.298796\pi\)
−0.806787 + 0.590842i \(0.798796\pi\)
\(194\) 0 0
\(195\) 16.0000i 1.14578i
\(196\) 0 0
\(197\) 13.0000 + 13.0000i 0.926212 + 0.926212i 0.997459 0.0712470i \(-0.0226979\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) 6.00000 6.00000i 0.425329 0.425329i −0.461705 0.887034i \(-0.652762\pi\)
0.887034 + 0.461705i \(0.152762\pi\)
\(200\) 0 0
\(201\) 24.0000 24.0000i 1.69283 1.69283i
\(202\) 0 0
\(203\) −12.0000 −0.842235
\(204\) 0 0
\(205\) −2.00000 −0.139686
\(206\) 0 0
\(207\) 10.0000 10.0000i 0.695048 0.695048i
\(208\) 0 0
\(209\) 16.0000 16.0000i 1.10674 1.10674i
\(210\) 0 0
\(211\) 6.00000 + 6.00000i 0.413057 + 0.413057i 0.882802 0.469745i \(-0.155654\pi\)
−0.469745 + 0.882802i \(0.655654\pi\)
\(212\) 0 0
\(213\) 24.0000i 1.64445i
\(214\) 0 0
\(215\) 8.00000 + 8.00000i 0.545595 + 0.545595i
\(216\) 0 0
\(217\) 24.0000 1.62923
\(218\) 0 0
\(219\) 12.0000i 0.810885i
\(220\) 0 0
\(221\) 4.00000 + 16.0000i 0.269069 + 1.07628i
\(222\) 0 0
\(223\) 4.00000i 0.267860i −0.990991 0.133930i \(-0.957240\pi\)
0.990991 0.133930i \(-0.0427597\pi\)
\(224\) 0 0
\(225\) 15.0000 1.00000
\(226\) 0 0
\(227\) 14.0000 + 14.0000i 0.929213 + 0.929213i 0.997655 0.0684424i \(-0.0218029\pi\)
−0.0684424 + 0.997655i \(0.521803\pi\)
\(228\) 0 0
\(229\) 18.0000i 1.18947i −0.803921 0.594737i \(-0.797256\pi\)
0.803921 0.594737i \(-0.202744\pi\)
\(230\) 0 0
\(231\) −16.0000 16.0000i −1.05272 1.05272i
\(232\) 0 0
\(233\) −5.00000 + 5.00000i −0.327561 + 0.327561i −0.851658 0.524097i \(-0.824403\pi\)
0.524097 + 0.851658i \(0.324403\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −8.00000 −0.519656
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −19.0000 + 19.0000i −1.22390 + 1.22390i −0.257663 + 0.966235i \(0.582952\pi\)
−0.966235 + 0.257663i \(0.917048\pi\)
\(242\) 0 0
\(243\) 10.0000 10.0000i 0.641500 0.641500i
\(244\) 0 0
\(245\) −1.00000 1.00000i −0.0638877 0.0638877i
\(246\) 0 0
\(247\) 32.0000i 2.03611i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.00000 −0.252478 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(252\) 0 0
\(253\) 8.00000i 0.502956i
\(254\) 0 0
\(255\) 16.0000 4.00000i 1.00196 0.250490i
\(256\) 0 0
\(257\) 22.0000i 1.37232i 0.727450 + 0.686161i \(0.240706\pi\)
−0.727450 + 0.686161i \(0.759294\pi\)
\(258\) 0 0
\(259\) −20.0000 −1.24274
\(260\) 0 0
\(261\) 15.0000 + 15.0000i 0.928477 + 0.928477i
\(262\) 0 0
\(263\) 4.00000i 0.246651i −0.992366 0.123325i \(-0.960644\pi\)
0.992366 0.123325i \(-0.0393559\pi\)
\(264\) 0 0
\(265\) 12.0000 + 12.0000i 0.737154 + 0.737154i
\(266\) 0 0
\(267\) −16.0000 + 16.0000i −0.979184 + 0.979184i
\(268\) 0 0
\(269\) −5.00000 + 5.00000i −0.304855 + 0.304855i −0.842910 0.538055i \(-0.819159\pi\)
0.538055 + 0.842910i \(0.319159\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) −32.0000 −1.93673
\(274\) 0 0
\(275\) 6.00000 6.00000i 0.361814 0.361814i
\(276\) 0 0
\(277\) −15.0000 + 15.0000i −0.901263 + 0.901263i −0.995545 0.0942828i \(-0.969944\pi\)
0.0942828 + 0.995545i \(0.469944\pi\)
\(278\) 0 0
\(279\) −30.0000 30.0000i −1.79605 1.79605i
\(280\) 0 0
\(281\) 16.0000i 0.954480i 0.878773 + 0.477240i \(0.158363\pi\)
−0.878773 + 0.477240i \(0.841637\pi\)
\(282\) 0 0
\(283\) −10.0000 10.0000i −0.594438 0.594438i 0.344389 0.938827i \(-0.388086\pi\)
−0.938827 + 0.344389i \(0.888086\pi\)
\(284\) 0 0
\(285\) −32.0000 −1.89552
\(286\) 0 0
\(287\) 4.00000i 0.236113i
\(288\) 0 0
\(289\) −15.0000 + 8.00000i −0.882353 + 0.470588i
\(290\) 0 0
\(291\) 12.0000i 0.703452i
\(292\) 0 0
\(293\) 26.0000 1.51894 0.759468 0.650545i \(-0.225459\pi\)
0.759468 + 0.650545i \(0.225459\pi\)
\(294\) 0 0
\(295\) 8.00000 + 8.00000i 0.465778 + 0.465778i
