Properties

Label 832.2.w.i.257.1
Level $832$
Weight $2$
Character 832.257
Analytic conductor $6.644$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [832,2,Mod(257,832)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("832.257"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(832, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,2,0,0,0,6,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.195105024.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 4x^{5} - 20x^{4} + 12x^{3} + 45x^{2} - 108x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 257.1
Root \(0.560908 + 1.63871i\) of defining polynomial
Character \(\chi\) \(=\) 832.257
Dual form 832.2.w.i.641.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13871 - 1.97231i) q^{3} +1.12182i q^{5} +(2.26053 + 1.30512i) q^{7} +(-1.09334 + 1.89372i) q^{9} +(2.26053 - 1.30512i) q^{11} +(-3.30591 + 1.43909i) q^{13} +(2.21257 - 1.27743i) q^{15} +(-2.77743 + 4.81064i) q^{17} +(6.88024 + 3.97231i) q^{19} -5.94462i q^{21} +(1.13871 + 1.97231i) q^{23} +3.74153 q^{25} -1.85229 q^{27} +(3.89924 + 6.75369i) q^{29} -8.26259i q^{31} +(-5.14819 - 2.97231i) q^{33} +(-1.46410 + 2.53590i) q^{35} +(-3.11971 + 1.80117i) q^{37} +(6.60282 + 4.88156i) q^{39} +(4.96410 - 2.86603i) q^{41} +(2.01690 - 3.49337i) q^{43} +(-2.12440 - 1.22652i) q^{45} -2.66562i q^{47} +(-0.0933372 - 0.161665i) q^{49} +12.6508 q^{51} +9.54002 q^{53} +(1.46410 + 2.53590i) q^{55} -18.0933i q^{57} +(3.31749 + 1.91535i) q^{59} +(3.84229 - 6.65503i) q^{61} +(-4.94304 + 2.85387i) q^{63} +(-1.61440 - 3.70862i) q^{65} +(-1.52690 + 0.881557i) q^{67} +(2.59334 - 4.49179i) q^{69} +(-0.880242 - 0.508208i) q^{71} +0.323330i q^{73} +(-4.26053 - 7.37945i) q^{75} +6.81333 q^{77} +2.66877 q^{79} +(5.38924 + 9.33444i) q^{81} -2.77953i q^{83} +(-5.39666 - 3.11576i) q^{85} +(8.88024 - 15.3810i) q^{87} +(-9.99531 + 5.77080i) q^{89} +(-9.35128 - 1.06149i) q^{91} +(-16.2964 + 9.40872i) q^{93} +(-4.45620 + 7.71837i) q^{95} +(13.5553 + 7.82618i) q^{97} +5.70773i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{3} + 6 q^{7} - 6 q^{9} + 6 q^{11} - 6 q^{13} - 6 q^{19} - 2 q^{23} - 20 q^{25} - 28 q^{27} + 8 q^{29} + 6 q^{33} + 16 q^{35} + 24 q^{37} + 14 q^{39} + 12 q^{41} + 6 q^{43} - 30 q^{45} + 2 q^{49}+ \cdots + 30 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.13871 1.97231i −0.657437 1.13871i −0.981277 0.192602i \(-0.938307\pi\)
0.323840 0.946112i \(-0.395026\pi\)
\(4\) 0 0
\(5\) 1.12182i 0.501691i 0.968027 + 0.250846i \(0.0807087\pi\)
−0.968027 + 0.250846i \(0.919291\pi\)
\(6\) 0 0
\(7\) 2.26053 + 1.30512i 0.854400 + 0.493288i 0.862133 0.506682i \(-0.169128\pi\)
−0.00773308 + 0.999970i \(0.502462\pi\)
\(8\) 0 0
\(9\) −1.09334 + 1.89372i −0.364446 + 0.631239i
\(10\) 0 0
\(11\) 2.26053 1.30512i 0.681575 0.393508i −0.118873 0.992909i \(-0.537928\pi\)
