Properties

Label 1088.2.o.b.769.1
Level $1088$
Weight $2$
Character 1088.769
Analytic conductor $8.688$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1088,2,Mod(769,1088)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1088.769"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1088, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1088 = 2^{6} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1088.o (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-4,0,2,0,4,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.68772373992\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 769.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1088.769
Dual form 1088.2.o.b.897.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 + 2.00000i) q^{3} +(1.00000 - 1.00000i) q^{5} +(2.00000 + 2.00000i) q^{7} -5.00000i q^{9} +(2.00000 + 2.00000i) q^{11} +4.00000 q^{13} +4.00000i q^{15} +(-1.00000 - 4.00000i) q^{17} -8.00000i q^{19} -8.00000 q^{21} +(2.00000 + 2.00000i) q^{23} +3.00000i q^{25} +(4.00000 + 4.00000i) q^{27} +(3.00000 - 3.00000i) q^{29} +(6.00000 - 6.00000i) q^{31} -8.00000 q^{33} +4.00000 q^{35} +(5.00000 - 5.00000i) q^{37} +(-8.00000 + 8.00000i) q^{39} +(1.00000 + 1.00000i) q^{41} +8.00000i q^{43} +(-5.00000 - 5.00000i) q^{45} +1.00000i q^{49} +(10.0000 + 6.00000i) q^{51} +12.0000i q^{53} +4.00000 q^{55} +(16.0000 + 16.0000i) q^{57} +8.00000i q^{59} +(1.00000 + 1.00000i) q^{61} +(10.0000 - 10.0000i) q^{63} +(4.00000 - 4.00000i) q^{65} -12.0000 q^{67} -8.00000 q^{69} +(-6.00000 + 6.00000i) q^{71} +(-3.00000 + 3.00000i) q^{73} +(-6.00000 - 6.00000i) q^{75} +8.00000i q^{77} +(-2.00000 - 2.00000i) q^{79} -1.00000 q^{81} +(-5.00000 - 3.00000i) q^{85} +12.0000i q^{87} -8.00000 q^{89} +(8.00000 + 8.00000i) q^{91} +24.0000i q^{93} +(-8.00000 - 8.00000i) q^{95} +(3.00000 - 3.00000i) q^{97} +(10.0000 - 10.0000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} + 2 q^{5} + 4 q^{7} + 4 q^{11} + 8 q^{13} - 2 q^{17} - 16 q^{21} + 4 q^{23} + 8 q^{27} + 6 q^{29} + 12 q^{31} - 16 q^{33} + 8 q^{35} + 10 q^{37} - 16 q^{39} + 2 q^{41} - 10 q^{45} + 20 q^{51}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1088\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(511\) \(513\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.00000 + 2.00000i −1.15470 + 1.15470i −0.169102 + 0.985599i \(0.554087\pi\)
−0.985599 + 0.169102i \(0.945913\pi\)
\(4\) 0 0
\(5\) 1.00000 1.00000i 0.447214 0.447214i −0.447214 0.894427i \(-0.647584\pi\)
0.894427 + 0.447214i \(0.147584\pi\)
\(6\) 0 0
\(7\) 2.00000 + 2.00000i 0.755929 + 0.755929i 0.975579 0.219650i \(-0.0704915\pi\)
−0.219650 + 0.975579i \(0.570491\pi\)
\(8\) 0 0
\(9\) 5.00000i 1.66667i
\(10\) 0 0
\(11\) 2.00000 + 2.00000i 0.603023 + 0.603023i 0.941113 0.338091i \(-0.109781\pi\)
−0.338091 + 0.941113i \(0.609781\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) 4.00000i 1.03280i
\(16\) 0 0
\(17\) −1.00000 4.00000i −0.242536 0.970143i
\(18\) 0 0
\(19\) 8.00000i 1.83533i −0.397360 0.917663i \(-0.630073\pi\)
0.397360 0.917663i \(-0.369927\pi\)
\(20\) 0 0
\(21\) −8.00000 −1.74574
\(22\) 0 0
\(23\) 2.00000 + 2.00000i 0.417029 + 0.417029i 0.884178 0.467150i \(-0.154719\pi\)
−0.467150 + 0.884178i \(0.654719\pi\)
\(24\) 0 0
\(25\) 3.00000i 0.600000i
\(26\) 0 0
\(27\) 4.00000 + 4.00000i 0.769800 + 0.769800i
\(28\) 0 0
\(29\) 3.00000 3.00000i 0.557086 0.557086i −0.371391 0.928477i \(-0.621119\pi\)
0.928477 + 0.371391i \(0.121119\pi\)
\(30\) 0 0
\(31\) 6.00000 6.00000i 1.07763 1.07763i 0.0809104 0.996721i \(-0.474217\pi\)
0.996721 0.0809104i \(-0.0257828\pi\)
\(32\) 0 0
\(33\) −8.00000 −1.39262
\(34\) 0 0
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 5.00000 5.00000i 0.821995 0.821995i −0.164399 0.986394i \(-0.552568\pi\)
0.986394 + 0.164399i \(0.0525685\pi\)
\(38\) 0 0
\(39\) −8.00000 + 8.00000i −1.28103 + 1.28103i
\(40\) 0 0
\(41\) 1.00000 + 1.00000i 0.156174 + 0.156174i 0.780869 0.624695i \(-0.214777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) 8.00000i 1.21999i 0.792406 + 0.609994i \(0.208828\pi\)
−0.792406 + 0.609994i \(0.791172\pi\)
\(44\) 0 0
\(45\) −5.00000 5.00000i −0.745356 0.745356i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 10.0000 + 6.00000i 1.40028 + 0.840168i
\(52\) 0 0
\(53\) 12.0000i 1.64833i 0.566352 + 0.824163i \(0.308354\pi\)
−0.566352 + 0.824163i \(0.691646\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 16.0000 + 16.0000i 2.11925 + 2.11925i
\(58\) 0 0
\(59\) 8.00000i 1.04151i 0.853706 + 0.520756i \(0.174350\pi\)
−0.853706 + 0.520756i \(0.825650\pi\)
\(60\) 0 0
\(61\) 1.00000 + 1.00000i 0.128037 + 0.128037i 0.768221 0.640184i \(-0.221142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 0 0
\(63\) 10.0000 10.0000i 1.25988 1.25988i
\(64\) 0 0
\(65\) 4.00000 4.00000i 0.496139 0.496139i