\(296\) 0 0
\(297\) 16.0000i 0.928414i
\(298\) 0 0
\(299\) −8.00000 8.00000i −0.462652 0.462652i
\(300\) 0 0
\(301\) 16.0000 16.0000i 0.922225 0.922225i
\(302\) 0 0
\(303\) −24.0000 + 24.0000i −1.37876 + 1.37876i
\(304\) 0 0
\(305\) 2.00000 0.114520
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) 16.0000 16.0000i 0.910208 0.910208i
\(310\) 0 0
\(311\) −18.0000 + 18.0000i −1.02069 + 1.02069i −0.0209049 + 0.999781i \(0.506655\pi\)
−0.999781 + 0.0209049i \(0.993345\pi\)
\(312\) 0 0
\(313\) 9.00000 + 9.00000i 0.508710 + 0.508710i 0.914130 0.405420i \(-0.132875\pi\)
−0.405420 + 0.914130i \(0.632875\pi\)
\(314\) 0 0
\(315\) 20.0000i 1.12687i
\(316\) 0 0
\(317\) −15.0000 15.0000i −0.842484 0.842484i 0.146697 0.989181i \(-0.453136\pi\)
−0.989181 + 0.146697i \(0.953136\pi\)
\(318\) 0 0
\(319\) 12.0000 0.671871
\(320\) 0 0
\(321\) 8.00000i 0.446516i
\(322\) 0 0
\(323\) 32.0000 8.00000i 1.78053 0.445132i
\(324\) 0 0
\(325\) 12.0000i 0.665640i
\(326\) 0 0
\(327\) 12.0000 0.663602
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 32.0000i 1.75888i 0.476011 + 0.879440i \(0.342082\pi\)
−0.476011 + 0.879440i \(0.657918\pi\)
\(332\) 0 0
\(333\) 25.0000 + 25.0000i 1.36999 + 1.36999i
\(334\) 0 0
\(335\) −12.0000 + 12.0000i −0.655630 + 0.655630i
\(336\) 0 0
\(337\) 25.0000 25.0000i 1.36184 1.36184i 0.490261 0.871576i \(-0.336901\pi\)
0.871576 0.490261i \(-0.163099\pi\)
\(338\) 0 0
\(339\) 28.0000 1.52075
\(340\) 0 0
\(341\) −24.0000 −1.29967
\(342\) 0 0
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) 0 0
\(345\) −8.00000 + 8.00000i −0.430706 + 0.430706i
\(346\) 0 0
\(347\) 18.0000 + 18.0000i 0.966291 + 0.966291i 0.999450 0.0331594i \(-0.0105569\pi\)
−0.0331594 + 0.999450i \(0.510557\pi\)
\(348\) 0 0
\(349\) 20.0000i 1.07058i −0.844670 0.535288i \(-0.820203\pi\)
0.844670 0.535288i \(-0.179797\pi\)
\(350\) 0 0
\(351\) 16.0000 + 16.0000i 0.854017 + 0.854017i
\(352\) 0 0
\(353\) −2.00000 −0.106449 −0.0532246 0.998583i \(-0.516950\pi\)
−0.0532246 + 0.998583i \(0.516950\pi\)
\(354\) 0 0
\(355\) 12.0000i 0.636894i
\(356\) 0 0
\(357\) −8.00000 32.0000i −0.423405 1.69362i
\(358\) 0 0
\(359\) 4.00000i 0.211112i 0.994413 + 0.105556i \(0.0336622\pi\)
−0.994413 + 0.105556i \(0.966338\pi\)
\(360\) 0 0
\(361\) −45.0000 −2.36842
\(362\) 0 0
\(363\) −6.00000 6.00000i −0.314918 0.314918i
\(364\) 0 0
\(365\) 6.00000i 0.314054i
\(366\) 0 0
\(367\) 10.0000 + 10.0000i 0.521996 + 0.521996i 0.918174 0.396178i \(-0.129664\pi\)
−0.396178 + 0.918174i \(0.629664\pi\)
\(368\) 0 0
\(369\) 5.00000 5.00000i 0.260290 0.260290i
\(370\) 0 0
\(371\) 24.0000 24.0000i 1.24602 1.24602i
\(372\) 0 0
\(373\) 12.0000 0.621336 0.310668 0.950518i \(-0.399447\pi\)
0.310668 + 0.950518i \(0.399447\pi\)
\(374\) 0 0
\(375\) −32.0000 −1.65247
\(376\) 0 0
\(377\) 12.0000 12.0000i 0.618031 0.618031i
\(378\) 0 0
\(379\) −2.00000 + 2.00000i −0.102733 + 0.102733i −0.756605 0.653872i \(-0.773143\pi\)
0.653872 + 0.756605i \(0.273143\pi\)
\(380\) 0 0
\(381\) 8.00000 + 8.00000i 0.409852 + 0.409852i
\(382\) 0 0
\(383\) 36.0000i 1.83951i −0.392488 0.919757i \(-0.628386\pi\)
0.392488 0.919757i \(-0.371614\pi\)
\(384\) 0 0
\(385\) 8.00000 + 8.00000i 0.407718 + 0.407718i
\(386\) 0 0
\(387\) −40.0000 −2.03331
\(388\) 0 0
\(389\) 2.00000i 0.101404i −0.998714 0.0507020i \(-0.983854\pi\)
0.998714 0.0507020i \(-0.0161459\pi\)
\(390\) 0 0
\(391\) 6.00000 10.0000i 0.303433 0.505722i
\(392\) 0 0
\(393\) 8.00000i 0.403547i
\(394\) 0 0
\(395\) 4.00000 0.201262
\(396\) 0 0
\(397\) −9.00000 9.00000i −0.451697 0.451697i 0.444220 0.895918i \(-0.353481\pi\)
−0.895918 + 0.444220i \(0.853481\pi\)
\(398\) 0 0
