Properties

Label 1352.2.o.f.1161.1
Level $1352$
Weight $2$
Character 1352.1161
Analytic conductor $10.796$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1352,2,Mod(361,1352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1352, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1352.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1352 = 2^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1352.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,2,0,0,0,6,0,-6,0,-6,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7957743533\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.195105024.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 4x^{5} - 20x^{4} + 12x^{3} + 45x^{2} - 108x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1161.1
Root \(0.560908 - 1.63871i\) of defining polynomial
Character \(\chi\) \(=\) 1352.1161
Dual form 1352.2.o.f.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13871 + 1.97231i) q^{3} -1.12182i q^{5} +(2.26053 - 1.30512i) q^{7} +(-1.09334 - 1.89372i) q^{9} +(-2.26053 - 1.30512i) q^{11} +(2.21257 + 1.27743i) q^{15} +(-2.77743 - 4.81064i) q^{17} +(-6.88024 + 3.97231i) q^{19} +5.94462i q^{21} +(-1.13871 + 1.97231i) q^{23} +3.74153 q^{25} -1.85229 q^{27} +(-3.89924 + 6.75369i) q^{29} +8.26259i q^{31} +(5.14819 - 2.97231i) q^{33} +(-1.46410 - 2.53590i) q^{35} +(-3.11971 - 1.80117i) q^{37} +(-4.96410 - 2.86603i) q^{41} +(2.01690 + 3.49337i) q^{43} +(-2.12440 + 1.22652i) q^{45} +2.66562i q^{47} +(-0.0933372 + 0.161665i) q^{49} +12.6508 q^{51} -9.54002 q^{53} +(-1.46410 + 2.53590i) q^{55} -18.0933i q^{57} +(-3.31749 + 1.91535i) q^{59} +(-3.84229 - 6.65503i) q^{61} +(-4.94304 - 2.85387i) q^{63} +(1.52690 + 0.881557i) q^{67} +(-2.59334 - 4.49179i) q^{69} +(-0.880242 + 0.508208i) q^{71} +0.323330i q^{73} +(-4.26053 + 7.37945i) q^{75} -6.81333 q^{77} -2.66877 q^{79} +(5.38924 - 9.33444i) q^{81} -2.77953i q^{83} +(-5.39666 + 3.11576i) q^{85} +(-8.88024 - 15.3810i) q^{87} +(9.99531 + 5.77080i) q^{89} +(-16.2964 - 9.40872i) q^{93} +(4.45620 + 7.71837i) q^{95} +(-13.5553 + 7.82618i) q^{97} +5.70773i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{3} + 6 q^{7} - 6 q^{9} - 6 q^{11} + 6 q^{19} + 2 q^{23} - 20 q^{25} - 28 q^{27} - 8 q^{29} - 6 q^{33} + 16 q^{35} + 24 q^{37} - 12 q^{41} + 6 q^{43} - 30 q^{45} + 2 q^{49} + 68 q^{51} + 20 q^{53}+ \cdots - 30 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1352\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1185\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.13871 + 1.97231i −0.657437 + 1.13871i 0.323840 + 0.946112i \(0.395026\pi\)
−0.981277 + 0.192602i \(0.938307\pi\)
\(4\) 0 0
\(5\) 1.12182i 0.501691i −0.968027 0.250846i \(-0.919291\pi\)
0.968027 0.250846i \(-0.0807087\pi\)
\(6\) 0 0
\(7\) 2.26053 1.30512i 0.854400 0.493288i −0.00773308 0.999970i \(-0.502462\pi\)
0.862133 + 0.506682i \(0.169128\pi\)
\(8\) 0 0
\(9\) −1.09334 1.89372i −0.364446 0.631239i
\(10\) 0 0
\(11\) −2.26053 1.30512i −0.681575 0.393508i 0.118873 0.992909i \(-0.462072\pi\)
−0.800448 + 0.599402i \(0.795405\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 2.21257 + 1.27743i 0.571283 + 0.329830i
\(16\) 0 0
\(17\) −2.77743 4.81064i −0.673625 1.16675i −0.976869 0.213840i \(-0.931403\pi\)
0.303244 0.952913i \(-0.401930\pi\)
\(18\) 0 0
\(19\) −6.88024 + 3.97231i −1.57844 + 0.911310i −0.583358 + 0.812215i \(0.698261\pi\)
−0.995078 + 0.0990951i \(0.968405\pi\)
\(20\) 0 0
\(21\) 5.94462i 1.29722i
\(22\) 0 0
\(23\) −1.13871 + 1.97231i −0.237438 + 0.411255i −0.959978 0.280074i \(-0.909641\pi\)
0.722540 + 0.691329i \(0.242974\pi\)
\(24\) 0 0
\(25\) 3.74153 0.748306
\(26\) 0 0
\(27\) −1.85229 −0.356473
\(28\) 0 0
\(29\) −3.89924 + 6.75369i −0.724071 + 1.25413i 0.235284 + 0.971927i \(0.424398\pi\)
−0.959355 + 0.282202i \(0.908935\pi\)
\(30\) 0 0
\(31\) 8.26259i 1.48400i 0.670397 + 0.742002i \(0.266124\pi\)
−0.670397 + 0.742002i \(0.733876\pi\)
\(32\) 0 0
\(33\) 5.14819 2.97231i 0.896185 0.517413i
\(34\) 0 0
\(35\) −1.46410 2.53590i −0.247478 0.428645i
\(36\) 0 0
\(37\) −3.11971 1.80117i −0.512878 0.296110i 0.221138 0.975243i \(-0.429023\pi\)
−0.734016 + 0.679132i \(0.762356\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.96410 2.86603i −0.775262 0.447598i 0.0594862 0.998229i \(-0.481054\pi\)
−0.834749 + 0.550631i \(0.814387\pi\)
\(42\) 0 0
\(43\) 2.01690 + 3.49337i 0.307574 + 0.532734i 0.977831 0.209395i \(-0.0671495\pi\)
−0.670257 + 0.742129i \(0.733816\pi\)
\(44\) 0 0
\(45\) −2.12440 + 1.22652i −0.316687 + 0.182839i
\(46\) 0 0
\(47\) 2.66562i 0.388820i 0.980920 + 0.194410i \(0.0622792\pi\)
−0.980920 + 0.194410i \(0.937721\pi\)
\(48\) 0 0
\(49\) −0.0933372 + 0.161665i −0.0133339 + 0.0230950i
\(50\) 0 0
\(51\) 12.6508 1.77146
\(52\) 0 0
\(53\) −9.54002 −1.31042 −0.655211 0.755446i \(-0.727420\pi\)
−0.655211 + 0.755446i \(0.727420\pi\)
\(54\) 0 0
\(55\) −1.46410 + 2.53590i −0.197419 + 0.341940i
\(56\) 0 0
\(57\) 18.0933i 2.39652i
\(58\) 0 0
\(59\) −3.31749 + 1.91535i −0.431900 + 0.249358i −0.700156 0.713990i \(-0.746886\pi\)
0.268256 + 0.963348i \(0.413553\pi\)
\(60\) 0 0
\(61\) −3.84229 6.65503i −0.491954 0.852090i 0.508003 0.861355i \(-0.330384\pi\)
−0.999957 + 0.00926564i \(0.997051\pi\)
\(62\) 0 0