0.800448 + 0.599402i \(0.204595\pi\)
\(12\) 0 0
\(13\) −3.30591 + 1.43909i −0.916893 + 0.399132i
\(14\) 0 0
\(15\) 2.21257 1.27743i 0.571283 0.329830i
\(16\) 0 0
\(17\) −2.77743 + 4.81064i −0.673625 + 1.16675i 0.303244 + 0.952913i \(0.401930\pi\)
−0.976869 + 0.213840i \(0.931403\pi\)
\(18\) 0 0
\(19\) 6.88024 + 3.97231i 1.57844 + 0.911310i 0.995078 + 0.0990951i \(0.0315948\pi\)
0.583358 + 0.812215i \(0.301739\pi\)
\(20\) 0 0
\(21\) 5.94462i 1.29722i
\(22\) 0 0
\(23\) 1.13871 + 1.97231i 0.237438 + 0.411255i 0.959978 0.280074i \(-0.0903589\pi\)
−0.722540 + 0.691329i \(0.757026\pi\)
\(24\) 0 0
\(25\) 3.74153 0.748306
\(26\) 0 0
\(27\) −1.85229 −0.356473
\(28\) 0 0
\(29\) 3.89924 + 6.75369i 0.724071 + 1.25413i 0.959355 + 0.282202i \(0.0910647\pi\)
−0.235284 + 0.971927i \(0.575602\pi\)
\(30\) 0 0
\(31\) 8.26259i 1.48400i −0.670397 0.742002i \(-0.733876\pi\)
0.670397 0.742002i \(-0.266124\pi\)
\(32\) 0 0
\(33\) −5.14819 2.97231i −0.896185 0.517413i
\(34\) 0 0
\(35\) −1.46410 + 2.53590i −0.247478 + 0.428645i
\(36\) 0 0
\(37\) −3.11971 + 1.80117i −0.512878 + 0.296110i −0.734016 0.679132i \(-0.762356\pi\)
0.221138 + 0.975243i \(0.429023\pi\)
\(38\) 0 0
\(39\) 6.60282 + 4.88156i 1.05730 + 0.781675i
\(40\) 0 0
\(41\) 4.96410 2.86603i 0.775262 0.447598i −0.0594862 0.998229i \(-0.518946\pi\)
0.834749 + 0.550631i \(0.185613\pi\)
\(42\) 0 0
\(43\) 2.01690 3.49337i 0.307574 0.532734i −0.670257 0.742129i \(-0.733816\pi\)
0.977831 + 0.209395i \(0.0671495\pi\)
\(44\) 0 0
\(45\) −2.12440 1.22652i −0.316687 0.182839i
\(46\) 0 0
\(47\) 2.66562i 0.388820i −0.980920 0.194410i \(-0.937721\pi\)
0.980920 0.194410i \(-0.0622792\pi\)
\(48\) 0 0
\(49\) −0.0933372 0.161665i −0.0133339 0.0230950i
\(50\) 0 0
\(51\) 12.6508 1.77146
\(52\) 0 0
\(53\) 9.54002 1.31042 0.655211 0.755446i \(-0.272580\pi\)
0.655211 + 0.755446i \(0.272580\pi\)
\(54\) 0 0
\(55\) 1.46410 + 2.53590i 0.197419 + 0.341940i
\(56\) 0 0
\(57\) 18.0933i 2.39652i
\(58\) 0 0
\(59\) 3.31749 + 1.91535i 0.431900 + 0.249358i 0.700156 0.713990i \(-0.253114\pi\)
−0.268256 + 0.963348i \(0.586447\pi\)
\(60\) 0 0
\(61\) 3.84229 6.65503i 0.491954 0.852090i −0.508003 0.861355i \(-0.669616\pi\)
0.999957 + 0.00926564i \(0.00294939\pi\)
\(62\) 0 0
\(63\) −4.94304 + 2.85387i −0.622765 + 0.359553i
\(64\) 0 0
\(65\) −1.61440 3.70862i −0.200241 0.459997i
\(66\) 0 0
\(67\) −1.52690 + 0.881557i −0.186541 + 0.107699i −0.590362 0.807139i \(-0.701015\pi\)
0.403821 + 0.914838i \(0.367682\pi\)
\(68\) 0 0
\(69\) 2.59334 4.49179i 0.312201 0.540748i
\(70\) 0 0
\(71\) −0.880242 0.508208i −0.104466 0.0603132i 0.446857 0.894605i \(-0.352543\pi\)
−0.551323 + 0.834292i \(0.685877\pi\)
\(72\) 0 0
\(73\) 0.323330i 0.0378429i 0.999821 + 0.0189214i \(0.00602324\pi\)
−0.999821 + 0.0189214i \(0.993977\pi\)