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 0 0
\(69\) −8.00000 −0.963087
\(70\) 0 0
\(71\) −6.00000 + 6.00000i −0.712069 + 0.712069i −0.966968 0.254899i \(-0.917958\pi\)
0.254899 + 0.966968i \(0.417958\pi\)
\(72\) 0 0
\(73\) −3.00000 + 3.00000i −0.351123 + 0.351123i −0.860527 0.509404i \(-0.829866\pi\)
0.509404 + 0.860527i \(0.329866\pi\)
\(74\) 0 0
\(75\) −6.00000 6.00000i −0.692820 0.692820i
\(76\) 0 0
\(77\) 8.00000i 0.911685i
\(78\) 0 0
\(79\) −2.00000 2.00000i −0.225018 0.225018i 0.585590 0.810607i \(-0.300863\pi\)
−0.810607 + 0.585590i \(0.800863\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) −5.00000 3.00000i −0.542326 0.325396i
\(86\) 0 0
\(87\) 12.0000i 1.28654i
\(88\) 0 0
\(89\) −8.00000 −0.847998 −0.423999 0.905663i \(-0.639374\pi\)
−0.423999 + 0.905663i \(0.639374\pi\)
\(90\) 0 0
\(91\) 8.00000 + 8.00000i 0.838628 + 0.838628i
\(92\) 0 0
\(93\) 24.0000i 2.48868i
\(94\) 0 0
\(95\) −8.00000 8.00000i −0.820783 0.820783i
\(96\) 0 0
\(97\) 3.00000 3.00000i 0.304604 0.304604i −0.538208 0.842812i \(-0.680899\pi\)
0.842812 + 0.538208i \(0.180899\pi\)
\(98\) 0 0
\(99\) 10.0000 10.0000i 1.00504 1.00504i
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) −8.00000 + 8.00000i −0.780720 + 0.780720i
\(106\) 0 0
\(107\) −2.00000 + 2.00000i −0.193347 + 0.193347i −0.797141 0.603793i \(-0.793655\pi\)
0.603793 + 0.797141i \(0.293655\pi\)
\(108\) 0 0
\(109\) −3.00000 3.00000i −0.287348 0.287348i 0.548683 0.836031i \(-0.315129\pi\)
−0.836031 + 0.548683i \(0.815129\pi\)
\(110\) 0 0
\(111\) 20.0000i 1.89832i
\(112\) 0 0
\(113\) 7.00000 + 7.00000i 0.658505 + 0.658505i 0.955026 0.296522i \(-0.0958267\pi\)
−0.296522 + 0.955026i \(0.595827\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 0 0
\(117\) 20.0000i 1.84900i
\(118\) 0 0
\(119\) 6.00000 10.0000i 0.550019 0.916698i
\(120\) 0 0
\(121\) 3.00000i 0.272727i
\(122\) 0 0
\(123\) −4.00000 −0.360668
\(124\) 0 0
\(125\) 8.00000 + 8.00000i 0.715542 + 0.715542i
\(126\) 0 0
\(127\) 4.00000i 0.354943i 0.984126 + 0.177471i \(0.0567917\pi\)
−0.984126 + 0.177471i \(0.943208\pi\)
\(128\) 0 0
\(129\) −16.0000 16.0000i −1.40872 1.40872i
\(130\) 0 0
\(131\) 2.00000 2.00000i 0.174741 0.174741i −0.614318 0.789059i \(-0.710569\pi\)
0.789059 + 0.614318i \(0.210569\pi\)
\(132\) 0 0
\(133\) 16.0000 16.0000i 1.38738 1.38738i
\(134\) 0 0
\(135\) 8.00000 0.688530
\(136\) 0 0
\(137\) 16.0000 1.36697 0.683486 0.729964i \(-0.260463\pi\)
0.683486 + 0.729964i \(0.260463\pi\)
\(138\) 0 0
\(139\) 2.00000 2.00000i 0.169638 0.169638i −0.617182 0.786820i \(-0.711726\pi\)
0.786820 + 0.617182i \(0.211726\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.00000 + 8.00000i 0.668994 + 0.668994i
\(144\) 0 0
\(145\) 6.00000i 0.498273i
\(146\) 0 0
\(147\) −2.00000 2.00000i −0.164957 0.164957i
\(148\) 0 0
\(149\) −22.0000 −1.80231 −0.901155 0.433497i \(-0.857280\pi\)
−0.901155 + 0.433497i \(0.857280\pi\)
\(150\) 0 0
\(151\) 12.0000i 0.976546i −0.872691 0.488273i \(-0.837627\pi\)
0.872691 0.488273i \(-0.162373\pi\)
\(152\) 0 0
\(153\) −20.0000 + 5.00000i −1.61690 + 0.404226i
\(154\) 0 0
\(155\) 12.0000i 0.963863i
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 0 0
\(159\) −24.0000 24.0000i −1.90332 1.90332i
\(160\) 0 0
\(161\) 8.00000i 0.630488i
\(162\) 0 0
\(163\) −6.00000 6.00000i −0.469956 0.469956i 0.431944 0.901900i \(-0.357828\pi\)
−0.901900 + 0.431944i \(0.857828\pi\)
\(164\) 0 0
\(165\) −8.00000 + 8.00000i −0.622799 + 0.622799i
\(166\) 0 0
\(167\) −10.0000 + 10.0000i −0.773823 + 0.773823i −0.978773 0.204949i \(-0.934297\pi\)
0.204949 + 0.978773i \(0.434297\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −40.0000 −3.05888
\(172\) 0 0
\(173\) 11.0000 11.0000i 0.836315 0.836315i −0.152057 0.988372i \(-0.548590\pi\)
0.988372 + 0.152057i \(0.0485898\pi\)
\(174\) 0 0
\(175\) −6.00000 + 6.00000i −0.453557 + 0.453557i
\(176\) 0 0
\(177\) −16.0000 16.0000i −1.20263 1.20263i
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 5.00000 + 5.00000i 0.371647 + 0.371647i 0.868077 0.496430i \(-0.165356\pi\)
−0.496430 + 0.868077i \(0.665356\pi\)
\(182\) 0 0
\(183\) −4.00000 −0.295689
\(184\) 0 0
\(185\) 10.0000i 0.735215i
\(186\) 0 0
\(187\) 6.00000 10.0000i 0.438763 0.731272i
\(188\) 0 0
\(189\) 16.0000i 1.16383i
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) −3.00000 3.00000i −0.215945 0.215945i 0.590842 0.806787i \(-0.298796\pi\)
−0.806787 + 0.590842i \(0.798796\pi\)
\(194\) 0 0
\(195\) 16.0000i 1.14578i
\(196\) 0 0
\(197\) −13.0000 13.0000i −0.926212 0.926212i 0.0712470 0.997459i \(-0.477302\pi\)
−0.997459 + 0.0712470i \(0.977302\pi\)
\(198\) 0 0
\(199\) 6.00000 6.00000i 0.425329 0.425329i −0.461705 0.887034i \(-0.652762\pi\)
0.887034 + 0.461705i \(0.152762\pi\)
\(200\) 0 0
\(201\) 24.0000 24.0000i 1.69283 1.69283i
\(202\) 0 0