\(63\) −4.94304 2.85387i −0.622765 0.359553i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.52690 + 0.881557i 0.186541 + 0.107699i 0.590362 0.807139i \(-0.298985\pi\)
−0.403821 + 0.914838i \(0.632318\pi\)
\(68\) 0 0
\(69\) −2.59334 4.49179i −0.312201 0.540748i
\(70\) 0 0
\(71\) −0.880242 + 0.508208i −0.104466 + 0.0603132i −0.551323 0.834292i \(-0.685877\pi\)
0.446857 + 0.894605i \(0.352543\pi\)
\(72\) 0 0
\(73\) 0.323330i 0.0378429i 0.999821 + 0.0189214i \(0.00602324\pi\)
−0.999821 + 0.0189214i \(0.993977\pi\)
\(74\) 0 0
\(75\) −4.26053 + 7.37945i −0.491964 + 0.852106i
\(76\) 0 0
\(77\) −6.81333 −0.776451
\(78\) 0 0
\(79\) −2.66877 −0.300260 −0.150130 0.988666i \(-0.547969\pi\)
−0.150130 + 0.988666i \(0.547969\pi\)
\(80\) 0 0
\(81\) 5.38924 9.33444i 0.598804 1.03716i
\(82\) 0 0
\(83\) 2.77953i 0.305093i −0.988296 0.152547i \(-0.951253\pi\)
0.988296 0.152547i \(-0.0487474\pi\)
\(84\) 0 0
\(85\) −5.39666 + 3.11576i −0.585350 + 0.337952i
\(86\) 0 0
\(87\) −8.88024 15.3810i −0.952062 1.64902i
\(88\) 0 0
\(89\) 9.99531 + 5.77080i 1.05950 + 0.611703i 0.925294 0.379250i \(-0.123818\pi\)
0.134207 + 0.990953i \(0.457151\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −16.2964 9.40872i −1.68986 0.975639i
\(94\) 0 0
\(95\) 4.45620 + 7.71837i 0.457197 + 0.791888i
\(96\) 0 0
\(97\) −13.5553 + 7.82618i −1.37634 + 0.794628i −0.991716 0.128447i \(-0.959001\pi\)
−0.384619 + 0.923075i \(0.625667\pi\)
\(98\) 0 0
\(99\) 5.70773i 0.573649i
\(100\) 0 0
\(101\) 8.17667 14.1624i 0.813609 1.40921i −0.0967132 0.995312i \(-0.530833\pi\)
0.910322 0.413900i \(-0.135834\pi\)
\(102\) 0 0
\(103\) 2.24363 0.221072 0.110536 0.993872i \(-0.464743\pi\)
0.110536 + 0.993872i \(0.464743\pi\)
\(104\) 0 0
\(105\) 6.66877 0.650805
\(106\) 0 0
\(107\) 5.41614 9.38103i 0.523598 0.906898i −0.476025 0.879432i \(-0.657923\pi\)
0.999623 0.0274665i \(-0.00874397\pi\)
\(108\) 0 0
\(109\) 2.92820i 0.280471i −0.990118 0.140236i \(-0.955214\pi\)
0.990118 0.140236i \(-0.0447860\pi\)
\(110\) 0 0
\(111\) 7.10492 4.10203i 0.674369 0.389347i
\(112\) 0 0
\(113\) −5.02106 8.69673i −0.472342 0.818120i 0.527158 0.849768i \(-0.323258\pi\)
−0.999499 + 0.0316481i \(0.989924\pi\)
\(114\) 0 0
\(115\) 2.21257 + 1.27743i 0.206323 + 0.119121i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.5569 7.24974i −1.15109 0.664582i
\(120\) 0 0
\(121\) −2.09334 3.62577i −0.190303 0.329615i
\(122\) 0 0
\(123\) 11.3054 6.52716i 1.01937 0.588535i
\(124\) 0 0
\(125\) 9.80639i 0.877110i
\(126\) 0 0
\(127\) 0.195671 0.338912i 0.0173630 0.0300736i −0.857213 0.514961i \(-0.827806\pi\)
0.874576 + 0.484888i \(0.161140\pi\)
\(128\) 0 0
\(129\) −9.18667 −0.808842
\(130\) 0 0
\(131\) −19.3533 −1.69091 −0.845455 0.534047i \(-0.820670\pi\)
−0.845455 + 0.534047i \(0.820670\pi\)
\(132\) 0 0
\(133\) −10.3687 + 17.9590i −0.899077 + 1.55725i
\(134\) 0 0
\(135\) 2.07793i 0.178840i
\(136\) 0 0
\(137\) −3.44304 + 1.98784i −0.294159 + 0.169833i −0.639816 0.768528i \(-0.720989\pi\)
0.345657 + 0.938361i \(0.387656\pi\)
\(138\) 0 0
\(139\) 9.48100 + 16.4216i 0.804168 + 1.39286i 0.916851 + 0.399229i \(0.130722\pi\)
−0.112684 + 0.993631i \(0.535945\pi\)
\(140\) 0 0
\(141\) −5.25742 3.03537i −0.442755 0.255624i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 7.57639 + 4.37423i 0.629185 + 0.363260i
\(146\) 0 0
\(147\) −0.212569 0.368180i −0.0175324 0.0303670i
\(148\) 0 0
\(149\) 1.27259 0.734731i 0.104255 0.0601915i −0.446966 0.894551i \(-0.647496\pi\)
0.551221 + 0.834359i \(0.314162\pi\)
\(150\) 0 0
\(151\) 5.59382i 0.455218i −0.973753 0.227609i \(-0.926909\pi\)
0.973753 0.227609i \(-0.0730909\pi\)
\(152\) 0 0
\(153\) −6.07333 + 10.5193i −0.491000 + 0.850436i
\(154\) 0 0
\(155\) 9.26910 0.744512
\(156\) 0 0
\(157\) 0.430307 0.0343422 0.0171711 0.999853i \(-0.494534\pi\)
0.0171711 + 0.999853i \(0.494534\pi\)
\(158\) 0 0
\(159\) 10.8633 18.8159i 0.861519 1.49220i
\(160\) 0 0
\(161\) 5.94462i 0.468502i
\(162\) 0 0
\(163\) 3.18873 1.84102i 0.249761 0.144199i −0.369894 0.929074i \(-0.620606\pi\)
0.619655 + 0.784875i \(0.287273\pi\)
\(164\) 0 0
\(165\) −3.33438 5.77532i −0.259582 0.449608i
\(166\) 0 0
\(167\) −14.2605 8.23332i −1.10351 0.637113i −0.166371 0.986063i \(-0.553205\pi\)
−0.937141 + 0.348950i \(0.886538\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 15.0449 + 8.68615i 1.15051 + 0.664246i
\(172\) 0 0
\(173\) 11.8897 + 20.5936i 0.903959 + 1.56570i 0.822309 + 0.569041i \(0.192686\pi\)
0.0816498 + 0.996661i \(0.473981\pi\)
\(174\) 0 0
\(175\) 8.45784 4.88313i 0.639352 0.369130i
\(176\) 0 0
\(177\) 8.72415i 0.655747i
\(178\) 0 0
\(179\) 2.53796 4.39587i 0.189696 0.328563i −0.755453 0.655203i \(-0.772583\pi\)
0.945149 + 0.326640i \(0.105916\pi\)
\(180\) 0 0
\(181\) −9.16667 −0.681353 −0.340676 0.940181i \(-0.610656\pi\)
−0.340676 + 0.940181i \(0.610656\pi\)
\(182\) 0 0
\(183\) 17.5011 1.29371
\(184\) 0 0
\(185\) −2.02058 + 3.49974i −0.148556 + 0.257306i
\(186\) 0 0
\(187\) 14.4995i 1.06031i
\(188\) 0 0
\(189\) −4.18716 + 2.41746i −0.304571 + 0.175844i
\(190\) 0 0
\(191\) 8.49205 + 14.7087i 0.614463 + 1.06428i 0.990478 + 0.137668i \(0.0439608\pi\)
−0.376015 + 0.926614i \(0.622706\pi\)
\(192\) 0 0
\(193\) 17.7426 + 10.2437i 1.27714 + 0.737356i 0.976321 0.216325i \(-0.0694072\pi\)