\(74\) 0 0
\(75\) −4.26053 7.37945i −0.491964 0.852106i
\(76\) 0 0
\(77\) 6.81333 0.776451
\(78\) 0 0
\(79\) 2.66877 0.300260 0.150130 0.988666i \(-0.452031\pi\)
0.150130 + 0.988666i \(0.452031\pi\)
\(80\) 0 0
\(81\) 5.38924 + 9.33444i 0.598804 + 1.03716i
\(82\) 0 0
\(83\) 2.77953i 0.305093i −0.988296 0.152547i \(-0.951253\pi\)
0.988296 0.152547i \(-0.0487474\pi\)
\(84\) 0 0
\(85\) −5.39666 3.11576i −0.585350 0.337952i
\(86\) 0 0
\(87\) 8.88024 15.3810i 0.952062 1.64902i
\(88\) 0 0
\(89\) −9.99531 + 5.77080i −1.05950 + 0.611703i −0.925294 0.379250i \(-0.876182\pi\)
−0.134207 + 0.990953i \(0.542849\pi\)
\(90\) 0 0
\(91\) −9.35128 1.06149i −0.980281 0.111274i
\(92\) 0 0
\(93\) −16.2964 + 9.40872i −1.68986 + 0.975639i
\(94\) 0 0
\(95\) −4.45620 + 7.71837i −0.457197 + 0.791888i
\(96\) 0 0
\(97\) 13.5553 + 7.82618i 1.37634 + 0.794628i 0.991716 0.128447i \(-0.0409993\pi\)
0.384619 + 0.923075i \(0.374333\pi\)
\(98\) 0 0
\(99\) 5.70773i 0.573649i
\(100\) 0 0
\(101\) −8.17667 14.1624i −0.813609 1.40921i −0.910322 0.413900i \(-0.864166\pi\)
0.0967132 0.995312i \(-0.469167\pi\)
\(102\) 0 0
\(103\) −2.24363 −0.221072 −0.110536 0.993872i \(-0.535257\pi\)
−0.110536 + 0.993872i \(0.535257\pi\)
\(104\) 0 0
\(105\) 6.66877 0.650805
\(106\) 0 0
\(107\) 5.41614 + 9.38103i 0.523598 + 0.906898i 0.999623 + 0.0274665i \(0.00874397\pi\)
−0.476025 + 0.879432i \(0.657923\pi\)
\(108\) 0 0
\(109\) 2.92820i 0.280471i 0.990118 + 0.140236i \(0.0447860\pi\)
−0.990118 + 0.140236i \(0.955214\pi\)
\(110\) 0 0
\(111\) 7.10492 + 4.10203i 0.674369 + 0.389347i
\(112\) 0 0
\(113\) −5.02106 + 8.69673i −0.472342 + 0.818120i −0.999499 0.0316481i \(-0.989924\pi\)
0.527158 + 0.849768i \(0.323258\pi\)
\(114\) 0 0
\(115\) −2.21257 + 1.27743i −0.206323 + 0.119121i
\(116\) 0 0
\(117\) 0.889239 7.83386i 0.0822102 0.724240i
\(118\) 0 0
\(119\) −12.5569 + 7.24974i −1.15109 + 0.664582i
\(120\) 0 0
\(121\) −2.09334 + 3.62577i −0.190303 + 0.329615i
\(122\) 0 0
\(123\) −11.3054 6.52716i −1.01937 0.588535i
\(124\) 0 0
\(125\) 9.80639i 0.877110i
\(126\) 0 0
\(127\) −0.195671 0.338912i −0.0173630 0.0300736i 0.857213 0.514961i \(-0.172194\pi\)
−0.874576 + 0.484888i \(0.838860\pi\)
\(128\) 0 0
\(129\) −9.18667 −0.808842
\(130\) 0 0
\(131\) −19.3533 −1.69091 −0.845455 0.534047i \(-0.820670\pi\)
−0.845455 + 0.534047i \(0.820670\pi\)
\(132\) 0 0
\(133\) 10.3687 + 17.9590i 0.899077 + 1.55725i
\(134\) 0 0
\(135\) 2.07793i 0.178840i
\(136\) 0 0
\(137\) 3.44304 + 1.98784i 0.294159 + 0.169833i 0.639816 0.768528i \(-0.279011\pi\)
−0.345657 + 0.938361i \(0.612344\pi\)
\(138\) 0 0
\(139\) 9.48100 16.4216i 0.804168 1.39286i −0.112684 0.993631i \(-0.535945\pi\)
0.916851 0.399229i \(-0.130722\pi\)
\(140\) 0 0
\(141\) −5.25742 + 3.03537i −0.442755 + 0.255624i
\(142\) 0 0
\(143\) −5.59491 + 7.56771i −0.467870 + 0.632843i