\(203\) 12.0000 0.842235
\(204\) 0 0
\(205\) 2.00000 0.139686
\(206\) 0 0
\(207\) 10.0000 10.0000i 0.695048 0.695048i
\(208\) 0 0
\(209\) 16.0000 16.0000i 1.10674 1.10674i
\(210\) 0 0
\(211\) −6.00000 6.00000i −0.413057 0.413057i 0.469745 0.882802i \(-0.344346\pi\)
−0.882802 + 0.469745i \(0.844346\pi\)
\(212\) 0 0
\(213\) 24.0000i 1.64445i
\(214\) 0 0
\(215\) 8.00000 + 8.00000i 0.545595 + 0.545595i
\(216\) 0 0
\(217\) 24.0000 1.62923
\(218\) 0 0
\(219\) 12.0000i 0.810885i
\(220\) 0 0
\(221\) −4.00000 16.0000i −0.269069 1.07628i
\(222\) 0 0
\(223\) 4.00000i 0.267860i −0.990991 0.133930i \(-0.957240\pi\)
0.990991 0.133930i \(-0.0427597\pi\)
\(224\) 0 0
\(225\) 15.0000 1.00000
\(226\) 0 0
\(227\) −14.0000 14.0000i −0.929213 0.929213i 0.0684424 0.997655i \(-0.478197\pi\)
−0.997655 + 0.0684424i \(0.978197\pi\)
\(228\) 0 0
\(229\) 18.0000i 1.18947i 0.803921 + 0.594737i \(0.202744\pi\)
−0.803921 + 0.594737i \(0.797256\pi\)
\(230\) 0 0
\(231\) −16.0000 16.0000i −1.05272 1.05272i
\(232\) 0 0
\(233\) −5.00000 + 5.00000i −0.327561 + 0.327561i −0.851658 0.524097i \(-0.824403\pi\)
0.524097 + 0.851658i \(0.324403\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 8.00000 0.519656
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −19.0000 + 19.0000i −1.22390 + 1.22390i −0.257663 + 0.966235i \(0.582952\pi\)
−0.966235 + 0.257663i \(0.917048\pi\)
\(242\) 0 0
\(243\) −10.0000 + 10.0000i −0.641500 + 0.641500i
\(244\) 0 0
\(245\) 1.00000 + 1.00000i 0.0638877 + 0.0638877i
\(246\) 0 0
\(247\) 32.0000i 2.03611i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.00000 0.252478 0.126239 0.992000i \(-0.459709\pi\)
0.126239 + 0.992000i \(0.459709\pi\)
\(252\) 0 0
\(253\) 8.00000i 0.502956i
\(254\) 0 0
\(255\) 16.0000 4.00000i 1.00196 0.250490i
\(256\) 0 0
\(257\) 22.0000i 1.37232i 0.727450 + 0.686161i \(0.240706\pi\)
−0.727450 + 0.686161i \(0.759294\pi\)
\(258\) 0 0
\(259\) 20.0000 1.24274
\(260\) 0 0
\(261\) −15.0000 15.0000i −0.928477 0.928477i
\(262\) 0 0
\(263\) 4.00000i 0.246651i −0.992366 0.123325i \(-0.960644\pi\)
0.992366 0.123325i \(-0.0393559\pi\)
\(264\) 0 0
\(265\) 12.0000 + 12.0000i 0.737154 + 0.737154i
\(266\) 0 0
\(267\) 16.0000 16.0000i 0.979184 0.979184i
\(268\) 0 0
\(269\) 5.00000 5.00000i 0.304855 0.304855i −0.538055 0.842910i \(-0.680841\pi\)
0.842910 + 0.538055i \(0.180841\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) −32.0000 −1.93673
\(274\) 0 0
\(275\) −6.00000 + 6.00000i −0.361814 + 0.361814i
\(276\) 0 0
\(277\) 15.0000 15.0000i 0.901263 0.901263i −0.0942828 0.995545i \(-0.530056\pi\)
0.995545 + 0.0942828i \(0.0300558\pi\)
\(278\) 0 0
\(279\) −30.0000 30.0000i −1.79605 1.79605i
\(280\) 0 0
\(281\) 16.0000i 0.954480i 0.878773 + 0.477240i \(0.158363\pi\)
−0.878773 + 0.477240i \(0.841637\pi\)
\(282\) 0 0
\(283\) 10.0000 + 10.0000i 0.594438 + 0.594438i 0.938827 0.344389i \(-0.111914\pi\)
−0.344389 + 0.938827i \(0.611914\pi\)
\(284\) 0 0
\(285\) 32.0000 1.89552
\(286\) 0 0
\(287\) 4.00000i 0.236113i
\(288\) 0 0
\(289\) −15.0000 + 8.00000i −0.882353 + 0.470588i
\(290\) 0 0
\(291\) 12.0000i 0.703452i
\(292\) 0 0
\(293\) −26.0000 −1.51894 −0.759468 0.650545i \(-0.774541\pi\)
−0.759468 + 0.650545i \(0.774541\pi\)
\(294\) 0 0
\(295\) 8.00000 + 8.00000i 0.465778 + 0.465778i
\(296\) 0 0
\(297\) 16.0000i 0.928414i
\(298\) 0 0
\(299\) 8.00000 + 8.00000i 0.462652 + 0.462652i
\(300\) 0 0
\(301\) −16.0000 + 16.0000i −0.922225 + 0.922225i
\(302\) 0 0
\(303\) −24.0000 + 24.0000i −1.37876 + 1.37876i
\(304\) 0 0
\(305\) 2.00000 0.114520
\(306\) 0 0
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) −16.0000 + 16.0000i −0.910208 + 0.910208i
\(310\) 0 0
\(311\) −18.0000 + 18.0000i −1.02069 + 1.02069i −0.0209049 + 0.999781i \(0.506655\pi\)
−0.999781 + 0.0209049i \(0.993345\pi\)
\(312\) 0 0
\(313\) 9.00000 + 9.00000i 0.508710 + 0.508710i 0.914130 0.405420i \(-0.132875\pi\)
−0.405420 + 0.914130i \(0.632875\pi\)
\(314\) 0 0
\(315\) 20.0000i 1.12687i
\(316\) 0 0
\(317\) 15.0000 + 15.0000i 0.842484 + 0.842484i 0.989181 0.146697i \(-0.0468644\pi\)
−0.146697 + 0.989181i \(0.546864\pi\)
\(318\) 0 0
\(319\) 12.0000 0.671871
\(320\) 0 0
\(321\) 8.00000i 0.446516i
\(322\) 0 0
\(323\) −32.0000 + 8.00000i −1.78053 + 0.445132i
\(324\) 0 0
\(325\) 12.0000i 0.665640i
\(326\) 0 0
\(327\) 12.0000 0.663602
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 32.0000i 1.75888i −0.476011 0.879440i \(-0.657918\pi\)
0.476011 0.879440i \(-0.342082\pi\)
\(332\) 0 0
\(333\) −25.0000 25.0000i −1.36999 1.36999i
\(334\) 0 0
\(335\) −12.0000 + 12.0000i −0.655630 + 0.655630i
\(336\) 0 0
\(337\) 25.0000 25.0000i 1.36184 1.36184i 0.490261 0.871576i \(-0.336901\pi\)
0.871576 0.490261i \(-0.163099\pi\)
\(338\) 0 0
\(339\) −28.0000 −1.52075
\(340\) 0 0
\(341\) 24.0000 1.29967
\(342\) 0 0