0.300817 + 0.953682i \(0.402740\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.4594 + 7.77080i 0.958944 + 0.553646i 0.895848 0.444361i \(-0.146569\pi\)
0.0630958 + 0.998007i \(0.479903\pi\)
\(198\) 0 0
\(199\) −9.67873 16.7640i −0.686107 1.18837i −0.973088 0.230436i \(-0.925985\pi\)
0.286981 0.957936i \(-0.407348\pi\)
\(200\) 0 0
\(201\) −3.47741 + 2.00768i −0.245277 + 0.141611i
\(202\) 0 0
\(203\) 20.3559i 1.42870i
\(204\) 0 0
\(205\) −3.21515 + 5.56881i −0.224556 + 0.388942i
\(206\) 0 0
\(207\) 4.97999 0.346133
\(208\) 0 0
\(209\) 20.7373 1.43443
\(210\) 0 0
\(211\) −9.93720 + 17.2117i −0.684105 + 1.18490i 0.289612 + 0.957144i \(0.406474\pi\)
−0.973717 + 0.227761i \(0.926860\pi\)
\(212\) 0 0
\(213\) 2.31481i 0.158608i
\(214\) 0 0
\(215\) 3.91892 2.26259i 0.267268 0.154307i
\(216\) 0 0
\(217\) 10.7836 + 18.6778i 0.732042 + 1.26793i
\(218\) 0 0
\(219\) −0.637706 0.368180i −0.0430922 0.0248793i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 14.9613 + 8.63792i 1.00188 + 0.578438i 0.908805 0.417220i \(-0.136996\pi\)
0.0930791 + 0.995659i \(0.470329\pi\)
\(224\) 0 0
\(225\) −4.09075 7.08539i −0.272717 0.472359i
\(226\) 0 0
\(227\) 6.97616 4.02769i 0.463024 0.267327i −0.250291 0.968171i \(-0.580526\pi\)
0.713315 + 0.700844i \(0.247193\pi\)
\(228\) 0 0
\(229\) 10.9282i 0.722156i 0.932536 + 0.361078i \(0.117591\pi\)
−0.932536 + 0.361078i \(0.882409\pi\)
\(230\) 0 0
\(231\) 7.75843 13.4380i 0.510467 0.884155i
\(232\) 0 0
\(233\) 4.66877 0.305861 0.152931 0.988237i \(-0.451129\pi\)
0.152931 + 0.988237i \(0.451129\pi\)
\(234\) 0 0
\(235\) 2.99033 0.195068
\(236\) 0 0
\(237\) 3.03896 5.26364i 0.197402 0.341910i
\(238\) 0 0
\(239\) 17.4862i 1.13109i 0.824718 + 0.565545i \(0.191334\pi\)
−0.824718 + 0.565545i \(0.808666\pi\)
\(240\) 0 0
\(241\) 12.2184 7.05428i 0.787054 0.454406i −0.0518703 0.998654i \(-0.516518\pi\)
0.838924 + 0.544248i \(0.183185\pi\)
\(242\) 0 0
\(243\) 9.49516 + 16.4461i 0.609115 + 1.05502i
\(244\) 0 0
\(245\) 0.181358 + 0.104707i 0.0115865 + 0.00668950i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 5.48210 + 3.16509i 0.347414 + 0.200579i
\(250\) 0 0
\(251\) −9.28642 16.0846i −0.586154 1.01525i −0.994731 0.102524i \(-0.967308\pi\)
0.408577 0.912724i \(-0.366025\pi\)
\(252\) 0 0
\(253\) 5.14819 2.97231i 0.323664 0.186868i
\(254\) 0 0
\(255\) 14.1918i 0.888728i
\(256\) 0 0
\(257\) −2.16562 + 3.75096i −0.135087 + 0.233978i −0.925631 0.378428i \(-0.876465\pi\)
0.790543 + 0.612406i \(0.209798\pi\)
\(258\) 0 0
\(259\) −9.40294 −0.584270
\(260\) 0 0
\(261\) 17.0528 1.05554
\(262\) 0 0
\(263\) 2.11282 3.65951i 0.130282 0.225655i −0.793503 0.608566i \(-0.791745\pi\)
0.923785 + 0.382911i \(0.125078\pi\)
\(264\) 0 0
\(265\) 10.7021i 0.657427i
\(266\) 0 0
\(267\) −22.7636 + 13.1426i −1.39311 + 0.804312i
\(268\) 0 0
\(269\) 4.11440 + 7.12634i 0.250859 + 0.434501i 0.963763 0.266761i \(-0.0859536\pi\)
−0.712903 + 0.701262i \(0.752620\pi\)
\(270\) 0 0
\(271\) −6.68567 3.85997i −0.406125 0.234477i 0.282998 0.959120i \(-0.408671\pi\)
−0.689124 + 0.724644i \(0.742004\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.45784 4.88313i −0.510027 0.294464i
\(276\) 0 0
\(277\) −4.75153 8.22990i −0.285492 0.494487i 0.687236 0.726434i \(-0.258824\pi\)
−0.972728 + 0.231947i \(0.925490\pi\)
\(278\) 0 0
\(279\) 15.6470 9.03380i 0.936761 0.540839i
\(280\) 0 0
\(281\) 23.0300i 1.37386i −0.726726 0.686928i \(-0.758959\pi\)
0.726726 0.686928i \(-0.241041\pi\)
\(282\) 0 0
\(283\) −6.68567 + 11.5799i −0.397422 + 0.688355i −0.993407 0.114641i \(-0.963428\pi\)
0.595985 + 0.802995i \(0.296762\pi\)
\(284\) 0 0
\(285\) −20.2973 −1.20231
\(286\) 0 0
\(287\) −14.9620 −0.883179
\(288\) 0 0
\(289\) −6.92820 + 12.0000i −0.407541 + 0.705882i
\(290\) 0 0
\(291\) 35.6471i 2.08967i
\(292\) 0 0
\(293\) −15.0659 + 8.69831i −0.880160 + 0.508161i −0.870711 0.491795i \(-0.836341\pi\)
−0.00944872 + 0.999955i \(0.503008\pi\)
\(294\) 0 0
\(295\) 2.14867 + 3.72161i 0.125101 + 0.216681i
\(296\) 0 0
\(297\) 4.18716 + 2.41746i 0.242963 + 0.140275i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 9.11851 + 5.26458i 0.525582 + 0.303445i
\(302\) 0 0
\(303\) 18.6218 + 32.2539i 1.06979 + 1.85294i
\(304\) 0 0
\(305\) −7.46572 + 4.31034i −0.427486 + 0.246809i
\(306\) 0 0
\(307\) 4.00315i 0.228472i −0.993454 0.114236i \(-0.963558\pi\)
0.993454 0.114236i \(-0.0364420\pi\)
\(308\) 0 0
\(309\) −2.55485 + 4.42514i −0.145341 + 0.251737i
\(310\) 0 0
\(311\) −28.4630 −1.61399 −0.806996 0.590557i \(-0.798908\pi\)
−0.806996 + 0.590557i \(0.798908\pi\)
\(312\) 0 0
\(313\) −3.55906 −0.201170 −0.100585 0.994928i \(-0.532071\pi\)
−0.100585 + 0.994928i \(0.532071\pi\)
\(314\) 0 0
\(315\) −3.20151 + 5.54518i −0.180385 + 0.312436i
\(316\) 0 0
\(317\) 1.38125i 0.0775787i 0.999247 + 0.0387894i \(0.0123501\pi\)
−0.999247 + 0.0387894i \(0.987650\pi\)
\(318\) 0 0
\(319\) 17.6287 10.1779i 0.987018 0.569855i
\(320\) 0 0
\(321\) 12.3349 + 21.3646i 0.688465 + 1.19246i
\(322\) 0 0
\(323\) 38.2187 + 22.0656i 2.12655 + 1.22776i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 5.77532 + 3.33438i 0.319376 + 0.184392i
\(328\) 0 0
\(329\) 3.47894 + 6.02570i 0.191800 + 0.332208i
\(330\) 0 0
\(331\) −8.16461 + 4.71384i −0.448767 + 0.259096i −0.707310 0.706904i \(-0.750091\pi\)
0.258542 + 0.966000i \(0.416758\pi\)
\(332\) 0 0
\(333\) 7.87713i 0.431664i