\(144\) 0 0
\(145\) −7.57639 + 4.37423i −0.629185 + 0.363260i
\(146\) 0 0
\(147\) −0.212569 + 0.368180i −0.0175324 + 0.0303670i
\(148\) 0 0
\(149\) 1.27259 + 0.734731i 0.104255 + 0.0601915i 0.551221 0.834359i \(-0.314162\pi\)
−0.446966 + 0.894551i \(0.647496\pi\)
\(150\) 0 0
\(151\) 5.59382i 0.455218i 0.973753 + 0.227609i \(0.0730909\pi\)
−0.973753 + 0.227609i \(0.926909\pi\)
\(152\) 0 0
\(153\) −6.07333 10.5193i −0.491000 0.850436i
\(154\) 0 0
\(155\) 9.26910 0.744512
\(156\) 0 0
\(157\) −0.430307 −0.0343422 −0.0171711 0.999853i \(-0.505466\pi\)
−0.0171711 + 0.999853i \(0.505466\pi\)
\(158\) 0 0
\(159\) −10.8633 18.8159i −0.861519 1.49220i
\(160\) 0 0
\(161\) 5.94462i 0.468502i
\(162\) 0 0
\(163\) −3.18873 1.84102i −0.249761 0.144199i 0.369894 0.929074i \(-0.379394\pi\)
−0.619655 + 0.784875i \(0.712727\pi\)
\(164\) 0 0
\(165\) 3.33438 5.77532i 0.259582 0.449608i
\(166\) 0 0
\(167\) −14.2605 + 8.23332i −1.10351 + 0.637113i −0.937141 0.348950i \(-0.886538\pi\)
−0.166371 + 0.986063i \(0.553205\pi\)
\(168\) 0 0
\(169\) 8.85803 9.51501i 0.681387 0.731924i
\(170\) 0 0
\(171\) −15.0449 + 8.68615i −1.15051 + 0.664246i
\(172\) 0 0
\(173\) −11.8897 + 20.5936i −0.903959 + 1.56570i −0.0816498 + 0.996661i \(0.526019\pi\)
−0.822309 + 0.569041i \(0.807314\pi\)
\(174\) 0 0
\(175\) 8.45784 + 4.88313i 0.639352 + 0.369130i
\(176\) 0 0
\(177\) 8.72415i 0.655747i
\(178\) 0 0
\(179\) 2.53796 + 4.39587i 0.189696 + 0.328563i 0.945149 0.326640i \(-0.105916\pi\)
−0.755453 + 0.655203i \(0.772583\pi\)
\(180\) 0 0
\(181\) 9.16667 0.681353 0.340676 0.940181i \(-0.389344\pi\)
0.340676 + 0.940181i \(0.389344\pi\)
\(182\) 0 0
\(183\) −17.5011 −1.29371
\(184\) 0 0
\(185\) −2.02058 3.49974i −0.148556 0.257306i
\(186\) 0 0
\(187\) 14.4995i 1.06031i
\(188\) 0 0
\(189\) −4.18716 2.41746i −0.304571 0.175844i
\(190\) 0 0
\(191\) −8.49205 + 14.7087i −0.614463 + 1.06428i 0.376015 + 0.926614i \(0.377294\pi\)
−0.990478 + 0.137668i \(0.956039\pi\)
\(192\) 0 0
\(193\) −17.7426 + 10.2437i −1.27714 + 0.737356i −0.976321 0.216325i \(-0.930593\pi\)
−0.300817 + 0.953682i \(0.597260\pi\)
\(194\) 0 0
\(195\) −5.47621 + 7.40714i −0.392159 + 0.530437i
\(196\) 0 0
\(197\) 13.4594 7.77080i 0.958944 0.553646i 0.0630958 0.998007i \(-0.479903\pi\)
0.895848 + 0.444361i \(0.146569\pi\)
\(198\) 0 0
\(199\) 9.67873 16.7640i 0.686107 1.18837i −0.286981 0.957936i \(-0.592652\pi\)
0.973088 0.230436i \(-0.0740151\pi\)
\(200\) 0 0
\(201\) 3.47741 + 2.00768i 0.245277 + 0.141611i
\(202\) 0 0
\(203\) 20.3559i 1.42870i
\(204\) 0 0
\(205\) 3.21515 + 5.56881i 0.224556 + 0.388942i
\(206\) 0 0
\(207\) −4.97999 −0.346133
\(208\) 0 0
\(209\) 20.7373 1.43443
\(210\) 0 0
\(211\) −9.93720 17.2117i −0.684105 1.18490i −0.973717 0.227761i \(-0.926860\pi\)
0.289612 0.957144i \(-0.406474\pi\)
\(212\) 0 0