\(399\) 64.0000i 3.20401i
\(400\) 0 0
\(401\) −11.0000 11.0000i −0.549314 0.549314i 0.376929 0.926242i \(-0.376980\pi\)
−0.926242 + 0.376929i \(0.876980\pi\)
\(402\) 0 0
\(403\) −24.0000 + 24.0000i −1.19553 + 1.19553i
\(404\) 0 0
\(405\) 1.00000 1.00000i 0.0496904 0.0496904i
\(406\) 0 0
\(407\) 20.0000 0.991363
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 0 0
\(411\) 32.0000 32.0000i 1.57844 1.57844i
\(412\) 0 0
\(413\) 16.0000 16.0000i 0.787309 0.787309i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 8.00000i 0.391762i
\(418\) 0 0
\(419\) −6.00000 6.00000i −0.293119 0.293119i 0.545192 0.838311i \(-0.316457\pi\)
−0.838311 + 0.545192i \(0.816457\pi\)
\(420\) 0 0
\(421\) −20.0000 −0.974740 −0.487370 0.873195i \(-0.662044\pi\)
−0.487370 + 0.873195i \(0.662044\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 12.0000 3.00000i 0.582086 0.145521i
\(426\) 0 0
\(427\) 4.00000i 0.193574i
\(428\) 0 0
\(429\) 32.0000 1.54497
\(430\) 0 0
\(431\) 6.00000 + 6.00000i 0.289010 + 0.289010i 0.836689 0.547679i \(-0.184488\pi\)
−0.547679 + 0.836689i \(0.684488\pi\)
\(432\) 0 0
\(433\) 10.0000i 0.480569i −0.970702 0.240285i \(-0.922759\pi\)
0.970702 0.240285i \(-0.0772408\pi\)
\(434\) 0 0
\(435\) −12.0000 12.0000i −0.575356 0.575356i
\(436\) 0 0
\(437\) −16.0000 + 16.0000i −0.765384 + 0.765384i
\(438\) 0 0
\(439\) 18.0000 18.0000i 0.859093 0.859093i −0.132138 0.991231i \(-0.542184\pi\)
0.991231 + 0.132138i \(0.0421843\pi\)
\(440\) 0 0
\(441\) 5.00000 0.238095
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) 8.00000 8.00000i 0.379236 0.379236i
\(446\) 0 0
\(447\) 44.0000 44.0000i 2.08113 2.08113i
\(448\) 0 0
\(449\) −13.0000 13.0000i −0.613508 0.613508i 0.330350 0.943858i \(-0.392833\pi\)
−0.943858 + 0.330350i \(0.892833\pi\)
\(450\) 0 0
\(451\) 4.00000i 0.188353i
\(452\) 0 0
\(453\) −24.0000 24.0000i −1.12762 1.12762i
\(454\) 0 0
\(455\) 16.0000 0.750092
\(456\) 0 0
\(457\) 14.0000i 0.654892i 0.944870 + 0.327446i \(0.106188\pi\)
−0.944870 + 0.327446i \(0.893812\pi\)
\(458\) 0 0
\(459\) −12.0000 + 20.0000i −0.560112 + 0.933520i
\(460\) 0 0
\(461\) 20.0000i 0.931493i 0.884918 + 0.465746i \(0.154214\pi\)
−0.884918 + 0.465746i \(0.845786\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 24.0000 + 24.0000i 1.11297 + 1.11297i
\(466\) 0 0
\(467\) 8.00000i 0.370196i 0.982720 + 0.185098i \(0.0592602\pi\)
−0.982720 + 0.185098i \(0.940740\pi\)
\(468\) 0 0
\(469\) 24.0000 + 24.0000i 1.10822 + 1.10822i
\(470\) 0 0
\(471\) −4.00000 + 4.00000i −0.184310 + 0.184310i
\(472\) 0 0
\(473\) −16.0000 + 16.0000i −0.735681 + 0.735681i
\(474\) 0 0
\(475\) −24.0000 −1.10120
\(476\) 0 0
\(477\) −60.0000 −2.74721
\(478\) 0 0
\(479\) −22.0000 + 22.0000i −1.00521 + 1.00521i −0.00521928 + 0.999986i \(0.501661\pi\)
−0.999986 + 0.00521928i \(0.998339\pi\)
\(480\) 0 0
\(481\) 20.0000 20.0000i 0.911922 0.911922i
\(482\) 0 0
\(483\) 16.0000 + 16.0000i 0.728025 + 0.728025i
\(484\) 0 0
\(485\) 6.00000i 0.272446i
\(486\) 0 0
\(487\) 14.0000 + 14.0000i 0.634401 + 0.634401i 0.949169 0.314768i \(-0.101927\pi\)
−0.314768 + 0.949169i \(0.601927\pi\)
\(488\) 0 0
\(489\) 24.0000 1.08532
\(490\) 0 0
\(491\) 24.0000i 1.08310i −0.840667 0.541552i \(-0.817837\pi\)
0.840667 0.541552i \(-0.182163\pi\)
\(492\) 0 0
\(493\) 15.0000 + 9.00000i 0.675566 + 0.405340i
\(494\) 0 0
\(495\) 20.0000i 0.898933i
\(496\) 0 0
\(497\) −24.0000 −1.07655
\(498\) 0 0
\(499\) 6.00000 + 6.00000i 0.268597 + 0.268597i 0.828535 0.559938i \(-0.189175\pi\)
−0.559938 + 0.828535i \(0.689175\pi\)
\(500\) 0 0
\(501\) 40.0000i 1.78707i
\(502\) 0 0
\(503\) 14.0000 + 14.0000i 0.624229 + 0.624229i 0.946610 0.322381i \(-0.104483\pi\)