\(334\) 0 0
\(335\) 0.988945 1.71290i 0.0540318 0.0935859i
\(336\) 0 0
\(337\) 1.21215 0.0660298 0.0330149 0.999455i \(-0.489489\pi\)
0.0330149 + 0.999455i \(0.489489\pi\)
\(338\) 0 0
\(339\) 22.8702 1.24214
\(340\) 0 0
\(341\) 10.7836 18.6778i 0.583967 1.01146i
\(342\) 0 0
\(343\) 18.7589i 1.01289i
\(344\) 0 0
\(345\) −5.03896 + 2.90925i −0.271289 + 0.156629i
\(346\) 0 0
\(347\) 7.13871 + 12.3646i 0.383226 + 0.663767i 0.991521 0.129944i \(-0.0414796\pi\)
−0.608295 + 0.793711i \(0.708146\pi\)
\(348\) 0 0
\(349\) −20.2862 11.7123i −1.08590 0.626943i −0.153416 0.988162i \(-0.549027\pi\)
−0.932481 + 0.361219i \(0.882361\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.02421 4.05543i −0.373861 0.215849i 0.301283 0.953535i \(-0.402585\pi\)
−0.675144 + 0.737686i \(0.735919\pi\)
\(354\) 0 0
\(355\) 0.570116 + 0.987470i 0.0302586 + 0.0524095i
\(356\) 0 0
\(357\) 28.5975 16.5107i 1.51354 0.873841i
\(358\) 0 0
\(359\) 26.3302i 1.38965i −0.719177 0.694827i \(-0.755481\pi\)
0.719177 0.694827i \(-0.244519\pi\)
\(360\) 0 0
\(361\) 22.0585 38.2064i 1.16097 2.01086i
\(362\) 0 0
\(363\) 9.53485 0.500450
\(364\) 0 0
\(365\) 0.362716 0.0189854
\(366\) 0 0
\(367\) 5.04279 8.73437i 0.263232 0.455930i −0.703867 0.710332i \(-0.748545\pi\)
0.967099 + 0.254401i \(0.0818783\pi\)
\(368\) 0 0
\(369\) 12.5341i 0.652501i
\(370\) 0 0
\(371\) −21.5655 + 12.4508i −1.11962 + 0.646415i
\(372\) 0 0
\(373\) −0.305425 0.529011i −0.0158143 0.0273912i 0.858010 0.513633i \(-0.171701\pi\)
−0.873824 + 0.486242i \(0.838367\pi\)
\(374\) 0 0
\(375\) 19.3412 + 11.1667i 0.998777 + 0.576644i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −3.12291 1.80301i −0.160413 0.0926146i 0.417644 0.908611i \(-0.362856\pi\)
−0.578058 + 0.815996i \(0.696189\pi\)
\(380\) 0 0
\(381\) 0.445627 + 0.771848i 0.0228302 + 0.0395430i
\(382\) 0 0
\(383\) 10.3744 5.98969i 0.530109 0.306059i −0.210952 0.977497i \(-0.567656\pi\)
0.741061 + 0.671438i \(0.234323\pi\)
\(384\) 0 0
\(385\) 7.64330i 0.389539i
\(386\) 0 0
\(387\) 4.41030 7.63886i 0.224188 0.388305i
\(388\) 0 0
\(389\) 10.1245 0.513335 0.256667 0.966500i \(-0.417375\pi\)
0.256667 + 0.966500i \(0.417375\pi\)
\(390\) 0 0
\(391\) 12.6508 0.639777
\(392\) 0 0
\(393\) 22.0379 38.1708i 1.11167 1.92546i
\(394\) 0 0
\(395\) 2.99387i 0.150638i
\(396\) 0 0
\(397\) 9.98985 5.76764i 0.501376 0.289470i −0.227906 0.973683i \(-0.573188\pi\)
0.729282 + 0.684214i \(0.239854\pi\)
\(398\) 0 0
\(399\) −23.6139 40.9004i −1.18217 2.04758i
\(400\) 0 0
\(401\) −4.40408 2.54270i −0.219929 0.126976i 0.385988 0.922504i \(-0.373861\pi\)
−0.605917 + 0.795528i \(0.707194\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −10.4715 6.04573i −0.520334 0.300415i
\(406\) 0 0
\(407\) 4.70147 + 8.14318i 0.233043 + 0.403643i
\(408\) 0 0
\(409\) 33.6287 19.4155i 1.66283 0.960036i 0.691476 0.722399i \(-0.256961\pi\)
0.971354 0.237636i \(-0.0763727\pi\)
\(410\) 0 0
\(411\) 9.05433i 0.446617i
\(412\) 0 0
\(413\) −4.99952 + 8.65942i −0.246010 + 0.426102i
\(414\) 0 0
\(415\) −3.11812 −0.153063
\(416\) 0 0
\(417\) −43.1846 −2.11476
\(418\) 0 0
\(419\) 9.36751 16.2250i 0.457633 0.792643i −0.541203 0.840892i \(-0.682031\pi\)
0.998835 + 0.0482492i \(0.0153642\pi\)
\(420\) 0 0
\(421\) 7.50063i 0.365558i −0.983154 0.182779i \(-0.941491\pi\)
0.983154 0.182779i \(-0.0585093\pi\)
\(422\) 0 0
\(423\) 5.04792 2.91442i 0.245438 0.141704i
\(424\) 0 0
\(425\) −10.3918 17.9992i −0.504077 0.873088i
\(426\) 0 0
\(427\) −17.3712 10.0293i −0.840651 0.485350i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9.41341 5.43483i −0.453428 0.261787i 0.255849 0.966717i \(-0.417645\pi\)
−0.709277 + 0.704930i \(0.750978\pi\)
\(432\) 0 0
\(433\) 0.0780169 + 0.135129i 0.00374925 + 0.00649389i 0.867894 0.496750i \(-0.165473\pi\)
−0.864145 + 0.503243i \(0.832140\pi\)
\(434\) 0 0
\(435\) −17.2547 + 9.96200i −0.827299 + 0.477641i
\(436\) 0 0
\(437\) 18.0933i 0.865520i
\(438\) 0 0
\(439\) −3.85435 + 6.67593i −0.183958 + 0.318625i −0.943225 0.332155i \(-0.892224\pi\)
0.759267 + 0.650779i \(0.225558\pi\)
\(440\) 0 0
\(441\) 0.408196 0.0194379
\(442\) 0 0
\(443\) −5.59697 −0.265920 −0.132960 0.991121i \(-0.542448\pi\)
−0.132960 + 0.991121i \(0.542448\pi\)
\(444\) 0 0
\(445\) 6.47377 11.2129i 0.306886 0.531543i
\(446\) 0 0
\(447\) 3.34659i 0.158288i
\(448\) 0 0
\(449\) −16.3728 + 9.45283i −0.772679 + 0.446107i −0.833830 0.552022i \(-0.813856\pi\)
0.0611504 + 0.998129i \(0.480523\pi\)
\(450\) 0 0
\(451\) 7.48100 + 12.9575i 0.352266 + 0.610143i
\(452\) 0 0
\(453\) 11.0327 + 6.36976i 0.518363 + 0.299277i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 9.11698 + 5.26369i 0.426474 + 0.246225i 0.697844 0.716250i \(-0.254143\pi\)
−0.271369 + 0.962475i \(0.587476\pi\)
\(458\) 0 0
\(459\) 5.14460 + 8.91071i 0.240129 + 0.415916i
\(460\) 0 0
\(461\) −1.45515 + 0.840131i −0.0677731 + 0.0391288i −0.533504 0.845798i \(-0.679125\pi\)
0.465731 + 0.884927i \(0.345792\pi\)
\(462\) 0 0
\(463\) 18.7795i 0.872759i 0.899763 + 0.436379i \(0.143739\pi\)
−0.899763 + 0.436379i \(0.856261\pi\)
\(464\) 0 0
\(465\) −10.5549 + 18.2815i −0.489470 + 0.847786i
\(466\) 0 0
\(467\) −16.6604 −0.770949 −0.385475 0.922718i \(-0.625962\pi\)
−0.385475 + 0.922718i \(0.625962\pi\)
\(468\) 0 0
\(469\) 4.60214 0.212507
\(470\) 0 0