\(213\) 2.31481i 0.158608i
\(214\) 0 0
\(215\) 3.91892 + 2.26259i 0.267268 + 0.154307i
\(216\) 0 0
\(217\) 10.7836 18.6778i 0.732042 1.26793i
\(218\) 0 0
\(219\) 0.637706 0.368180i 0.0430922 0.0248793i
\(220\) 0 0
\(221\) 2.25895 19.9005i 0.151954 1.33865i
\(222\) 0 0
\(223\) 14.9613 8.63792i 1.00188 0.578438i 0.0930791 0.995659i \(-0.470329\pi\)
0.908805 + 0.417220i \(0.136996\pi\)
\(224\) 0 0
\(225\) −4.09075 + 7.08539i −0.272717 + 0.472359i
\(226\) 0 0
\(227\) −6.97616 4.02769i −0.463024 0.267327i 0.250291 0.968171i \(-0.419474\pi\)
−0.713315 + 0.700844i \(0.752807\pi\)
\(228\) 0 0
\(229\) 10.9282i 0.722156i −0.932536 0.361078i \(-0.882409\pi\)
0.932536 0.361078i \(-0.117591\pi\)
\(230\) 0 0
\(231\) −7.75843 13.4380i −0.510467 0.884155i
\(232\) 0 0
\(233\) 4.66877 0.305861 0.152931 0.988237i \(-0.451129\pi\)
0.152931 + 0.988237i \(0.451129\pi\)
\(234\) 0 0
\(235\) 2.99033 0.195068
\(236\) 0 0
\(237\) −3.03896 5.26364i −0.197402 0.341910i
\(238\) 0 0
\(239\) 17.4862i 1.13109i −0.824718 0.565545i \(-0.808666\pi\)
0.824718 0.565545i \(-0.191334\pi\)
\(240\) 0 0
\(241\) −12.2184 7.05428i −0.787054 0.454406i 0.0518703 0.998654i \(-0.483482\pi\)
−0.838924 + 0.544248i \(0.816815\pi\)
\(242\) 0 0
\(243\) 9.49516 16.4461i 0.609115 1.05502i
\(244\) 0 0
\(245\) 0.181358 0.104707i 0.0115865 0.00668950i
\(246\) 0 0
\(247\) −28.4620 3.23078i −1.81099 0.205570i
\(248\) 0 0
\(249\) −5.48210 + 3.16509i −0.347414 + 0.200579i
\(250\) 0 0
\(251\) −9.28642 + 16.0846i −0.586154 + 1.01525i 0.408577 + 0.912724i \(0.366025\pi\)
−0.994731 + 0.102524i \(0.967308\pi\)
\(252\) 0 0
\(253\) 5.14819 + 2.97231i 0.323664 + 0.186868i
\(254\) 0 0
\(255\) 14.1918i 0.888728i
\(256\) 0 0
\(257\) −2.16562 3.75096i −0.135087 0.233978i 0.790543 0.612406i \(-0.209798\pi\)
−0.925631 + 0.378428i \(0.876465\pi\)
\(258\) 0 0
\(259\) −9.40294 −0.584270
\(260\) 0 0
\(261\) −17.0528 −1.05554
\(262\) 0 0
\(263\) −2.11282 3.65951i −0.130282 0.225655i 0.793503 0.608566i \(-0.208255\pi\)
−0.923785 + 0.382911i \(0.874922\pi\)
\(264\) 0 0
\(265\) 10.7021i 0.657427i
\(266\) 0 0
\(267\) 22.7636 + 13.1426i 1.39311 + 0.804312i
\(268\) 0 0
\(269\) −4.11440 + 7.12634i −0.250859 + 0.434501i −0.963763 0.266761i \(-0.914046\pi\)
0.712903 + 0.701262i \(0.247380\pi\)
\(270\) 0 0
\(271\) −6.68567 + 3.85997i −0.406125 + 0.234477i −0.689124 0.724644i \(-0.742004\pi\)
0.282998 + 0.959120i \(0.408671\pi\)
\(272\) 0 0
\(273\) 8.55485 + 19.6524i 0.517763 + 1.18941i
\(274\) 0 0
\(275\) 8.45784 4.88313i 0.510027 0.294464i
\(276\) 0 0
\(277\) 4.75153 8.22990i 0.285492 0.494487i −0.687236 0.726434i \(-0.741176\pi\)
0.972728 + 0.231947i \(0.0745097\pi\)
\(278\) 0 0
\(279\) 15.6470 + 9.03380i 0.936761 + 0.540839i
\(280\) 0 0
\(281\) 23.0300i 1.37386i −0.726726 0.686928i \(-0.758959\pi\)
0.726726 0.686928i \(-0.241041\pi\)