−0.322381 + 0.946610i \(0.604483\pi\)
\(504\) 0 0
\(505\) 12.0000 12.0000i 0.533993 0.533993i
\(506\) 0 0
\(507\) 6.00000 6.00000i 0.266469 0.266469i
\(508\) 0 0
\(509\) −30.0000 −1.32973 −0.664863 0.746965i \(-0.731510\pi\)
−0.664863 + 0.746965i \(0.731510\pi\)
\(510\) 0 0
\(511\) −12.0000 −0.530849
\(512\) 0 0
\(513\) 32.0000 32.0000i 1.41283 1.41283i
\(514\) 0 0
\(515\) −8.00000 + 8.00000i −0.352522 + 0.352522i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 44.0000i 1.93139i
\(520\) 0 0
\(521\) −31.0000 31.0000i −1.35813 1.35813i −0.876216 0.481919i \(-0.839940\pi\)
−0.481919 0.876216i \(-0.660060\pi\)
\(522\) 0 0
\(523\) −36.0000 −1.57417 −0.787085 0.616844i \(-0.788411\pi\)
−0.787085 + 0.616844i \(0.788411\pi\)
\(524\) 0 0
\(525\) 24.0000i 1.04745i
\(526\) 0 0
\(527\) −30.0000 18.0000i −1.30682 0.784092i
\(528\) 0 0
\(529\) 15.0000i 0.652174i
\(530\) 0 0
\(531\) −40.0000 −1.73585
\(532\) 0 0
\(533\) −4.00000 4.00000i −0.173259 0.173259i
\(534\) 0 0
\(535\) 4.00000i 0.172935i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.00000 2.00000i 0.0861461 0.0861461i
\(540\) 0 0
\(541\) 7.00000 7.00000i 0.300954 0.300954i −0.540433 0.841387i \(-0.681740\pi\)
0.841387 + 0.540433i \(0.181740\pi\)
\(542\) 0 0
\(543\) −20.0000 −0.858282
\(544\) 0 0
\(545\) −6.00000 −0.257012
\(546\) 0 0
\(547\) −2.00000 + 2.00000i −0.0855138 + 0.0855138i −0.748570 0.663056i \(-0.769259\pi\)
0.663056 + 0.748570i \(0.269259\pi\)
\(548\) 0 0
\(549\) −5.00000 + 5.00000i −0.213395 + 0.213395i
\(550\) 0 0
\(551\) −24.0000 24.0000i −1.02243 1.02243i
\(552\) 0 0
\(553\) 8.00000i 0.340195i
\(554\) 0 0
\(555\) −20.0000 20.0000i −0.848953 0.848953i
\(556\) 0 0
\(557\) 20.0000 0.847427 0.423714 0.905796i \(-0.360726\pi\)
0.423714 + 0.905796i \(0.360726\pi\)
\(558\) 0 0
\(559\) 32.0000i 1.35346i
\(560\) 0 0
\(561\) 8.00000 + 32.0000i 0.337760 + 1.35104i
\(562\) 0 0
\(563\) 24.0000i 1.01148i −0.862686 0.505740i \(-0.831220\pi\)
0.862686 0.505740i \(-0.168780\pi\)
\(564\) 0 0
\(565\) −14.0000 −0.588984
\(566\) 0 0
\(567\) −2.00000 2.00000i −0.0839921 0.0839921i
\(568\) 0 0
\(569\) 24.0000i 1.00613i 0.864248 + 0.503066i \(0.167795\pi\)
−0.864248 + 0.503066i \(0.832205\pi\)
\(570\) 0 0
\(571\) 30.0000 + 30.0000i 1.25546 + 1.25546i 0.953237 + 0.302224i \(0.0977291\pi\)
0.302224 + 0.953237i \(0.402271\pi\)
\(572\) 0 0
\(573\) −16.0000 + 16.0000i −0.668410 + 0.668410i
\(574\) 0 0
\(575\) −6.00000 + 6.00000i −0.250217 + 0.250217i
\(576\) 0 0
\(577\) 8.00000 0.333044 0.166522 0.986038i \(-0.446746\pi\)
0.166522 + 0.986038i \(0.446746\pi\)
\(578\) 0 0
\(579\) −12.0000 −0.498703
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −24.0000 + 24.0000i −0.993978 + 0.993978i
\(584\) 0 0
\(585\) −20.0000 20.0000i −0.826898 0.826898i
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 48.0000 + 48.0000i 1.97781 + 1.97781i
\(590\) 0 0
\(591\) 52.0000 2.13899
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 4.00000 + 16.0000i 0.163984 + 0.655936i
\(596\) 0 0
\(597\) 24.0000i 0.982255i
\(598\) 0 0
\(599\) 32.0000 1.30748 0.653742 0.756717i \(-0.273198\pi\)
0.653742 + 0.756717i \(0.273198\pi\)
\(600\) 0 0
\(601\) −27.0000 27.0000i −1.10135 1.10135i −0.994248 0.107105i \(-0.965842\pi\)
−0.107105 0.994248i \(-0.534158\pi\)
\(602\) 0 0
\(603\) 60.0000i 2.44339i
\(604\) 0 0
\(605\) 3.00000 + 3.00000i 0.121967 + 0.121967i
\(606\) 0 0
\(607\) 14.0000 14.0000i 0.568242 0.568242i −0.363393 0.931636i \(-0.618382\pi\)
0.931636 + 0.363393i \(0.118382\pi\)
\(608\) 0 0
\(609\) −24.0000 + 24.0000i −0.972529 + 0.972529i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 38.0000 1.53481 0.767403 0.641165i \(-0.221549\pi\)