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) 0 0
\(345\) −8.00000 + 8.00000i −0.430706 + 0.430706i
\(346\) 0 0
\(347\) −18.0000 18.0000i −0.966291 0.966291i 0.0331594 0.999450i \(-0.489443\pi\)
−0.999450 + 0.0331594i \(0.989443\pi\)
\(348\) 0 0
\(349\) 20.0000i 1.07058i 0.844670 + 0.535288i \(0.179797\pi\)
−0.844670 + 0.535288i \(0.820203\pi\)
\(350\) 0 0
\(351\) 16.0000 + 16.0000i 0.854017 + 0.854017i
\(352\) 0 0
\(353\) −2.00000 −0.106449 −0.0532246 0.998583i \(-0.516950\pi\)
−0.0532246 + 0.998583i \(0.516950\pi\)
\(354\) 0 0
\(355\) 12.0000i 0.636894i
\(356\) 0 0
\(357\) 8.00000 + 32.0000i 0.423405 + 1.69362i
\(358\) 0 0
\(359\) 4.00000i 0.211112i 0.994413 + 0.105556i \(0.0336622\pi\)
−0.994413 + 0.105556i \(0.966338\pi\)
\(360\) 0 0
\(361\) −45.0000 −2.36842
\(362\) 0 0
\(363\) 6.00000 + 6.00000i 0.314918 + 0.314918i
\(364\) 0 0
\(365\) 6.00000i 0.314054i
\(366\) 0 0
\(367\) 10.0000 + 10.0000i 0.521996 + 0.521996i 0.918174 0.396178i \(-0.129664\pi\)
−0.396178 + 0.918174i \(0.629664\pi\)
\(368\) 0 0
\(369\) 5.00000 5.00000i 0.260290 0.260290i
\(370\) 0 0
\(371\) −24.0000 + 24.0000i −1.24602 + 1.24602i
\(372\) 0 0
\(373\) −12.0000 −0.621336 −0.310668 0.950518i \(-0.600553\pi\)
−0.310668 + 0.950518i \(0.600553\pi\)
\(374\) 0 0
\(375\) −32.0000 −1.65247
\(376\) 0 0
\(377\) 12.0000 12.0000i 0.618031 0.618031i
\(378\) 0 0
\(379\) 2.00000 2.00000i 0.102733 0.102733i −0.653872 0.756605i \(-0.726857\pi\)
0.756605 + 0.653872i \(0.226857\pi\)
\(380\) 0 0
\(381\) −8.00000 8.00000i −0.409852 0.409852i
\(382\) 0 0
\(383\) 36.0000i 1.83951i −0.392488 0.919757i \(-0.628386\pi\)
0.392488 0.919757i \(-0.371614\pi\)
\(384\) 0 0
\(385\) 8.00000 + 8.00000i 0.407718 + 0.407718i
\(386\) 0 0
\(387\) 40.0000 2.03331
\(388\) 0 0
\(389\) 2.00000i 0.101404i 0.998714 + 0.0507020i \(0.0161459\pi\)
−0.998714 + 0.0507020i \(0.983854\pi\)
\(390\) 0 0
\(391\) 6.00000 10.0000i 0.303433 0.505722i
\(392\) 0 0
\(393\) 8.00000i 0.403547i
\(394\) 0 0
\(395\) −4.00000 −0.201262
\(396\) 0 0
\(397\) 9.00000 + 9.00000i 0.451697 + 0.451697i 0.895918 0.444220i \(-0.146519\pi\)
−0.444220 + 0.895918i \(0.646519\pi\)
\(398\) 0 0
\(399\) 64.0000i 3.20401i
\(400\) 0 0
\(401\) −11.0000 11.0000i −0.549314 0.549314i 0.376929 0.926242i \(-0.376980\pi\)
−0.926242 + 0.376929i \(0.876980\pi\)
\(402\) 0 0
\(403\) 24.0000 24.0000i 1.19553 1.19553i
\(404\) 0 0
\(405\) −1.00000 + 1.00000i −0.0496904 + 0.0496904i
\(406\) 0 0
\(407\) 20.0000 0.991363
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 0 0
\(411\) −32.0000 + 32.0000i −1.57844 + 1.57844i
\(412\) 0 0
\(413\) −16.0000 + 16.0000i −0.787309 + 0.787309i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 8.00000i 0.391762i
\(418\) 0 0
\(419\) 6.00000 + 6.00000i 0.293119 + 0.293119i 0.838311 0.545192i \(-0.183543\pi\)
−0.545192 + 0.838311i \(0.683543\pi\)
\(420\) 0 0
\(421\) 20.0000 0.974740 0.487370 0.873195i \(-0.337956\pi\)
0.487370 + 0.873195i \(0.337956\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 12.0000 3.00000i 0.582086 0.145521i
\(426\) 0 0
\(427\) 4.00000i 0.193574i
\(428\) 0 0
\(429\) −32.0000 −1.54497
\(430\) 0 0
\(431\) 6.00000 + 6.00000i 0.289010 + 0.289010i 0.836689 0.547679i \(-0.184488\pi\)
−0.547679 + 0.836689i \(0.684488\pi\)
\(432\) 0 0
\(433\) 10.0000i 0.480569i −0.970702 0.240285i \(-0.922759\pi\)
0.970702 0.240285i \(-0.0772408\pi\)
\(434\) 0 0
\(435\) 12.0000 + 12.0000i 0.575356 + 0.575356i
\(436\) 0 0
\(437\) 16.0000 16.0000i 0.765384 0.765384i
\(438\) 0 0
\(439\) 18.0000 18.0000i 0.859093 0.859093i −0.132138 0.991231i \(-0.542184\pi\)
0.991231 + 0.132138i \(0.0421843\pi\)
\(440\) 0 0
\(441\) 5.00000 0.238095
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) −8.00000 + 8.00000i −0.379236 + 0.379236i
\(446\) 0 0
\(447\) 44.0000 44.0000i 2.08113 2.08113i
\(448\) 0 0
\(449\) −13.0000 13.0000i −0.613508 0.613508i 0.330350 0.943858i \(-0.392833\pi\)
−0.943858 + 0.330350i \(0.892833\pi\)
\(450\) 0 0
\(451\) 4.00000i 0.188353i
\(452\) 0 0
\(453\) 24.0000 + 24.0000i 1.12762 + 1.12762i
\(454\) 0 0
\(455\) 16.0000 0.750092
\(456\) 0 0
\(457\) 14.0000i 0.654892i 0.944870 + 0.327446i \(0.106188\pi\)
−0.944870 + 0.327446i \(0.893812\pi\)
\(458\) 0 0
\(459\) 12.0000 20.0000i 0.560112 0.933520i
\(460\) 0 0
\(461\) 20.0000i 0.931493i −0.884918 0.465746i \(-0.845786\pi\)
0.884918 0.465746i \(-0.154214\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 24.0000 + 24.0000i 1.11297 + 1.11297i
\(466\) 0 0
\(467\) 8.00000i 0.370196i −0.982720 0.185098i \(-0.940740\pi\)
0.982720 0.185098i \(-0.0592602\pi\)
\(468\) 0 0
\(469\) −24.0000 24.0000i −1.10822 1.10822i
\(470\) 0 0
\(471\) −4.00000 + 4.00000i −0.184310 + 0.184310i
\(472\) 0 0
\(473\) −16.0000 + 16.0000i −0.735681 + 0.735681i
\(474\) 0 0
\(475\) 24.0000 1.10120
\(476\) 0 0
\(477\) 60.0000 2.74721
\(478\) 0 0