\(471\) −0.489996 + 0.848698i −0.0225778 + 0.0391059i
\(472\) 0 0
\(473\) 10.5292i 0.484131i
\(474\) 0 0
\(475\) −25.7426 + 14.8625i −1.18115 + 0.681939i
\(476\) 0 0
\(477\) 10.4305 + 18.0661i 0.477578 + 0.827189i
\(478\) 0 0
\(479\) −10.6704 6.16056i −0.487543 0.281483i 0.236011 0.971750i \(-0.424160\pi\)
−0.723555 + 0.690267i \(0.757493\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −11.7246 6.76922i −0.533489 0.308010i
\(484\) 0 0
\(485\) 8.77953 + 15.2066i 0.398658 + 0.690496i
\(486\) 0 0
\(487\) −32.2215 + 18.6031i −1.46009 + 0.842986i −0.999015 0.0443730i \(-0.985871\pi\)
−0.461079 + 0.887359i \(0.652538\pi\)
\(488\) 0 0
\(489\) 8.38556i 0.379208i
\(490\) 0 0
\(491\) −7.36708 + 12.7602i −0.332472 + 0.575858i −0.982996 0.183628i \(-0.941216\pi\)
0.650524 + 0.759486i \(0.274549\pi\)
\(492\) 0 0
\(493\) 43.3195 1.95101
\(494\) 0 0
\(495\) 6.40303 0.287795
\(496\) 0 0
\(497\) −1.32654 + 2.29764i −0.0595036 + 0.103063i
\(498\) 0 0
\(499\) 19.2287i 0.860795i −0.902639 0.430397i \(-0.858373\pi\)
0.902639 0.430397i \(-0.141627\pi\)
\(500\) 0 0
\(501\) 32.4773 18.7508i 1.45098 0.837723i
\(502\) 0 0
\(503\) −17.4040 30.1447i −0.776007 1.34408i −0.934226 0.356680i \(-0.883909\pi\)
0.158219 0.987404i \(-0.449425\pi\)
\(504\) 0 0
\(505\) −15.8876 9.17272i −0.706990 0.408181i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.52370 2.61176i −0.200510 0.115764i 0.396384 0.918085i \(-0.370265\pi\)
−0.596893 + 0.802321i \(0.703598\pi\)
\(510\) 0 0
\(511\) 0.421983 + 0.730896i 0.0186674 + 0.0323329i
\(512\) 0 0
\(513\) 12.7442 7.35787i 0.562670 0.324858i
\(514\) 0 0
\(515\) 2.51694i 0.110910i
\(516\) 0 0
\(517\) 3.47894 6.02570i 0.153004 0.265010i
\(518\) 0 0
\(519\) −54.1559 −2.37718
\(520\) 0 0
\(521\) −7.92917 −0.347383 −0.173692 0.984800i \(-0.555570\pi\)
−0.173692 + 0.984800i \(0.555570\pi\)
\(522\) 0 0
\(523\) −15.9683 + 27.6578i −0.698243 + 1.20939i 0.270832 + 0.962627i \(0.412701\pi\)
−0.969075 + 0.246766i \(0.920632\pi\)
\(524\) 0 0
\(525\) 22.2420i 0.970719i
\(526\) 0 0
\(527\) 39.7484 22.9487i 1.73147 0.999663i
\(528\) 0 0
\(529\) 8.90666 + 15.4268i 0.387246 + 0.670730i
\(530\) 0 0
\(531\) 7.25426 + 4.18825i 0.314808 + 0.181755i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −10.5238 6.07591i −0.454983 0.262685i
\(536\) 0 0
\(537\) 5.78001 + 10.0113i 0.249426 + 0.432018i
\(538\) 0 0
\(539\) 0.421983 0.243632i 0.0181761 0.0104940i
\(540\) 0 0
\(541\) 17.1534i 0.737483i 0.929532 + 0.368742i \(0.120211\pi\)
−0.929532 + 0.368742i \(0.879789\pi\)
\(542\) 0 0
\(543\) 10.4382 18.0795i 0.447946 0.775866i
\(544\) 0 0
\(545\) −3.28491 −0.140710
\(546\) 0 0
\(547\) 15.4885 0.662241 0.331121 0.943588i \(-0.392573\pi\)
0.331121 + 0.943588i \(0.392573\pi\)
\(548\) 0 0
\(549\) −8.40183 + 14.5524i −0.358581 + 0.621081i
\(550\) 0 0
\(551\) 61.9560i 2.63941i
\(552\) 0 0
\(553\) −6.03283 + 3.48306i −0.256542 + 0.148115i
\(554\) 0 0
\(555\) −4.60172 7.97041i −0.195332 0.338325i
\(556\) 0 0
\(557\) 27.4972 + 15.8755i 1.16509 + 0.672667i 0.952519 0.304478i \(-0.0984821\pi\)
0.212574 + 0.977145i \(0.431815\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −28.5975 16.5107i −1.20739 0.697084i
\(562\) 0 0
\(563\) −17.0739 29.5728i −0.719577 1.24634i −0.961167 0.275966i \(-0.911002\pi\)
0.241590 0.970378i \(-0.422331\pi\)
\(564\) 0 0
\(565\) −9.75613 + 5.63270i −0.410444 + 0.236970i
\(566\) 0 0
\(567\) 28.1344i 1.18153i
\(568\) 0 0
\(569\) 1.13987 1.97431i 0.0477858 0.0827674i −0.841143 0.540812i \(-0.818117\pi\)
0.888929 + 0.458045i \(0.151450\pi\)
\(570\) 0 0
\(571\) 24.5631 1.02793 0.513967 0.857810i \(-0.328176\pi\)
0.513967 + 0.857810i \(0.328176\pi\)
\(572\) 0 0
\(573\) −38.6801 −1.61588
\(574\) 0 0
\(575\) −4.26053 + 7.37945i −0.177676 + 0.307744i
\(576\) 0 0
\(577\) 10.6670i 0.444073i 0.975038 + 0.222037i \(0.0712704\pi\)
−0.975038 + 0.222037i \(0.928730\pi\)
\(578\) 0 0
\(579\) −40.4074 + 23.3292i −1.67928 + 0.969530i
\(580\) 0 0
\(581\) −3.62761 6.28321i −0.150499 0.260672i
\(582\) 0 0
\(583\) 21.5655 + 12.4508i 0.893151 + 0.515661i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.74262 + 1.00610i 0.0719258 + 0.0415264i 0.535532 0.844515i \(-0.320111\pi\)
−0.463606 + 0.886042i \(0.653445\pi\)
\(588\) 0 0
\(589\) −32.8216 56.8486i −1.35239 2.34241i
\(590\) 0 0
\(591\) −30.6528 + 17.6974i −1.26089 + 0.727975i
\(592\) 0 0
\(593\) 38.9058i 1.59767i 0.601552 + 0.798834i \(0.294549\pi\)
−0.601552 + 0.798834i \(0.705451\pi\)
\(594\) 0 0
\(595\) −8.13287 + 14.0865i −0.333415 + 0.577492i
\(596\) 0 0
\(597\) 44.0852 1.80429
\(598\) 0 0
\(599\) 14.2815 0.583528 0.291764 0.956490i \(-0.405758\pi\)
0.291764 + 0.956490i \(0.405758\pi\)
\(600\) 0 0
\(601\) −17.0590 + 29.5470i −0.695850 + 1.20525i 0.274043 + 0.961717i \(0.411639\pi\)
−0.969893 + 0.243530i \(0.921695\pi\)
\(602\) 0 0
\(603\) 3.85536i 0.157002i
\(604\) 0 0
\(605\) −4.06744 + 2.34834i −0.165365 + 0.0954736i
\(606\) 0 0
\(607\) −3.28327 5.68679i −0.133264 0.230820i 0.791669 0.610950i \(-0.209212\pi\)
−0.924933 + 0.380130i \(0.875879\pi\)
\(608\) 0 0
\(609\) −40.1481 23.1795i −1.62688 0.939281i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 40.0955 + 23.1491i 1.61944 + 0.934985i 0.987064 + 0.160325i \(0.0512542\pi\)
0.632378 + 0.774660i \(0.282079\pi\)
\(614\) 0 0