\(282\) 0 0
\(283\) −6.68567 11.5799i −0.397422 0.688355i 0.595985 0.802995i \(-0.296762\pi\)
−0.993407 + 0.114641i \(0.963428\pi\)
\(284\) 0 0
\(285\) 20.2973 1.20231
\(286\) 0 0
\(287\) 14.9620 0.883179
\(288\) 0 0
\(289\) −6.92820 12.0000i −0.407541 0.705882i
\(290\) 0 0
\(291\) 35.6471i 2.08967i
\(292\) 0 0
\(293\) −15.0659 8.69831i −0.880160 0.508161i −0.00944872 0.999955i \(-0.503008\pi\)
−0.870711 + 0.491795i \(0.836341\pi\)
\(294\) 0 0
\(295\) −2.14867 + 3.72161i −0.125101 + 0.216681i
\(296\) 0 0
\(297\) −4.18716 + 2.41746i −0.242963 + 0.140275i
\(298\) 0 0
\(299\) −6.60282 4.88156i −0.381851 0.282308i
\(300\) 0 0
\(301\) 9.11851 5.26458i 0.525582 0.303445i
\(302\) 0 0
\(303\) −18.6218 + 32.2539i −1.06979 + 1.85294i
\(304\) 0 0
\(305\) 7.46572 + 4.31034i 0.427486 + 0.246809i
\(306\) 0 0
\(307\) 4.00315i 0.228472i −0.993454 0.114236i \(-0.963558\pi\)
0.993454 0.114236i \(-0.0364420\pi\)
\(308\) 0 0
\(309\) 2.55485 + 4.42514i 0.145341 + 0.251737i
\(310\) 0 0
\(311\) 28.4630 1.61399 0.806996 0.590557i \(-0.201092\pi\)
0.806996 + 0.590557i \(0.201092\pi\)
\(312\) 0 0
\(313\) −3.55906 −0.201170 −0.100585 0.994928i \(-0.532071\pi\)
−0.100585 + 0.994928i \(0.532071\pi\)
\(314\) 0 0
\(315\) −3.20151 5.54518i −0.180385 0.312436i
\(316\) 0 0
\(317\) 1.38125i 0.0775787i −0.999247 0.0387894i \(-0.987650\pi\)
0.999247 0.0387894i \(-0.0123501\pi\)
\(318\) 0 0
\(319\) 17.6287 + 10.1779i 0.987018 + 0.569855i
\(320\) 0 0
\(321\) 12.3349 21.3646i 0.688465 1.19246i
\(322\) 0 0
\(323\) −38.2187 + 22.0656i −2.12655 + 1.22776i
\(324\) 0 0
\(325\) −12.3691 + 5.38440i −0.686117 + 0.298673i
\(326\) 0 0
\(327\) 5.77532 3.33438i 0.319376 0.184392i
\(328\) 0 0
\(329\) 3.47894 6.02570i 0.191800 0.332208i
\(330\) 0 0
\(331\) 8.16461 + 4.71384i 0.448767 + 0.259096i 0.707310 0.706904i \(-0.249909\pi\)
−0.258542 + 0.966000i \(0.583242\pi\)
\(332\) 0 0
\(333\) 7.87713i 0.431664i
\(334\) 0 0
\(335\) −0.988945 1.71290i −0.0540318 0.0935859i
\(336\) 0 0
\(337\) 1.21215 0.0660298 0.0330149 0.999455i \(-0.489489\pi\)
0.0330149 + 0.999455i \(0.489489\pi\)
\(338\) 0 0
\(339\) 22.8702 1.24214
\(340\) 0 0
\(341\) −10.7836 18.6778i −0.583967 1.01146i
\(342\) 0 0
\(343\) 18.7589i 1.01289i
\(344\) 0 0
\(345\) 5.03896 + 2.90925i 0.271289 + 0.156629i
\(346\) 0 0
\(347\) 7.13871 12.3646i 0.383226 0.663767i −0.608295 0.793711i \(-0.708146\pi\)
0.991521 + 0.129944i \(0.0414796\pi\)
\(348\) 0 0
\(349\) −20.2862 + 11.7123i −1.08590 + 0.626943i −0.932481 0.361219i \(-0.882361\pi\)
−0.153416 + 0.988162i \(0.549027\pi\)
\(350\) 0 0
\(351\) 6.12350 2.66562i 0.326848 0.142280i
\(352\) 0 0
\(353\) 7.02421 4.05543i 0.373861 0.215849i −0.301283 0.953535i \(-0.597415\pi\)
0.675144 + 0.737686i \(0.264081\pi\)
\(354\) 0 0
\(355\) 0.570116 0.987470i 0.0302586 0.0524095i