\(479\) −22.0000 + 22.0000i −1.00521 + 1.00521i −0.00521928 + 0.999986i \(0.501661\pi\)
−0.999986 + 0.00521928i \(0.998339\pi\)
\(480\) 0 0
\(481\) 20.0000 20.0000i 0.911922 0.911922i
\(482\) 0 0
\(483\) −16.0000 16.0000i −0.728025 0.728025i
\(484\) 0 0
\(485\) 6.00000i 0.272446i
\(486\) 0 0
\(487\) 14.0000 + 14.0000i 0.634401 + 0.634401i 0.949169 0.314768i \(-0.101927\pi\)
−0.314768 + 0.949169i \(0.601927\pi\)
\(488\) 0 0
\(489\) 24.0000 1.08532
\(490\) 0 0
\(491\) 24.0000i 1.08310i 0.840667 + 0.541552i \(0.182163\pi\)
−0.840667 + 0.541552i \(0.817837\pi\)
\(492\) 0 0
\(493\) −15.0000 9.00000i −0.675566 0.405340i
\(494\) 0 0
\(495\) 20.0000i 0.898933i
\(496\) 0 0
\(497\) −24.0000 −1.07655
\(498\) 0 0
\(499\) −6.00000 6.00000i −0.268597 0.268597i 0.559938 0.828535i \(-0.310825\pi\)
−0.828535 + 0.559938i \(0.810825\pi\)
\(500\) 0 0
\(501\) 40.0000i 1.78707i
\(502\) 0 0
\(503\) 14.0000 + 14.0000i 0.624229 + 0.624229i 0.946610 0.322381i \(-0.104483\pi\)
−0.322381 + 0.946610i \(0.604483\pi\)
\(504\) 0 0
\(505\) 12.0000 12.0000i 0.533993 0.533993i
\(506\) 0 0
\(507\) −6.00000 + 6.00000i −0.266469 + 0.266469i
\(508\) 0 0
\(509\) 30.0000 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(510\) 0 0
\(511\) −12.0000 −0.530849
\(512\) 0 0
\(513\) 32.0000 32.0000i 1.41283 1.41283i
\(514\) 0 0
\(515\) 8.00000 8.00000i 0.352522 0.352522i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 44.0000i 1.93139i
\(520\) 0 0
\(521\) −31.0000 31.0000i −1.35813 1.35813i −0.876216 0.481919i \(-0.839940\pi\)
−0.481919 0.876216i \(-0.660060\pi\)
\(522\) 0 0
\(523\) 36.0000 1.57417 0.787085 0.616844i \(-0.211589\pi\)
0.787085 + 0.616844i \(0.211589\pi\)
\(524\) 0 0
\(525\) 24.0000i 1.04745i
\(526\) 0 0
\(527\) −30.0000 18.0000i −1.30682 0.784092i
\(528\) 0 0
\(529\) 15.0000i 0.652174i
\(530\) 0 0
\(531\) 40.0000 1.73585
\(532\) 0 0
\(533\) 4.00000 + 4.00000i 0.173259 + 0.173259i
\(534\) 0 0
\(535\) 4.00000i 0.172935i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.00000 + 2.00000i −0.0861461 + 0.0861461i
\(540\) 0 0
\(541\) −7.00000 + 7.00000i −0.300954 + 0.300954i −0.841387 0.540433i \(-0.818260\pi\)
0.540433 + 0.841387i \(0.318260\pi\)
\(542\) 0 0
\(543\) −20.0000 −0.858282
\(544\) 0 0
\(545\) −6.00000 −0.257012
\(546\) 0 0
\(547\) 2.00000 2.00000i 0.0855138 0.0855138i −0.663056 0.748570i \(-0.730741\pi\)
0.748570 + 0.663056i \(0.230741\pi\)
\(548\) 0 0
\(549\) 5.00000 5.00000i 0.213395 0.213395i
\(550\) 0 0
\(551\) −24.0000 24.0000i −1.02243 1.02243i
\(552\) 0 0
\(553\) 8.00000i 0.340195i
\(554\) 0 0
\(555\) 20.0000 + 20.0000i 0.848953 + 0.848953i
\(556\) 0 0
\(557\) −20.0000 −0.847427 −0.423714 0.905796i \(-0.639274\pi\)
−0.423714 + 0.905796i \(0.639274\pi\)
\(558\) 0 0
\(559\) 32.0000i 1.35346i
\(560\) 0 0
\(561\) 8.00000 + 32.0000i 0.337760 + 1.35104i
\(562\) 0 0
\(563\) 24.0000i 1.01148i 0.862686 + 0.505740i \(0.168780\pi\)
−0.862686 + 0.505740i \(0.831220\pi\)
\(564\) 0 0
\(565\) 14.0000 0.588984
\(566\) 0 0
\(567\) −2.00000 2.00000i −0.0839921 0.0839921i
\(568\) 0 0
\(569\) 24.0000i 1.00613i 0.864248 + 0.503066i \(0.167795\pi\)
−0.864248 + 0.503066i \(0.832205\pi\)
\(570\) 0 0
\(571\) −30.0000 30.0000i −1.25546 1.25546i −0.953237 0.302224i \(-0.902271\pi\)
−0.302224 0.953237i \(-0.597729\pi\)
\(572\) 0 0
\(573\) 16.0000 16.0000i 0.668410 0.668410i
\(574\) 0 0
\(575\) −6.00000 + 6.00000i −0.250217 + 0.250217i
\(576\) 0 0
\(577\) 8.00000 0.333044 0.166522 0.986038i \(-0.446746\pi\)
0.166522 + 0.986038i \(0.446746\pi\)
\(578\) 0 0
\(579\) 12.0000 0.498703
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −24.0000 + 24.0000i −0.993978 + 0.993978i
\(584\) 0 0
\(585\) −20.0000 20.0000i −0.826898 0.826898i
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) −48.0000 48.0000i −1.97781 1.97781i
\(590\) 0 0
\(591\) 52.0000 2.13899
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) −4.00000 16.0000i −0.163984 0.655936i
\(596\) 0 0
\(597\) 24.0000i 0.982255i
\(598\) 0 0
\(599\) 32.0000 1.30748 0.653742 0.756717i \(-0.273198\pi\)
0.653742 + 0.756717i \(0.273198\pi\)
\(600\) 0 0
\(601\) −27.0000 27.0000i −1.10135 1.10135i −0.994248 0.107105i \(-0.965842\pi\)
−0.107105 0.994248i \(-0.534158\pi\)
\(602\) 0 0
\(603\) 60.0000i 2.44339i
\(604\) 0 0
\(605\) −3.00000 3.00000i −0.121967 0.121967i
\(606\) 0 0
\(607\) 14.0000 14.0000i 0.568242 0.568242i −0.363393 0.931636i \(-0.618382\pi\)
0.931636 + 0.363393i \(0.118382\pi\)
\(608\) 0 0
\(609\) −24.0000 + 24.0000i −0.972529 + 0.972529i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −38.0000 −1.53481 −0.767403 0.641165i \(-0.778451\pi\)
−0.767403 + 0.641165i \(0.778451\pi\)
\(614\) 0 0
\(615\) −4.00000 + 4.00000i −0.161296 + 0.161296i
\(616\) 0 0
\(617\) 3.00000 3.00000i 0.120775 0.120775i −0.644136 0.764911i \(-0.722783\pi\)