0.767403 + 0.641165i \(0.221549\pi\)
\(614\) 0 0
\(615\) −4.00000 + 4.00000i −0.161296 + 0.161296i
\(616\) 0 0
\(617\) 3.00000 3.00000i 0.120775 0.120775i −0.644136 0.764911i \(-0.722783\pi\)
0.764911 + 0.644136i \(0.222783\pi\)
\(618\) 0 0
\(619\) −14.0000 14.0000i −0.562708 0.562708i 0.367368 0.930076i \(-0.380259\pi\)
−0.930076 + 0.367368i \(0.880259\pi\)
\(620\) 0 0
\(621\) 16.0000i 0.642058i
\(622\) 0 0
\(623\) −16.0000 16.0000i −0.641026 0.641026i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 64.0000i 2.55591i
\(628\) 0 0
\(629\) 25.0000 + 15.0000i 0.996815 + 0.598089i
\(630\) 0 0
\(631\) 28.0000i 1.11466i 0.830290 + 0.557331i \(0.188175\pi\)
−0.830290 + 0.557331i \(0.811825\pi\)
\(632\) 0 0
\(633\) 24.0000 0.953914
\(634\) 0 0
\(635\) −4.00000 4.00000i −0.158735 0.158735i
\(636\) 0 0
\(637\) 4.00000i 0.158486i
\(638\) 0 0
\(639\) 30.0000 + 30.0000i 1.18678 + 1.18678i
\(640\) 0 0
\(641\) −5.00000 + 5.00000i −0.197488 + 0.197488i −0.798922 0.601434i \(-0.794596\pi\)
0.601434 + 0.798922i \(0.294596\pi\)
\(642\) 0 0
\(643\) −6.00000 + 6.00000i −0.236617 + 0.236617i −0.815448 0.578831i \(-0.803509\pi\)
0.578831 + 0.815448i \(0.303509\pi\)
\(644\) 0 0
\(645\) 32.0000 1.26000
\(646\) 0 0
\(647\) −16.0000 −0.629025 −0.314512 0.949253i \(-0.601841\pi\)
−0.314512 + 0.949253i \(0.601841\pi\)
\(648\) 0 0
\(649\) −16.0000 + 16.0000i −0.628055 + 0.628055i
\(650\) 0 0
\(651\) 48.0000 48.0000i 1.88127 1.88127i
\(652\) 0 0
\(653\) 5.00000 + 5.00000i 0.195665 + 0.195665i 0.798139 0.602474i \(-0.205818\pi\)
−0.602474 + 0.798139i \(0.705818\pi\)
\(654\) 0 0
\(655\) 4.00000i 0.156293i
\(656\) 0 0
\(657\) 15.0000 + 15.0000i 0.585206 + 0.585206i
\(658\) 0 0
\(659\) 4.00000 0.155818 0.0779089 0.996960i \(-0.475176\pi\)
0.0779089 + 0.996960i \(0.475176\pi\)
\(660\) 0 0
\(661\) 28.0000i 1.08907i −0.838737 0.544537i \(-0.816705\pi\)
0.838737 0.544537i \(-0.183295\pi\)
\(662\) 0 0
\(663\) 40.0000 + 24.0000i 1.55347 + 0.932083i
\(664\) 0 0
\(665\) 32.0000i 1.24091i
\(666\) 0 0
\(667\) −12.0000 −0.464642
\(668\) 0 0
\(669\) −8.00000 8.00000i −0.309298 0.309298i
\(670\) 0 0
\(671\) 4.00000i 0.154418i
\(672\) 0 0
\(673\) 3.00000 + 3.00000i 0.115642 + 0.115642i 0.762560 0.646918i \(-0.223942\pi\)
−0.646918 + 0.762560i \(0.723942\pi\)
\(674\) 0 0
\(675\) 12.0000 12.0000i 0.461880 0.461880i
\(676\) 0 0
\(677\) 13.0000 13.0000i 0.499631 0.499631i −0.411692 0.911323i \(-0.635062\pi\)
0.911323 + 0.411692i \(0.135062\pi\)
\(678\) 0 0
\(679\) 12.0000 0.460518
\(680\) 0 0
\(681\) 56.0000 2.14592
\(682\) 0 0
\(683\) −2.00000 + 2.00000i −0.0765279 + 0.0765279i −0.744335 0.667807i \(-0.767233\pi\)
0.667807 + 0.744335i \(0.267233\pi\)
\(684\) 0 0
\(685\) −16.0000 + 16.0000i −0.611329 + 0.611329i
\(686\) 0 0
\(687\) −36.0000 36.0000i −1.37349 1.37349i
\(688\) 0 0
\(689\) 48.0000i 1.82865i
\(690\) 0 0
\(691\) 18.0000 + 18.0000i 0.684752 + 0.684752i 0.961067 0.276315i \(-0.0891133\pi\)
−0.276315 + 0.961067i \(0.589113\pi\)
\(692\) 0 0
\(693\) −40.0000 −1.51947
\(694\) 0 0
\(695\) 4.00000i 0.151729i
\(696\) 0 0
\(697\) 3.00000 5.00000i 0.113633 0.189389i
\(698\) 0 0
\(699\) 20.0000i 0.756469i
\(700\) 0 0
\(701\) −12.0000 −0.453234 −0.226617 0.973984i \(-0.572767\pi\)
−0.226617 + 0.973984i \(0.572767\pi\)
\(702\) 0 0
\(703\) −40.0000 40.0000i −1.50863 1.50863i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −24.0000 24.0000i −0.902613 0.902613i
\(708\) 0 0
\(709\) −15.0000 + 15.0000i −0.563337 + 0.563337i −0.930254 0.366917i \(-0.880413\pi\)
0.366917 + 0.930254i \(0.380413\pi\)
\(710\) 0 0
\(711\) −10.0000 + 10.0000i −0.375029 + 0.375029i
\(712\) 0 0
\(713\) 24.0000 0.898807