\(356\) 0 0
\(357\) 28.5975 + 16.5107i 1.51354 + 0.873841i
\(358\) 0 0
\(359\) 26.3302i 1.38965i 0.719177 + 0.694827i \(0.244519\pi\)
−0.719177 + 0.694827i \(0.755481\pi\)
\(360\) 0 0
\(361\) 22.0585 + 38.2064i 1.16097 + 2.01086i
\(362\) 0 0
\(363\) 9.53485 0.500450
\(364\) 0 0
\(365\) −0.362716 −0.0189854
\(366\) 0 0
\(367\) −5.04279 8.73437i −0.263232 0.455930i 0.703867 0.710332i \(-0.251455\pi\)
−0.967099 + 0.254401i \(0.918122\pi\)
\(368\) 0 0
\(369\) 12.5341i 0.652501i
\(370\) 0 0
\(371\) 21.5655 + 12.4508i 1.11962 + 0.646415i
\(372\) 0 0
\(373\) 0.305425 0.529011i 0.0158143 0.0273912i −0.858010 0.513633i \(-0.828299\pi\)
0.873824 + 0.486242i \(0.161633\pi\)
\(374\) 0 0
\(375\) 19.3412 11.1667i 0.998777 0.576644i
\(376\) 0 0
\(377\) −22.6097 16.7157i −1.16446 0.860902i
\(378\) 0 0
\(379\) 3.12291 1.80301i 0.160413 0.0926146i −0.417644 0.908611i \(-0.637144\pi\)
0.578058 + 0.815996i \(0.303811\pi\)
\(380\) 0 0
\(381\) −0.445627 + 0.771848i −0.0228302 + 0.0395430i
\(382\) 0 0
\(383\) 10.3744 + 5.98969i 0.530109 + 0.306059i 0.741061 0.671438i \(-0.234323\pi\)
−0.210952 + 0.977497i \(0.567656\pi\)
\(384\) 0 0
\(385\) 7.64330i 0.389539i
\(386\) 0 0
\(387\) 4.41030 + 7.63886i 0.224188 + 0.388305i
\(388\) 0 0
\(389\) −10.1245 −0.513335 −0.256667 0.966500i \(-0.582625\pi\)
−0.256667 + 0.966500i \(0.582625\pi\)
\(390\) 0 0
\(391\) −12.6508 −0.639777
\(392\) 0 0
\(393\) 22.0379 + 38.1708i 1.11167 + 1.92546i
\(394\) 0 0
\(395\) 2.99387i 0.150638i
\(396\) 0 0
\(397\) 9.98985 + 5.76764i 0.501376 + 0.289470i 0.729282 0.684214i \(-0.239854\pi\)
−0.227906 + 0.973683i \(0.573188\pi\)
\(398\) 0 0
\(399\) 23.6139 40.9004i 1.18217 2.04758i
\(400\) 0 0
\(401\) 4.40408 2.54270i 0.219929 0.126976i −0.385988 0.922504i \(-0.626139\pi\)
0.605917 + 0.795528i \(0.292806\pi\)
\(402\) 0 0
\(403\) 11.8906 + 27.3153i 0.592314 + 1.36067i
\(404\) 0 0
\(405\) −10.4715 + 6.04573i −0.520334 + 0.300415i
\(406\) 0 0
\(407\) −4.70147 + 8.14318i −0.233043 + 0.403643i
\(408\) 0 0
\(409\) −33.6287 19.4155i −1.66283 0.960036i −0.971354 0.237636i \(-0.923627\pi\)
−0.691476 0.722399i \(-0.743039\pi\)
\(410\) 0 0
\(411\) 9.05433i 0.446617i
\(412\) 0 0
\(413\) 4.99952 + 8.65942i 0.246010 + 0.426102i
\(414\) 0 0
\(415\) 3.11812 0.153063
\(416\) 0 0
\(417\) −43.1846 −2.11476
\(418\) 0 0
\(419\) 9.36751 + 16.2250i 0.457633 + 0.792643i 0.998835 0.0482492i \(-0.0153642\pi\)
−0.541203 + 0.840892i \(0.682031\pi\)
\(420\) 0 0
\(421\) 7.50063i 0.365558i 0.983154 + 0.182779i \(0.0585093\pi\)
−0.983154 + 0.182779i \(0.941491\pi\)
\(422\) 0 0
\(423\) 5.04792 + 2.91442i 0.245438 + 0.141704i
\(424\) 0 0
\(425\) −10.3918 + 17.9992i −0.504077 + 0.873088i
\(426\) 0 0
\(427\) 17.3712 10.0293i 0.840651 0.485350i
\(428\) 0 0
\(429\) 21.2969 + 2.41746i 1.02822 + 0.116716i
\(430\) 0 0