0.764911 + 0.644136i \(0.222783\pi\)
\(618\) 0 0
\(619\) 14.0000 + 14.0000i 0.562708 + 0.562708i 0.930076 0.367368i \(-0.119741\pi\)
−0.367368 + 0.930076i \(0.619741\pi\)
\(620\) 0 0
\(621\) 16.0000i 0.642058i
\(622\) 0 0
\(623\) −16.0000 16.0000i −0.641026 0.641026i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 64.0000i 2.55591i
\(628\) 0 0
\(629\) −25.0000 15.0000i −0.996815 0.598089i
\(630\) 0 0
\(631\) 28.0000i 1.11466i 0.830290 + 0.557331i \(0.188175\pi\)
−0.830290 + 0.557331i \(0.811825\pi\)
\(632\) 0 0
\(633\) 24.0000 0.953914
\(634\) 0 0
\(635\) 4.00000 + 4.00000i 0.158735 + 0.158735i
\(636\) 0 0
\(637\) 4.00000i 0.158486i
\(638\) 0 0
\(639\) 30.0000 + 30.0000i 1.18678 + 1.18678i
\(640\) 0 0
\(641\) −5.00000 + 5.00000i −0.197488 + 0.197488i −0.798922 0.601434i \(-0.794596\pi\)
0.601434 + 0.798922i \(0.294596\pi\)
\(642\) 0 0
\(643\) 6.00000 6.00000i 0.236617 0.236617i −0.578831 0.815448i \(-0.696491\pi\)
0.815448 + 0.578831i \(0.196491\pi\)
\(644\) 0 0
\(645\) −32.0000 −1.26000
\(646\) 0 0
\(647\) −16.0000 −0.629025 −0.314512 0.949253i \(-0.601841\pi\)
−0.314512 + 0.949253i \(0.601841\pi\)
\(648\) 0 0
\(649\) −16.0000 + 16.0000i −0.628055 + 0.628055i
\(650\) 0 0
\(651\) −48.0000 + 48.0000i −1.88127 + 1.88127i
\(652\) 0 0
\(653\) −5.00000 5.00000i −0.195665 0.195665i 0.602474 0.798139i \(-0.294182\pi\)
−0.798139 + 0.602474i \(0.794182\pi\)
\(654\) 0 0
\(655\) 4.00000i 0.156293i
\(656\) 0 0
\(657\) 15.0000 + 15.0000i 0.585206 + 0.585206i
\(658\) 0 0
\(659\) −4.00000 −0.155818 −0.0779089 0.996960i \(-0.524824\pi\)
−0.0779089 + 0.996960i \(0.524824\pi\)
\(660\) 0 0
\(661\) 28.0000i 1.08907i 0.838737 + 0.544537i \(0.183295\pi\)
−0.838737 + 0.544537i \(0.816705\pi\)
\(662\) 0 0
\(663\) 40.0000 + 24.0000i 1.55347 + 0.932083i
\(664\) 0 0
\(665\) 32.0000i 1.24091i
\(666\) 0 0
\(667\) 12.0000 0.464642
\(668\) 0 0
\(669\) 8.00000 + 8.00000i 0.309298 + 0.309298i
\(670\) 0 0
\(671\) 4.00000i 0.154418i
\(672\) 0 0
\(673\) 3.00000 + 3.00000i 0.115642 + 0.115642i 0.762560 0.646918i \(-0.223942\pi\)
−0.646918 + 0.762560i \(0.723942\pi\)
\(674\) 0 0
\(675\) −12.0000 + 12.0000i −0.461880 + 0.461880i
\(676\) 0 0
\(677\) −13.0000 + 13.0000i −0.499631 + 0.499631i −0.911323 0.411692i \(-0.864938\pi\)
0.411692 + 0.911323i \(0.364938\pi\)
\(678\) 0 0
\(679\) 12.0000 0.460518
\(680\) 0 0
\(681\) 56.0000 2.14592
\(682\) 0 0
\(683\) 2.00000 2.00000i 0.0765279 0.0765279i −0.667807 0.744335i \(-0.732767\pi\)
0.744335 + 0.667807i \(0.232767\pi\)
\(684\) 0 0
\(685\) 16.0000 16.0000i 0.611329 0.611329i
\(686\) 0 0
\(687\) −36.0000 36.0000i −1.37349 1.37349i
\(688\) 0 0
\(689\) 48.0000i 1.82865i
\(690\) 0 0
\(691\) −18.0000 18.0000i −0.684752 0.684752i 0.276315 0.961067i \(-0.410887\pi\)
−0.961067 + 0.276315i \(0.910887\pi\)
\(692\) 0 0
\(693\) 40.0000 1.51947
\(694\) 0 0
\(695\) 4.00000i 0.151729i
\(696\) 0 0
\(697\) 3.00000 5.00000i 0.113633 0.189389i
\(698\) 0 0
\(699\) 20.0000i 0.756469i
\(700\) 0 0
\(701\) 12.0000 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(702\) 0 0
\(703\) −40.0000 40.0000i −1.50863 1.50863i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 24.0000 + 24.0000i 0.902613 + 0.902613i
\(708\) 0 0
\(709\) 15.0000 15.0000i 0.563337 0.563337i −0.366917 0.930254i \(-0.619587\pi\)
0.930254 + 0.366917i \(0.119587\pi\)
\(710\) 0 0
\(711\) −10.0000 + 10.0000i −0.375029 + 0.375029i
\(712\) 0 0
\(713\) 24.0000 0.898807
\(714\) 0 0
\(715\) 16.0000 0.598366
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 14.0000 14.0000i 0.522112 0.522112i −0.396097 0.918209i \(-0.629636\pi\)
0.918209 + 0.396097i \(0.129636\pi\)
\(720\) 0 0
\(721\) 16.0000 + 16.0000i 0.595871 + 0.595871i
\(722\) 0 0
\(723\) 76.0000i 2.82647i
\(724\) 0 0
\(725\) 9.00000 + 9.00000i 0.334252 + 0.334252i
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) 43.0000i 1.59259i
\(730\) 0 0
\(731\) 32.0000 8.00000i 1.18356 0.295891i
\(732\) 0 0
\(733\) 12.0000i 0.443230i −0.975134 0.221615i \(-0.928867\pi\)
0.975134 0.221615i \(-0.0711328\pi\)
\(734\) 0 0
\(735\) −4.00000 −0.147542
\(736\) 0 0
\(737\) −24.0000 24.0000i −0.884051 0.884051i
\(738\) 0 0
\(739\) 32.0000i 1.17714i 0.808447 + 0.588570i \(0.200309\pi\)
−0.808447 + 0.588570i \(0.799691\pi\)
\(740\) 0 0
\(741\) 64.0000 + 64.0000i 2.35110 + 2.35110i
\(742\) 0 0
\(743\) 26.0000 26.0000i 0.953847 0.953847i −0.0451335 0.998981i \(-0.514371\pi\)
0.998981 + 0.0451335i \(0.0143713\pi\)
\(744\) 0 0
\(745\) −22.0000 + 22.0000i −0.806018 + 0.806018i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −8.00000 −0.292314
\(750\) 0 0
\(751\) 30.0000 30.0000i 1.09472 1.09472i 0.0996978 0.995018i \(-0.468212\pi\)
0.995018 0.0996978i \(-0.0317876\pi\)
\(752\) 0 0
\(753\) −8.00000 + 8.00000i −0.291536 + 0.291536i
\(754\) 0 0
\(755\) −12.0000 12.0000i −0.436725 0.436725i