\(714\) 0 0
\(715\) −16.0000 −0.598366
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 14.0000 14.0000i 0.522112 0.522112i −0.396097 0.918209i \(-0.629636\pi\)
0.918209 + 0.396097i \(0.129636\pi\)
\(720\) 0 0
\(721\) 16.0000 + 16.0000i 0.595871 + 0.595871i
\(722\) 0 0
\(723\) 76.0000i 2.82647i
\(724\) 0 0
\(725\) −9.00000 9.00000i −0.334252 0.334252i
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) 43.0000i 1.59259i
\(730\) 0 0
\(731\) −32.0000 + 8.00000i −1.18356 + 0.295891i
\(732\) 0 0
\(733\) 12.0000i 0.443230i 0.975134 + 0.221615i \(0.0711328\pi\)
−0.975134 + 0.221615i \(0.928867\pi\)
\(734\) 0 0
\(735\) −4.00000 −0.147542
\(736\) 0 0
\(737\) −24.0000 24.0000i −0.884051 0.884051i
\(738\) 0 0
\(739\) 32.0000i 1.17714i −0.808447 0.588570i \(-0.799691\pi\)
0.808447 0.588570i \(-0.200309\pi\)
\(740\) 0 0
\(741\) −64.0000 64.0000i −2.35110 2.35110i
\(742\) 0 0
\(743\) 26.0000 26.0000i 0.953847 0.953847i −0.0451335 0.998981i \(-0.514371\pi\)
0.998981 + 0.0451335i \(0.0143713\pi\)
\(744\) 0 0
\(745\) −22.0000 + 22.0000i −0.806018 + 0.806018i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 8.00000 0.292314
\(750\) 0 0
\(751\) 30.0000 30.0000i 1.09472 1.09472i 0.0996978 0.995018i \(-0.468212\pi\)
0.995018 0.0996978i \(-0.0317876\pi\)
\(752\) 0 0
\(753\) −8.00000 + 8.00000i −0.291536 + 0.291536i
\(754\) 0 0
\(755\) 12.0000 + 12.0000i 0.436725 + 0.436725i
\(756\) 0 0
\(757\) 14.0000i 0.508839i 0.967094 + 0.254419i \(0.0818843\pi\)
−0.967094 + 0.254419i \(0.918116\pi\)
\(758\) 0 0
\(759\) −16.0000 16.0000i −0.580763 0.580763i
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 12.0000i 0.434429i
\(764\) 0 0
\(765\) 15.0000 25.0000i 0.542326 0.903877i
\(766\) 0 0
\(767\) 32.0000i 1.15545i
\(768\) 0 0
\(769\) −16.0000 −0.576975 −0.288487 0.957484i \(-0.593152\pi\)
−0.288487 + 0.957484i \(0.593152\pi\)
\(770\) 0 0
\(771\) 44.0000 + 44.0000i 1.58462 + 1.58462i
\(772\) 0 0
\(773\) 30.0000i 1.07903i −0.841978 0.539513i \(-0.818609\pi\)
0.841978 0.539513i \(-0.181391\pi\)
\(774\) 0 0
\(775\) 18.0000 + 18.0000i 0.646579 + 0.646579i
\(776\) 0 0
\(777\) −40.0000 + 40.0000i −1.43499 + 1.43499i
\(778\) 0 0
\(779\) −8.00000 + 8.00000i −0.286630 + 0.286630i
\(780\) 0 0
\(781\) 24.0000 0.858788
\(782\) 0 0
\(783\) 24.0000 0.857690
\(784\) 0 0
\(785\) 2.00000 2.00000i 0.0713831 0.0713831i
\(786\) 0 0
\(787\) −30.0000 + 30.0000i −1.06938 + 1.06938i −0.0719783 + 0.997406i \(0.522931\pi\)
−0.997406 + 0.0719783i \(0.977069\pi\)
\(788\) 0 0
\(789\) −8.00000 8.00000i −0.284808 0.284808i
\(790\) 0 0
\(791\) 28.0000i 0.995565i
\(792\) 0 0
\(793\) 4.00000 + 4.00000i 0.142044 + 0.142044i
\(794\) 0 0
\(795\) 48.0000 1.70238
\(796\) 0 0
\(797\) 36.0000i 1.27519i −0.770374 0.637593i \(-0.779930\pi\)
0.770374 0.637593i \(-0.220070\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 40.0000i 1.41333i
\(802\) 0 0
\(803\) 12.0000 0.423471
\(804\) 0 0
\(805\) −8.00000 8.00000i −0.281963 0.281963i
\(806\) 0 0
\(807\) 20.0000i 0.704033i
\(808\) 0 0
\(809\) −1.00000 1.00000i −0.0351581 0.0351581i 0.689309 0.724467i \(-0.257914\pi\)
−0.724467 + 0.689309i \(0.757914\pi\)
\(810\) 0 0
\(811\) −6.00000 + 6.00000i −0.210688 + 0.210688i −0.804560 0.593871i \(-0.797599\pi\)
0.593871 + 0.804560i \(0.297599\pi\)
\(812\) 0 0
\(813\) −16.0000 + 16.0000i −0.561144 + 0.561144i
\(814\) 0 0
\(815\) −12.0000 −0.420342
\(816\) 0 0
\(817\) 64.0000 2.23908
\(818\) 0 0
\(819\) −40.0000 + 40.0000i −1.39771 + 1.39771i
\(820\) 0 0
\(821\) 29.0000 29.0000i 1.01211 1.01211i 0.0121812 0.999926i \(-0.496123\pi\)
0.999926 0.0121812i \(-0.00387748\pi\)
\(822\) 0 0