\(615\) −7.32228 12.6826i −0.295263 0.511410i
\(616\) 0 0
\(617\) −17.1021 + 9.87393i −0.688506 + 0.397509i −0.803052 0.595909i \(-0.796792\pi\)
0.114546 + 0.993418i \(0.463459\pi\)
\(618\) 0 0
\(619\) 6.07074i 0.244004i 0.992530 + 0.122002i \(0.0389314\pi\)
−0.992530 + 0.122002i \(0.961069\pi\)
\(620\) 0 0
\(621\) 2.10923 3.65329i 0.0846404 0.146601i
\(622\) 0 0
\(623\) 30.1263 1.20698
\(624\) 0 0
\(625\) 7.70668 0.308267
\(626\) 0 0
\(627\) −23.6139 + 40.9004i −0.943047 + 1.63341i
\(628\) 0 0
\(629\) 20.0104i 0.797869i
\(630\) 0 0
\(631\) 20.9641 12.1036i 0.834566 0.481837i −0.0208475 0.999783i \(-0.506636\pi\)
0.855413 + 0.517946i \(0.173303\pi\)
\(632\) 0 0
\(633\) −22.6312 39.1985i −0.899511 1.55800i
\(634\) 0 0
\(635\) −0.380197 0.219507i −0.0150877 0.00871087i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.92480 + 1.11129i 0.0761440 + 0.0439618i
\(640\) 0 0
\(641\) 16.8871 + 29.2494i 0.667002 + 1.15528i 0.978738 + 0.205112i \(0.0657560\pi\)
−0.311737 + 0.950169i \(0.600911\pi\)
\(642\) 0 0
\(643\) −28.4102 + 16.4026i −1.12039 + 0.646856i −0.941500 0.337013i \(-0.890583\pi\)
−0.178888 + 0.983869i \(0.557250\pi\)
\(644\) 0 0
\(645\) 10.3058i 0.405789i
\(646\) 0 0
\(647\) 19.0100 32.9262i 0.747359 1.29446i −0.201726 0.979442i \(-0.564655\pi\)
0.949085 0.315021i \(-0.102012\pi\)
\(648\) 0 0
\(649\) 9.99904 0.392497
\(650\) 0 0
\(651\) −49.1179 −1.92508
\(652\) 0 0
\(653\) 10.0005 17.3213i 0.391349 0.677836i −0.601279 0.799039i \(-0.705342\pi\)
0.992628 + 0.121203i \(0.0386752\pi\)
\(654\) 0 0
\(655\) 21.7109i 0.848315i
\(656\) 0 0
\(657\) 0.612294 0.353508i 0.0238879 0.0137917i
\(658\) 0 0
\(659\) −5.59588 9.69234i −0.217984 0.377560i 0.736207 0.676756i \(-0.236615\pi\)
−0.954192 + 0.299196i \(0.903282\pi\)
\(660\) 0 0
\(661\) −22.5870 13.0406i −0.878531 0.507220i −0.00835740 0.999965i \(-0.502660\pi\)
−0.870174 + 0.492745i \(0.835994\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 20.1467 + 11.6317i 0.781257 + 0.451059i
\(666\) 0 0
\(667\) −8.88024 15.3810i −0.343844 0.595556i
\(668\) 0 0
\(669\) −34.0733 + 19.6722i −1.31735 + 0.760573i
\(670\) 0 0
\(671\) 20.0585i 0.774351i
\(672\) 0 0
\(673\) −22.6667 + 39.2598i −0.873736 + 1.51335i −0.0156324 + 0.999878i \(0.504976\pi\)
−0.858103 + 0.513477i \(0.828357\pi\)
\(674\) 0 0
\(675\) −6.93040 −0.266751
\(676\) 0 0
\(677\) 23.6942 0.910644 0.455322 0.890327i \(-0.349524\pi\)
0.455322 + 0.890327i \(0.349524\pi\)
\(678\) 0 0
\(679\) −20.4282 + 35.3826i −0.783961 + 1.35786i
\(680\) 0 0
\(681\) 18.3455i 0.703003i
\(682\) 0 0
\(683\) 37.1501 21.4486i 1.42151 0.820709i 0.425081 0.905155i \(-0.360246\pi\)
0.996428 + 0.0844466i \(0.0269122\pi\)
\(684\) 0 0
\(685\) 2.22999 + 3.86246i 0.0852036 + 0.147577i
\(686\) 0 0
\(687\) −21.5538 12.4441i −0.822329 0.474772i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 41.6801 + 24.0640i 1.58559 + 0.915439i 0.994022 + 0.109181i \(0.0348228\pi\)
0.591564 + 0.806258i \(0.298511\pi\)
\(692\) 0 0
\(693\) 7.44926 + 12.9025i 0.282974 + 0.490125i
\(694\) 0 0
\(695\) 18.4220 10.6359i 0.698786 0.403444i
\(696\) 0 0
\(697\) 31.8407i 1.20605i
\(698\) 0 0
\(699\) −5.31639 + 9.20826i −0.201084 + 0.348288i
\(700\) 0 0
\(701\) −21.6433 −0.817456 −0.408728 0.912656i \(-0.634028\pi\)
−0.408728 + 0.912656i \(0.634028\pi\)
\(702\) 0 0
\(703\) 28.6192 1.07939
\(704\) 0 0
\(705\) −3.40513 + 5.89786i −0.128245 + 0.222126i
\(706\) 0 0
\(707\) 42.6861i 1.60537i
\(708\) 0 0
\(709\) 10.5449 6.08807i 0.396020 0.228642i −0.288745 0.957406i \(-0.593238\pi\)
0.684765 + 0.728764i \(0.259905\pi\)
\(710\) 0 0
\(711\) 2.91787 + 5.05389i 0.109428 + 0.189536i
\(712\) 0 0
\(713\) −16.2964 9.40872i −0.610304 0.352359i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −34.4882 19.9118i −1.28799 0.743619i
\(718\) 0 0
\(719\) −8.66767 15.0129i −0.323250 0.559885i 0.657907 0.753099i \(-0.271442\pi\)
−0.981157 + 0.193214i \(0.938109\pi\)
\(720\) 0 0
\(721\) 5.07180 2.92820i 0.188884 0.109052i
\(722\) 0 0
\(723\) 32.1312i 1.19497i
\(724\) 0 0
\(725\) −14.5891 + 25.2691i −0.541827 + 0.938471i
\(726\) 0 0
\(727\) −21.9600 −0.814451 −0.407225 0.913328i \(-0.633504\pi\)
−0.407225 + 0.913328i \(0.633504\pi\)
\(728\) 0 0
\(729\) −10.9137 −0.404210
\(730\) 0 0
\(731\) 11.2036 19.4052i 0.414379 0.717726i
\(732\) 0 0
\(733\) 4.24733i 0.156879i 0.996919 + 0.0784393i \(0.0249937\pi\)
−0.996919 + 0.0784393i \(0.975006\pi\)
\(734\) 0 0
\(735\) −0.413030 + 0.238463i −0.0152348 + 0.00879584i
\(736\) 0 0
\(737\) −2.30107 3.98557i −0.0847610 0.146810i
\(738\) 0 0
\(739\) −12.1138 6.99390i −0.445613 0.257275i 0.260363 0.965511i \(-0.416158\pi\)
−0.705976 + 0.708236i \(0.749491\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −41.8143 24.1415i −1.53402 0.885666i −0.999171 0.0407183i \(-0.987035\pi\)
−0.534848 0.844948i \(-0.679631\pi\)
\(744\) 0 0
\(745\) −0.824233 1.42761i −0.0301976 0.0523037i
\(746\) 0 0
\(747\) −5.26364 + 3.03896i −0.192587 + 0.111190i
\(748\) 0 0
\(749\) 28.2748i 1.03314i
\(750\) 0 0
\(751\) −7.90298 + 13.6884i −0.288384 + 0.499496i −0.973424 0.229010i \(-0.926451\pi\)
0.685040 + 0.728505i \(0.259785\pi\)
\(752\) 0 0
\(753\) 42.2983 1.54144
\(754\) 0 0
\(755\) −6.27524 −0.228379
\(756\) 0 0
\(757\) −5.30107 + 9.18172i −0.192671 + 0.333715i −0.946134 0.323774i \(-0.895048\pi\)