\(756\) 0 0
\(757\) 14.0000i 0.508839i −0.967094 0.254419i \(-0.918116\pi\)
0.967094 0.254419i \(-0.0818843\pi\)
\(758\) 0 0
\(759\) −16.0000 16.0000i −0.580763 0.580763i
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 12.0000i 0.434429i
\(764\) 0 0
\(765\) −15.0000 + 25.0000i −0.542326 + 0.903877i
\(766\) 0 0
\(767\) 32.0000i 1.15545i
\(768\) 0 0
\(769\) −16.0000 −0.576975 −0.288487 0.957484i \(-0.593152\pi\)
−0.288487 + 0.957484i \(0.593152\pi\)
\(770\) 0 0
\(771\) −44.0000 44.0000i −1.58462 1.58462i
\(772\) 0 0
\(773\) 30.0000i 1.07903i 0.841978 + 0.539513i \(0.181391\pi\)
−0.841978 + 0.539513i \(0.818609\pi\)
\(774\) 0 0
\(775\) 18.0000 + 18.0000i 0.646579 + 0.646579i
\(776\) 0 0
\(777\) −40.0000 + 40.0000i −1.43499 + 1.43499i
\(778\) 0 0
\(779\) 8.00000 8.00000i 0.286630 0.286630i
\(780\) 0 0
\(781\) −24.0000 −0.858788
\(782\) 0 0
\(783\) 24.0000 0.857690
\(784\) 0 0
\(785\) 2.00000 2.00000i 0.0713831 0.0713831i
\(786\) 0 0
\(787\) 30.0000 30.0000i 1.06938 1.06938i 0.0719783 0.997406i \(-0.477069\pi\)
0.997406 0.0719783i \(-0.0229312\pi\)
\(788\) 0 0
\(789\) 8.00000 + 8.00000i 0.284808 + 0.284808i
\(790\) 0 0
\(791\) 28.0000i 0.995565i
\(792\) 0 0
\(793\) 4.00000 + 4.00000i 0.142044 + 0.142044i
\(794\) 0 0
\(795\) −48.0000 −1.70238
\(796\) 0 0
\(797\) 36.0000i 1.27519i 0.770374 + 0.637593i \(0.220070\pi\)
−0.770374 + 0.637593i \(0.779930\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 40.0000i 1.41333i
\(802\) 0 0
\(803\) −12.0000 −0.423471
\(804\) 0 0
\(805\) 8.00000 + 8.00000i 0.281963 + 0.281963i
\(806\) 0 0
\(807\) 20.0000i 0.704033i
\(808\) 0 0
\(809\) −1.00000 1.00000i −0.0351581 0.0351581i 0.689309 0.724467i \(-0.257914\pi\)
−0.724467 + 0.689309i \(0.757914\pi\)
\(810\) 0 0
\(811\) 6.00000 6.00000i 0.210688 0.210688i −0.593871 0.804560i \(-0.702401\pi\)
0.804560 + 0.593871i \(0.202401\pi\)
\(812\) 0 0
\(813\) 16.0000 16.0000i 0.561144 0.561144i
\(814\) 0 0
\(815\) −12.0000 −0.420342
\(816\) 0 0
\(817\) 64.0000 2.23908
\(818\) 0 0
\(819\) 40.0000 40.0000i 1.39771 1.39771i
\(820\) 0 0
\(821\) −29.0000 + 29.0000i −1.01211 + 1.01211i −0.0121812 + 0.999926i \(0.503877\pi\)
−0.999926 + 0.0121812i \(0.996123\pi\)
\(822\) 0 0
\(823\) 10.0000 + 10.0000i 0.348578 + 0.348578i 0.859580 0.511002i \(-0.170725\pi\)
−0.511002 + 0.859580i \(0.670725\pi\)
\(824\) 0 0
\(825\) 24.0000i 0.835573i
\(826\) 0 0
\(827\) 14.0000 + 14.0000i 0.486828 + 0.486828i 0.907304 0.420476i \(-0.138137\pi\)
−0.420476 + 0.907304i \(0.638137\pi\)
\(828\) 0 0
\(829\) −30.0000 −1.04194 −0.520972 0.853574i \(-0.674430\pi\)
−0.520972 + 0.853574i \(0.674430\pi\)
\(830\) 0 0
\(831\) 60.0000i 2.08138i
\(832\) 0 0
\(833\) 4.00000 1.00000i 0.138592 0.0346479i
\(834\) 0 0
\(835\) 20.0000i 0.692129i
\(836\) 0 0
\(837\) 48.0000 1.65912
\(838\) 0 0
\(839\) −14.0000 14.0000i −0.483334 0.483334i 0.422861 0.906195i \(-0.361026\pi\)
−0.906195 + 0.422861i \(0.861026\pi\)
\(840\) 0 0
\(841\) 11.0000i 0.379310i
\(842\) 0 0
\(843\) −32.0000 32.0000i −1.10214 1.10214i
\(844\) 0 0
\(845\) 3.00000 3.00000i 0.103203 0.103203i
\(846\) 0 0
\(847\) 6.00000 6.00000i 0.206162 0.206162i
\(848\) 0 0
\(849\) −40.0000 −1.37280
\(850\) 0 0
\(851\) 20.0000 0.685591
\(852\) 0 0
\(853\) −23.0000 + 23.0000i −0.787505 + 0.787505i −0.981085 0.193580i \(-0.937990\pi\)
0.193580 + 0.981085i \(0.437990\pi\)
\(854\) 0 0
\(855\) −40.0000 + 40.0000i −1.36797 + 1.36797i
\(856\) 0 0
\(857\) −15.0000 15.0000i −0.512390 0.512390i 0.402868 0.915258i \(-0.368013\pi\)
−0.915258 + 0.402868i \(0.868013\pi\)
\(858\) 0 0
\(859\) 48.0000i 1.63774i 0.573980 + 0.818869i \(0.305399\pi\)
−0.573980 + 0.818869i \(0.694601\pi\)
\(860\) 0 0
\(861\) −8.00000 8.00000i −0.272639 0.272639i
\(862\) 0 0
\(863\) −16.0000 −0.544646 −0.272323 0.962206i \(-0.587792\pi\)
−0.272323 + 0.962206i \(0.587792\pi\)
\(864\) 0 0
\(865\) 22.0000i 0.748022i
\(866\) 0 0
\(867\) 14.0000 46.0000i 0.475465 1.56224i
\(868\) 0 0
\(869\) 8.00000i 0.271381i
\(870\) 0 0
\(871\) −48.0000 −1.62642
\(872\) 0 0
\(873\) −15.0000 15.0000i −0.507673 0.507673i
\(874\) 0 0
\(875\) 32.0000i 1.08180i
\(876\) 0 0
\(877\) 29.0000 + 29.0000i 0.979260 + 0.979260i 0.999789 0.0205288i \(-0.00653499\pi\)
−0.0205288 + 0.999789i \(0.506535\pi\)
\(878\) 0 0
\(879\) 52.0000 52.0000i 1.75392 1.75392i
\(880\) 0 0
\(881\) −23.0000 + 23.0000i −0.774890 + 0.774890i −0.978957 0.204067i \(-0.934584\pi\)
0.204067 + 0.978957i \(0.434584\pi\)
\(882\) 0 0
\(883\) −44.0000 −1.48072 −0.740359 0.672212i \(-0.765344\pi\)
−0.740359 + 0.672212i \(0.765344\pi\)
\(884\) 0 0
\(885\) −32.0000 −1.07567
\(886\) 0 0
\(887\) −34.0000 + 34.0000i −1.14161 + 1.14161i −0.153452 + 0.988156i \(0.549039\pi\)
−0.988156 + 0.153452i \(0.950961\pi\)
\(888\) 0 0
\(889\) −8.00000 + 8.00000i −0.268311 + 0.268311i
\(890\) 0 0