\(823\) 10.0000 + 10.0000i 0.348578 + 0.348578i 0.859580 0.511002i \(-0.170725\pi\)
−0.511002 + 0.859580i \(0.670725\pi\)
\(824\) 0 0
\(825\) 24.0000i 0.835573i
\(826\) 0 0
\(827\) −14.0000 14.0000i −0.486828 0.486828i 0.420476 0.907304i \(-0.361863\pi\)
−0.907304 + 0.420476i \(0.861863\pi\)
\(828\) 0 0
\(829\) 30.0000 1.04194 0.520972 0.853574i \(-0.325570\pi\)
0.520972 + 0.853574i \(0.325570\pi\)
\(830\) 0 0
\(831\) 60.0000i 2.08138i
\(832\) 0 0
\(833\) 4.00000 1.00000i 0.138592 0.0346479i
\(834\) 0 0
\(835\) 20.0000i 0.692129i
\(836\) 0 0
\(837\) −48.0000 −1.65912
\(838\) 0 0
\(839\) −14.0000 14.0000i −0.483334 0.483334i 0.422861 0.906195i \(-0.361026\pi\)
−0.906195 + 0.422861i \(0.861026\pi\)
\(840\) 0 0
\(841\) 11.0000i 0.379310i
\(842\) 0 0
\(843\) 32.0000 + 32.0000i 1.10214 + 1.10214i
\(844\) 0 0
\(845\) −3.00000 + 3.00000i −0.103203 + 0.103203i
\(846\) 0 0
\(847\) 6.00000 6.00000i 0.206162 0.206162i
\(848\) 0 0
\(849\) −40.0000 −1.37280
\(850\) 0 0
\(851\) −20.0000 −0.685591
\(852\) 0 0
\(853\) 23.0000 23.0000i 0.787505 0.787505i −0.193580 0.981085i \(-0.562010\pi\)
0.981085 + 0.193580i \(0.0620098\pi\)
\(854\) 0 0
\(855\) −40.0000 + 40.0000i −1.36797 + 1.36797i
\(856\) 0 0
\(857\) −15.0000 15.0000i −0.512390 0.512390i 0.402868 0.915258i \(-0.368013\pi\)
−0.915258 + 0.402868i \(0.868013\pi\)
\(858\) 0 0
\(859\) 48.0000i 1.63774i −0.573980 0.818869i \(-0.694601\pi\)
0.573980 0.818869i \(-0.305399\pi\)
\(860\) 0 0
\(861\) 8.00000 + 8.00000i 0.272639 + 0.272639i
\(862\) 0 0
\(863\) −16.0000 −0.544646 −0.272323 0.962206i \(-0.587792\pi\)
−0.272323 + 0.962206i \(0.587792\pi\)
\(864\) 0 0
\(865\) 22.0000i 0.748022i
\(866\) 0 0
\(867\) −14.0000 + 46.0000i −0.475465 + 1.56224i
\(868\) 0 0
\(869\) 8.00000i 0.271381i
\(870\) 0 0
\(871\) −48.0000 −1.62642
\(872\) 0 0
\(873\) −15.0000 15.0000i −0.507673 0.507673i
\(874\) 0 0
\(875\) 32.0000i 1.08180i
\(876\) 0 0
\(877\) −29.0000 29.0000i −0.979260 0.979260i 0.0205288 0.999789i \(-0.493465\pi\)
−0.999789 + 0.0205288i \(0.993465\pi\)
\(878\) 0 0
\(879\) 52.0000 52.0000i 1.75392 1.75392i
\(880\) 0 0
\(881\) −23.0000 + 23.0000i −0.774890 + 0.774890i −0.978957 0.204067i \(-0.934584\pi\)
0.204067 + 0.978957i \(0.434584\pi\)
\(882\) 0 0
\(883\) 44.0000 1.48072 0.740359 0.672212i \(-0.234656\pi\)
0.740359 + 0.672212i \(0.234656\pi\)
\(884\) 0 0
\(885\) 32.0000 1.07567
\(886\) 0 0
\(887\) −34.0000 + 34.0000i −1.14161 + 1.14161i −0.153452 + 0.988156i \(0.549039\pi\)
−0.988156 + 0.153452i \(0.950961\pi\)
\(888\) 0 0
\(889\) −8.00000 + 8.00000i −0.268311 + 0.268311i
\(890\) 0 0
\(891\) 2.00000 + 2.00000i 0.0670025 + 0.0670025i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −32.0000 −1.06845
\(898\) 0 0
\(899\) 36.0000i 1.20067i
\(900\) 0 0
\(901\) −48.0000 + 12.0000i −1.59911 + 0.399778i
\(902\) 0 0
\(903\) 64.0000i 2.12979i
\(904\) 0 0
\(905\) 10.0000 0.332411
\(906\) 0 0
\(907\) 14.0000 + 14.0000i 0.464862 + 0.464862i 0.900245 0.435383i \(-0.143387\pi\)
−0.435383 + 0.900245i \(0.643387\pi\)
\(908\) 0 0
\(909\) 60.0000i 1.99007i
\(910\) 0 0
\(911\) −34.0000 34.0000i −1.12647 1.12647i −0.990747 0.135724i \(-0.956664\pi\)
−0.135724 0.990747i \(-0.543336\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 4.00000 4.00000i 0.132236 0.132236i
\(916\) 0 0
\(917\) −8.00000 −0.264183
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) −24.0000 + 24.0000i −0.790827 + 0.790827i
\(922\) 0 0
\(923\) 24.0000 24.0000i 0.789970 0.789970i
\(924\) 0 0
\(925\) −15.0000 15.0000i −0.493197 0.493197i
\(926\) 0 0
\(927\) 40.0000i 1.31377i
\(928\) 0 0
\(929\) 37.0000 + 37.0000i 1.21393 + 1.21393i 0.969723 + 0.244208i \(0.0785279\pi\)
0.244208 + 0.969723i \(0.421472\pi\)