0.753464 + 0.657489i \(0.228382\pi\)
\(758\) 0 0
\(759\) 13.5384i 0.491414i
\(760\) 0 0
\(761\) 30.8970 17.8384i 1.12002 0.646641i 0.178610 0.983920i \(-0.442840\pi\)
0.941405 + 0.337279i \(0.109507\pi\)
\(762\) 0 0
\(763\) −3.82165 6.61929i −0.138353 0.239634i
\(764\) 0 0
\(765\) 11.8007 + 6.81316i 0.426656 + 0.246330i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −2.96572 1.71226i −0.106947 0.0617457i 0.445573 0.895246i \(-0.353000\pi\)
−0.552519 + 0.833500i \(0.686333\pi\)
\(770\) 0 0
\(771\) −4.93203 8.54253i −0.177623 0.307652i
\(772\) 0 0
\(773\) −25.8369 + 14.9169i −0.929288 + 0.536525i −0.886586 0.462563i \(-0.846930\pi\)
−0.0427017 + 0.999088i \(0.513596\pi\)
\(774\) 0 0
\(775\) 30.9147i 1.11049i
\(776\) 0 0
\(777\) 10.7073 18.5455i 0.384121 0.665316i
\(778\) 0 0
\(779\) 45.5390 1.63160
\(780\) 0 0
\(781\) 2.65309 0.0949349
\(782\) 0 0
\(783\) 7.22253 12.5098i 0.258112 0.447063i
\(784\) 0 0
\(785\) 0.482725i 0.0172292i
\(786\) 0 0
\(787\) 25.0330 14.4528i 0.892331 0.515188i 0.0176269 0.999845i \(-0.494389\pi\)
0.874704 + 0.484657i \(0.161056\pi\)
\(788\) 0 0
\(789\) 4.81179 + 8.33427i 0.171304 + 0.296708i
\(790\) 0 0
\(791\) −22.7005 13.1061i −0.807137 0.466001i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −21.1079 12.1867i −0.748621 0.432217i
\(796\) 0 0
\(797\) 0.225157 + 0.389984i 0.00797548 + 0.0138139i 0.869986 0.493077i \(-0.164128\pi\)
−0.862010 + 0.506891i \(0.830795\pi\)
\(798\) 0 0
\(799\) 12.8233 7.40355i 0.453657 0.261919i
\(800\) 0 0
\(801\) 25.2377i 0.891730i
\(802\) 0 0
\(803\) 0.421983 0.730896i 0.0148915 0.0257928i
\(804\) 0 0
\(805\) 6.66877 0.235043
\(806\) 0 0
\(807\) −18.7405 −0.659696
\(808\) 0 0
\(809\) −16.2605 + 28.1640i −0.571688 + 0.990193i 0.424705 + 0.905332i \(0.360378\pi\)
−0.996393 + 0.0848610i \(0.972955\pi\)
\(810\) 0 0
\(811\) 0.00315434i 0.000110764i −1.00000 5.53819e-5i \(-0.999982\pi\)
1.00000 5.53819e-5i \(-1.76286e-5\pi\)
\(812\) 0 0
\(813\) 15.2261 8.79080i 0.534003 0.308307i
\(814\) 0 0
\(815\) −2.06528 3.57717i −0.0723436 0.125303i
\(816\) 0 0
\(817\) −27.7535 16.0235i −0.970972 0.560591i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 37.4594 + 21.6272i 1.30734 + 0.754795i 0.981652 0.190682i \(-0.0610699\pi\)
0.325691 + 0.945476i \(0.394403\pi\)
\(822\) 0 0
\(823\) 20.3934 + 35.3224i 0.710869 + 1.23126i 0.964531 + 0.263969i \(0.0850316\pi\)
−0.253662 + 0.967293i \(0.581635\pi\)
\(824\) 0 0
\(825\) 19.2621 11.1210i 0.670620 0.387183i
\(826\) 0 0
\(827\) 15.0453i 0.523175i 0.965180 + 0.261588i \(0.0842461\pi\)
−0.965180 + 0.261588i \(0.915754\pi\)
\(828\) 0 0
\(829\) −17.0196 + 29.4788i −0.591115 + 1.02384i 0.402968 + 0.915214i \(0.367979\pi\)
−0.994083 + 0.108626i \(0.965355\pi\)
\(830\) 0 0
\(831\) 21.6425 0.750771
\(832\) 0 0
\(833\) 1.03695 0.0359282
\(834\) 0 0
\(835\) −9.23627 + 15.9977i −0.319634 + 0.553623i
\(836\) 0 0
\(837\) 15.3047i 0.529008i
\(838\) 0 0
\(839\) −38.2873 + 22.1052i −1.32182 + 0.763156i −0.984020 0.178061i \(-0.943018\pi\)
−0.337805 + 0.941216i \(0.609684\pi\)
\(840\) 0 0
\(841\) −15.9082 27.5538i −0.548558 0.950131i
\(842\) 0 0
\(843\) 45.4223 + 26.2246i 1.56443 + 0.903223i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −9.46410 5.46410i −0.325190 0.187749i
\(848\) 0 0
\(849\) −15.2261 26.3724i −0.522559 0.905099i
\(850\) 0 0
\(851\) 7.10492 4.10203i 0.243553 0.140616i
\(852\) 0 0
\(853\) 47.0540i 1.61110i −0.592528 0.805550i \(-0.701870\pi\)
0.592528 0.805550i \(-0.298130\pi\)
\(854\) 0 0
\(855\) 9.74426 16.8776i 0.333247 0.577200i
\(856\) 0 0
\(857\) −7.26478 −0.248160 −0.124080 0.992272i \(-0.539598\pi\)
−0.124080 + 0.992272i \(0.539598\pi\)
\(858\) 0 0
\(859\) −18.3788 −0.627077 −0.313538 0.949575i \(-0.601514\pi\)
−0.313538 + 0.949575i \(0.601514\pi\)
\(860\) 0 0
\(861\) 17.0374 29.5097i 0.580634 1.00569i
\(862\) 0 0
\(863\) 15.0390i 0.511932i 0.966686 + 0.255966i \(0.0823936\pi\)
−0.966686 + 0.255966i \(0.917606\pi\)
\(864\) 0 0
\(865\) 23.1022 13.3381i 0.785499 0.453508i
\(866\) 0 0
\(867\) −15.7785 27.3291i −0.535865 0.928146i
\(868\) 0 0
\(869\) 6.03283 + 3.48306i 0.204650 + 0.118155i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 29.6411 + 17.1133i 1.00320 + 0.579197i
\(874\) 0 0
\(875\) −12.7985 22.1676i −0.432668 0.749403i
\(876\) 0 0
\(877\) −22.7305 + 13.1234i −0.767554 + 0.443147i −0.832001 0.554774i \(-0.812805\pi\)
0.0644477 + 0.997921i \(0.479471\pi\)
\(878\) 0 0
\(879\) 39.6195i 1.33633i
\(880\) 0 0
\(881\) 7.20353 12.4769i 0.242693 0.420357i −0.718787 0.695230i \(-0.755303\pi\)
0.961480 + 0.274873i \(0.0886359\pi\)
\(882\) 0 0
\(883\) −36.9503 −1.24348 −0.621739 0.783225i \(-0.713573\pi\)
−0.621739 + 0.783225i \(0.713573\pi\)
\(884\) 0 0
\(885\) −9.78689 −0.328983
\(886\) 0 0
\(887\) 23.9103 41.4138i 0.802828 1.39054i −0.114920 0.993375i \(-0.536661\pi\)
0.917748 0.397164i \(-0.130005\pi\)
\(888\) 0 0
\(889\) 1.02150i 0.0342599i
\(890\) 0 0
\(891\) −24.3651 + 14.0672i −0.816261 + 0.471268i
\(892\) 0 0
\(893\) −10.5886 18.3401i −0.354336 0.613727i
\(894\) 0 0
\(895\) −4.93136 2.84712i −0.164837 0.0951687i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −55.8029 32.2178i −1.86113 1.07453i
\(900\) 0 0
\(901\) 26.4967 + 45.8936i 0.882733 + 1.52894i
\(902\) 0 0
\(903\) −20.7667 + 11.9897i −0.691074 + 0.398992i