\(891\) −2.00000 2.00000i −0.0670025 0.0670025i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −32.0000 −1.06845
\(898\) 0 0
\(899\) 36.0000i 1.20067i
\(900\) 0 0
\(901\) 48.0000 12.0000i 1.59911 0.399778i
\(902\) 0 0
\(903\) 64.0000i 2.12979i
\(904\) 0 0
\(905\) 10.0000 0.332411
\(906\) 0 0
\(907\) −14.0000 14.0000i −0.464862 0.464862i 0.435383 0.900245i \(-0.356613\pi\)
−0.900245 + 0.435383i \(0.856613\pi\)
\(908\) 0 0
\(909\) 60.0000i 1.99007i
\(910\) 0 0
\(911\) −34.0000 34.0000i −1.12647 1.12647i −0.990747 0.135724i \(-0.956664\pi\)
−0.135724 0.990747i \(-0.543336\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −4.00000 + 4.00000i −0.132236 + 0.132236i
\(916\) 0 0
\(917\) 8.00000 0.264183
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) −24.0000 + 24.0000i −0.790827 + 0.790827i
\(922\) 0 0
\(923\) −24.0000 + 24.0000i −0.789970 + 0.789970i
\(924\) 0 0
\(925\) 15.0000 + 15.0000i 0.493197 + 0.493197i
\(926\) 0 0
\(927\) 40.0000i 1.31377i
\(928\) 0 0
\(929\) 37.0000 + 37.0000i 1.21393 + 1.21393i 0.969723 + 0.244208i \(0.0785279\pi\)
0.244208 + 0.969723i \(0.421472\pi\)
\(930\) 0 0
\(931\) 8.00000 0.262189
\(932\) 0 0
\(933\) 72.0000i 2.35717i
\(934\) 0 0
\(935\) −4.00000 16.0000i −0.130814 0.523256i
\(936\) 0 0
\(937\) 16.0000i 0.522697i −0.965244 0.261349i \(-0.915833\pi\)
0.965244 0.261349i \(-0.0841672\pi\)
\(938\) 0 0
\(939\) −36.0000 −1.17482
\(940\) 0 0
\(941\) −33.0000 33.0000i −1.07577 1.07577i −0.996884 0.0788856i \(-0.974864\pi\)
−0.0788856 0.996884i \(-0.525136\pi\)
\(942\) 0 0
\(943\) 4.00000i 0.130258i
\(944\) 0 0
\(945\) 16.0000 + 16.0000i 0.520480 + 0.520480i
\(946\) 0 0
\(947\) −18.0000 + 18.0000i −0.584921 + 0.584921i −0.936252 0.351330i \(-0.885729\pi\)
0.351330 + 0.936252i \(0.385729\pi\)
\(948\) 0 0
\(949\) −12.0000 + 12.0000i −0.389536 + 0.389536i
\(950\) 0 0
\(951\) −60.0000 −1.94563
\(952\) 0 0
\(953\) −48.0000 −1.55487 −0.777436 0.628962i \(-0.783480\pi\)
−0.777436 + 0.628962i \(0.783480\pi\)
\(954\) 0 0
\(955\) −8.00000 + 8.00000i −0.258874 + 0.258874i
\(956\) 0 0
\(957\) −24.0000 + 24.0000i −0.775810 + 0.775810i
\(958\) 0 0
\(959\) 32.0000 + 32.0000i 1.03333 + 1.03333i
\(960\) 0 0
\(961\) 41.0000i 1.32258i
\(962\) 0 0
\(963\) 10.0000 + 10.0000i 0.322245 + 0.322245i
\(964\) 0 0
\(965\) −6.00000 −0.193147
\(966\) 0 0
\(967\) 28.0000i 0.900419i −0.892923 0.450210i \(-0.851349\pi\)
0.892923 0.450210i \(-0.148651\pi\)
\(968\) 0 0
\(969\) 48.0000 80.0000i 1.54198 2.56997i
\(970\) 0 0
\(971\) 24.0000i 0.770197i −0.922876 0.385098i \(-0.874168\pi\)
0.922876 0.385098i \(-0.125832\pi\)
\(972\) 0 0
\(973\) 8.00000 0.256468
\(974\) 0 0
\(975\) −24.0000 24.0000i −0.768615 0.768615i
\(976\) 0 0
\(977\) 8.00000i 0.255943i −0.991778 0.127971i \(-0.959153\pi\)
0.991778 0.127971i \(-0.0408466\pi\)
\(978\) 0 0
\(979\) −16.0000 16.0000i −0.511362 0.511362i
\(980\) 0 0
\(981\) −15.0000 + 15.0000i −0.478913 + 0.478913i
\(982\) 0 0
\(983\) 34.0000 34.0000i 1.08443 1.08443i 0.0883413 0.996090i \(-0.471843\pi\)
0.996090 0.0883413i \(-0.0281566\pi\)
\(984\) 0 0
\(985\) −26.0000 −0.828429
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −16.0000 + 16.0000i −0.508770 + 0.508770i
\(990\) 0 0
\(991\) 6.00000 6.00000i 0.190596 0.190596i −0.605357 0.795954i \(-0.706970\pi\)
0.795954 + 0.605357i \(0.206970\pi\)
\(992\) 0 0
\(993\) 64.0000 + 64.0000i 2.03098 + 2.03098i
\(994\) 0 0
\(995\) 12.0000i 0.380426i
\(996\) 0 0
\(997\) −5.00000 5.00000i −0.158352 0.158352i 0.623484 0.781836i \(-0.285717\pi\)
−0.781836 + 0.623484i \(0.785717\pi\)
\(998\) 0 0
\(999\) 40.0000 1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1088.2.o.b.769.1 2
4.3 odd 2 1088.2.o.q.769.1 2
8.3 odd 2 272.2.o.a.225.1 2
8.5 even 2 136.2.k.d.89.1 yes 2
17.13 even 4 inner 1088.2.o.b.897.1 2
24.5 odd 2 1224.2.w.e.361.1 2
24.11 even 2 2448.2.be.i.1585.1 2
68.47 odd 4 1088.2.o.q.897.1 2
136.13 even 4 136.2.k.d.81.1 2
136.43 odd 8 4624.2.a.t.1.1 2
136.53 even 8 2312.2.b.a.577.1 2
136.59 odd 8 4624.2.a.t.1.2 2
136.77 even 8 2312.2.a.k.1.2 2
136.93 even 8 2312.2.a.k.1.1 2
136.115 odd 4 272.2.o.a.81.1 2
136.117 even 8 2312.2.b.a.577.2 2
408.149 odd 4 1224.2.w.e.217.1 2
408.251 even 4 2448.2.be.i.1441.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.k.d.81.1 2 136.13 even 4
136.2.k.d.89.1 yes 2 8.5 even 2
272.2.o.a.81.1 2 136.115 odd 4
272.2.o.a.225.1 2 8.3 odd 2
1088.2.o.b.769.1 2 1.1 even 1 trivial
1088.2.o.b.897.1 2 17.13 even 4 inner
1088.2.o.q.769.1 2 4.3 odd 2
1088.2.o.q.897.1 2 68.47 odd 4
1224.2.w.e.217.1 2 408.149 odd 4
1224.2.w.e.361.1 2 24.5 odd 2
2312.2.a.k.1.1 2 136.93 even 8
2312.2.a.k.1.2 2 136.77 even 8
2312.2.b.a.577.1 2 136.53 even 8
2312.2.b.a.577.2 2 136.117 even 8
2448.2.be.i.1441.1 2 408.251 even 4
2448.2.be.i.1585.1 2 24.11 even 2
4624.2.a.t.1.1 2 136.43 odd 8
4624.2.a.t.1.2 2 136.59 odd 8