\(930\) 0 0
\(931\) −8.00000 −0.262189
\(932\) 0 0
\(933\) 72.0000i 2.35717i
\(934\) 0 0
\(935\) −4.00000 16.0000i −0.130814 0.523256i
\(936\) 0 0
\(937\) 16.0000i 0.522697i −0.965244 0.261349i \(-0.915833\pi\)
0.965244 0.261349i \(-0.0841672\pi\)
\(938\) 0 0
\(939\) 36.0000 1.17482
\(940\) 0 0
\(941\) 33.0000 + 33.0000i 1.07577 + 1.07577i 0.996884 + 0.0788856i \(0.0251362\pi\)
0.0788856 + 0.996884i \(0.474864\pi\)
\(942\) 0 0
\(943\) 4.00000i 0.130258i
\(944\) 0 0
\(945\) 16.0000 + 16.0000i 0.520480 + 0.520480i
\(946\) 0 0
\(947\) 18.0000 18.0000i 0.584921 0.584921i −0.351330 0.936252i \(-0.614271\pi\)
0.936252 + 0.351330i \(0.114271\pi\)
\(948\) 0 0
\(949\) 12.0000 12.0000i 0.389536 0.389536i
\(950\) 0 0
\(951\) −60.0000 −1.94563
\(952\) 0 0
\(953\) −48.0000 −1.55487 −0.777436 0.628962i \(-0.783480\pi\)
−0.777436 + 0.628962i \(0.783480\pi\)
\(954\) 0 0
\(955\) 8.00000 8.00000i 0.258874 0.258874i
\(956\) 0 0
\(957\) 24.0000 24.0000i 0.775810 0.775810i
\(958\) 0 0
\(959\) 32.0000 + 32.0000i 1.03333 + 1.03333i
\(960\) 0 0
\(961\) 41.0000i 1.32258i
\(962\) 0 0
\(963\) −10.0000 10.0000i −0.322245 0.322245i
\(964\) 0 0
\(965\) 6.00000 0.193147
\(966\) 0 0
\(967\) 28.0000i 0.900419i −0.892923 0.450210i \(-0.851349\pi\)
0.892923 0.450210i \(-0.148651\pi\)
\(968\) 0 0
\(969\) 48.0000 80.0000i 1.54198 2.56997i
\(970\) 0 0
\(971\) 24.0000i 0.770197i 0.922876 + 0.385098i \(0.125832\pi\)
−0.922876 + 0.385098i \(0.874168\pi\)
\(972\) 0 0
\(973\) −8.00000 −0.256468
\(974\) 0 0
\(975\) −24.0000 24.0000i −0.768615 0.768615i
\(976\) 0 0
\(977\) 8.00000i 0.255943i −0.991778 0.127971i \(-0.959153\pi\)
0.991778 0.127971i \(-0.0408466\pi\)
\(978\) 0 0
\(979\) 16.0000 + 16.0000i 0.511362 + 0.511362i
\(980\) 0 0
\(981\) 15.0000 15.0000i 0.478913 0.478913i
\(982\) 0 0
\(983\) 34.0000 34.0000i 1.08443 1.08443i 0.0883413 0.996090i \(-0.471843\pi\)
0.996090 0.0883413i \(-0.0281566\pi\)
\(984\) 0 0
\(985\) −26.0000 −0.828429
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16.0000 16.0000i 0.508770 0.508770i
\(990\) 0 0
\(991\) 6.00000 6.00000i 0.190596 0.190596i −0.605357 0.795954i \(-0.706970\pi\)
0.795954 + 0.605357i \(0.206970\pi\)
\(992\) 0 0
\(993\) 64.0000 + 64.0000i 2.03098 + 2.03098i
\(994\) 0 0
\(995\) 12.0000i 0.380426i
\(996\) 0 0
\(997\) 5.00000 + 5.00000i 0.158352 + 0.158352i 0.781836 0.623484i \(-0.214283\pi\)
−0.623484 + 0.781836i \(0.714283\pi\)
\(998\) 0 0
\(999\) 40.0000 1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 136.2.k.d.89.1 yes 2
3.2 odd 2 1224.2.w.e.361.1 2
4.3 odd 2 272.2.o.a.225.1 2
8.3 odd 2 1088.2.o.q.769.1 2
8.5 even 2 1088.2.o.b.769.1 2
12.11 even 2 2448.2.be.i.1585.1 2
17.2 even 8 2312.2.b.a.577.1 2
17.8 even 8 2312.2.a.k.1.1 2
17.9 even 8 2312.2.a.k.1.2 2
17.13 even 4 inner 136.2.k.d.81.1 2
17.15 even 8 2312.2.b.a.577.2 2
51.47 odd 4 1224.2.w.e.217.1 2
68.43 odd 8 4624.2.a.t.1.1 2
68.47 odd 4 272.2.o.a.81.1 2
68.59 odd 8 4624.2.a.t.1.2 2
136.13 even 4 1088.2.o.b.897.1 2
136.115 odd 4 1088.2.o.q.897.1 2
204.47 even 4 2448.2.be.i.1441.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.k.d.81.1 2 17.13 even 4 inner
136.2.k.d.89.1 yes 2 1.1 even 1 trivial
272.2.o.a.81.1 2 68.47 odd 4
272.2.o.a.225.1 2 4.3 odd 2
1088.2.o.b.769.1 2 8.5 even 2
1088.2.o.b.897.1 2 136.13 even 4
1088.2.o.q.769.1 2 8.3 odd 2
1088.2.o.q.897.1 2 136.115 odd 4
1224.2.w.e.217.1 2 51.47 odd 4
1224.2.w.e.361.1 2 3.2 odd 2
2312.2.a.k.1.1 2 17.8 even 8
2312.2.a.k.1.2 2 17.9 even 8
2312.2.b.a.577.1 2 17.2 even 8
2312.2.b.a.577.2 2 17.15 even 8
2448.2.be.i.1441.1 2 204.47 even 4
2448.2.be.i.1585.1 2 12.11 even 2
4624.2.a.t.1.1 2 68.43 odd 8
4624.2.a.t.1.2 2 68.59 odd 8