\(904\) 0 0
\(905\) 10.2833i 0.341829i
\(906\) 0 0
\(907\) 10.7353 18.5940i 0.356459 0.617404i −0.630908 0.775858i \(-0.717317\pi\)
0.987366 + 0.158453i \(0.0506508\pi\)
\(908\) 0 0
\(909\) −35.7594 −1.18607
\(910\) 0 0
\(911\) −28.2594 −0.936277 −0.468138 0.883655i \(-0.655075\pi\)
−0.468138 + 0.883655i \(0.655075\pi\)
\(912\) 0 0
\(913\) −3.62761 + 6.28321i −0.120056 + 0.207944i
\(914\) 0 0
\(915\) 19.6330i 0.649046i
\(916\) 0 0
\(917\) −43.7488 + 25.2584i −1.44471 + 0.834105i
\(918\) 0 0
\(919\) −22.7232 39.3577i −0.749568 1.29829i −0.948030 0.318181i \(-0.896928\pi\)
0.198462 0.980109i \(-0.436405\pi\)
\(920\) 0 0
\(921\) 7.89546 + 4.55845i 0.260164 + 0.150206i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −11.6725 6.73912i −0.383789 0.221581i
\(926\) 0 0
\(927\) −2.45305 4.24880i −0.0805686 0.139549i
\(928\) 0 0
\(929\) −15.1077 + 8.72243i −0.495667 + 0.286174i −0.726923 0.686719i \(-0.759050\pi\)
0.231255 + 0.972893i \(0.425717\pi\)
\(930\) 0 0
\(931\) 1.48306i 0.0486052i
\(932\) 0 0
\(933\) 32.4113 56.1380i 1.06110 1.83787i
\(934\) 0 0
\(935\) 16.2657 0.531947
\(936\) 0 0
\(937\) 44.7794 1.46288 0.731440 0.681906i \(-0.238848\pi\)
0.731440 + 0.681906i \(0.238848\pi\)
\(938\) 0 0
\(939\) 4.05275 7.01957i 0.132257 0.229075i
\(940\) 0 0
\(941\) 0.525176i 0.0171202i 0.999963 + 0.00856012i \(0.00272481\pi\)
−0.999963 + 0.00856012i \(0.997275\pi\)
\(942\) 0 0
\(943\) 11.3054 6.52716i 0.368154 0.212554i
\(944\) 0 0
\(945\) 2.71194 + 4.69722i 0.0882194 + 0.152801i
\(946\) 0 0
\(947\) 21.0744 + 12.1673i 0.684826 + 0.395384i 0.801671 0.597766i \(-0.203945\pi\)
−0.116845 + 0.993150i \(0.537278\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −2.72425 1.57285i −0.0883399 0.0510031i
\(952\) 0 0
\(953\) 26.5257 + 45.9438i 0.859250 + 1.48827i 0.872645 + 0.488355i \(0.162403\pi\)
−0.0133948 + 0.999910i \(0.504264\pi\)
\(954\) 0 0
\(955\) 16.5004 9.52652i 0.533941 0.308271i
\(956\) 0 0
\(957\) 46.3590i 1.49857i
\(958\) 0 0
\(959\) −5.18873 + 8.98715i −0.167553 + 0.290210i
\(960\) 0 0
\(961\) −37.2704 −1.20227
\(962\) 0 0
\(963\) −23.6867 −0.763292
\(964\) 0 0
\(965\) 11.4915 19.9039i 0.369925 0.640730i
\(966\) 0 0
\(967\) 26.5793i 0.854732i −0.904079 0.427366i \(-0.859442\pi\)
0.904079 0.427366i \(-0.140558\pi\)
\(968\) 0 0
\(969\) −87.0404 + 50.2528i −2.79614 + 1.61435i
\(970\) 0 0
\(971\) 27.5500 + 47.7180i 0.884121 + 1.53134i 0.846718 + 0.532042i \(0.178575\pi\)
0.0374027 + 0.999300i \(0.488092\pi\)
\(972\) 0 0
\(973\) 42.8642 + 24.7476i 1.37416 + 0.793373i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −29.5834 17.0800i −0.946457 0.546437i −0.0544782 0.998515i \(-0.517350\pi\)
−0.891978 + 0.452078i \(0.850683\pi\)
\(978\) 0 0
\(979\) −15.0631 26.0901i −0.481420 0.833844i
\(980\) 0 0
\(981\) −5.54518 + 3.20151i −0.177044 + 0.102216i
\(982\) 0 0
\(983\) 13.8912i 0.443059i 0.975154 + 0.221530i \(0.0711050\pi\)
−0.975154 + 0.221530i \(0.928895\pi\)
\(984\) 0 0
\(985\) 8.71740 15.0990i 0.277760 0.481094i
\(986\) 0 0
\(987\) −15.8461 −0.504386
\(988\) 0 0
\(989\) −9.18667 −0.292119
\(990\) 0 0
\(991\) 8.62081 14.9317i 0.273849 0.474320i −0.695995 0.718047i \(-0.745036\pi\)
0.969844 + 0.243726i \(0.0783698\pi\)
\(992\) 0 0
\(993\) 21.4708i 0.681357i
\(994\) 0 0
\(995\) −18.8062 + 10.8578i −0.596196 + 0.344214i
\(996\) 0 0
\(997\) 0.728370 + 1.26157i 0.0230677 + 0.0399545i 0.877329 0.479890i \(-0.159323\pi\)
−0.854261 + 0.519844i \(0.825990\pi\)
\(998\) 0 0
\(999\) 5.77861 + 3.33628i 0.182827 + 0.105555i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1352.2.o.f.1161.1 8
13.2 odd 12 1352.2.i.k.1329.1 8
13.3 even 3 104.2.o.a.49.1 yes 8
13.4 even 6 1352.2.f.f.337.8 8
13.5 odd 4 1352.2.i.k.529.1 8
13.6 odd 12 1352.2.a.k.1.4 4
13.7 odd 12 1352.2.a.l.1.4 4
13.8 odd 4 1352.2.i.l.529.1 8
13.9 even 3 1352.2.f.f.337.7 8
13.10 even 6 inner 1352.2.o.f.361.1 8
13.11 odd 12 1352.2.i.l.1329.1 8
13.12 even 2 104.2.o.a.17.1 8
39.29 odd 6 936.2.bi.b.361.2 8
39.38 odd 2 936.2.bi.b.433.3 8
52.3 odd 6 208.2.w.c.49.4 8
52.7 even 12 2704.2.a.be.1.1 4
52.19 even 12 2704.2.a.bd.1.1 4
52.35 odd 6 2704.2.f.q.337.1 8
52.43 odd 6 2704.2.f.q.337.2 8
52.51 odd 2 208.2.w.c.17.4 8
104.3 odd 6 832.2.w.i.257.1 8
104.29 even 6 832.2.w.g.257.4 8
104.51 odd 2 832.2.w.i.641.1 8
104.77 even 2 832.2.w.g.641.4 8
156.107 even 6 1872.2.by.n.1297.2 8
156.155 even 2 1872.2.by.n.433.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.o.a.17.1 8 13.12 even 2
104.2.o.a.49.1 yes 8 13.3 even 3
208.2.w.c.17.4 8 52.51 odd 2
208.2.w.c.49.4 8 52.3 odd 6
832.2.w.g.257.4 8 104.29 even 6
832.2.w.g.641.4 8 104.77 even 2
832.2.w.i.257.1 8 104.3 odd 6
832.2.w.i.641.1 8 104.51 odd 2
936.2.bi.b.361.2 8 39.29 odd 6
936.2.bi.b.433.3 8 39.38 odd 2
1352.2.a.k.1.4 4 13.6 odd 12
1352.2.a.l.1.4 4 13.7 odd 12
1352.2.f.f.337.7 8 13.9 even 3
1352.2.f.f.337.8 8 13.4 even 6
1352.2.i.k.529.1 8 13.5 odd 4
1352.2.i.k.1329.1 8 13.2 odd 12
1352.2.i.l.529.1 8 13.8 odd 4
1352.2.i.l.1329.1 8 13.11 odd 12
1352.2.o.f.361.1 8 13.10 even 6 inner
1352.2.o.f.1161.1 8 1.1 even 1 trivial
1872.2.by.n.433.3 8 156.155 even 2
1872.2.by.n.1297.2 8 156.107 even 6
2704.2.a.bd.1.1 4 52.19 even 12
2704.2.a.be.1.1 4 52.7 even 12
2704.2.f.q.337.1 8 52.35 odd 6
2704.2.f.q.337.2 8 52.43 odd 6