\(431\) −9.41341 + 5.43483i −0.453428 + 0.261787i −0.709277 0.704930i \(-0.750978\pi\)
0.255849 + 0.966717i \(0.417645\pi\)
\(432\) 0 0
\(433\) 0.0780169 0.135129i 0.00374925 0.00649389i −0.864145 0.503243i \(-0.832140\pi\)
0.867894 + 0.496750i \(0.165473\pi\)
\(434\) 0 0
\(435\) 17.2547 + 9.96200i 0.827299 + 0.477641i
\(436\) 0 0
\(437\) 18.0933i 0.865520i
\(438\) 0 0
\(439\) 3.85435 + 6.67593i 0.183958 + 0.318625i 0.943225 0.332155i \(-0.107776\pi\)
−0.759267 + 0.650779i \(0.774442\pi\)
\(440\) 0 0
\(441\) 0.408196 0.0194379
\(442\) 0 0
\(443\) −5.59697 −0.265920 −0.132960 0.991121i \(-0.542448\pi\)
−0.132960 + 0.991121i \(0.542448\pi\)
\(444\) 0 0
\(445\) −6.47377 11.2129i −0.306886 0.531543i
\(446\) 0 0
\(447\) 3.34659i 0.158288i
\(448\) 0 0
\(449\) 16.3728 + 9.45283i 0.772679 + 0.446107i 0.833830 0.552022i \(-0.186144\pi\)
−0.0611504 + 0.998129i \(0.519477\pi\)
\(450\) 0 0
\(451\) 7.48100 12.9575i 0.352266 0.610143i
\(452\) 0 0
\(453\) 11.0327 6.36976i 0.518363 0.299277i
\(454\) 0 0
\(455\) 1.19079 10.4904i 0.0558252 0.491798i
\(456\) 0 0
\(457\) −9.11698 + 5.26369i −0.426474 + 0.246225i −0.697844 0.716250i \(-0.745857\pi\)
0.271369 + 0.962475i \(0.412524\pi\)
\(458\) 0 0
\(459\) 5.14460 8.91071i 0.240129 0.415916i
\(460\) 0 0
\(461\) −1.45515 0.840131i −0.0677731 0.0391288i 0.465731 0.884927i \(-0.345792\pi\)
−0.533504 + 0.845798i \(0.679125\pi\)
\(462\) 0 0
\(463\) 18.7795i 0.872759i −0.899763 0.436379i \(-0.856261\pi\)
0.899763 0.436379i \(-0.143739\pi\)
\(464\) 0 0
\(465\) −10.5549 18.2815i −0.489470 0.847786i
\(466\) 0 0
\(467\) −16.6604 −0.770949 −0.385475 0.922718i \(-0.625962\pi\)
−0.385475 + 0.922718i \(0.625962\pi\)
\(468\) 0 0
\(469\) −4.60214 −0.212507
\(470\) 0 0
\(471\) 0.489996 + 0.848698i 0.0225778 + 0.0391059i
\(472\) 0 0
\(473\) 10.5292i 0.484131i
\(474\) 0 0
\(475\) 25.7426 + 14.8625i 1.18115 + 0.681939i
\(476\) 0 0
\(477\) −10.4305 + 18.0661i −0.477578 + 0.827189i
\(478\) 0 0
\(479\) −10.6704 + 6.16056i −0.487543 + 0.281483i −0.723555 0.690267i \(-0.757493\pi\)
0.236011 + 0.971750i \(0.424160\pi\)
\(480\) 0 0
\(481\) 7.72143 10.4440i 0.352067 0.476207i
\(482\) 0 0
\(483\) 11.7246 6.76922i 0.533489 0.308010i
\(484\) 0 0
\(485\) −8.77953 + 15.2066i −0.398658 + 0.690496i
\(486\) 0 0
\(487\) −32.2215 18.6031i −1.46009 0.842986i −0.461079 0.887359i \(-0.652538\pi\)
−0.999015 + 0.0443730i \(0.985871\pi\)
\(488\) 0 0
\(489\) 8.38556i 0.379208i
\(490\) 0 0
\(491\) −7.36708 12.7602i −0.332472 0.575858i 0.650524 0.759486i \(-0.274549\pi\)
−0.982996 + 0.183628i \(0.941216\pi\)
\(492\) 0 0
\(493\) −43.3195 −1.95101
\(494\) 0 0
\(495\) −6.40303 −0.287795
\(496\) 0 0
\(497\) −1.32654 2.29764i −0.0595036 0.103063i
\(498\) 0 0
\(499\) 19.2287i 0.860795i −0.902639 0.430397i \(-0.858373\pi\)
0.902639 0.430397i \(-0.141627\pi\)
\(500\) 0 0
\(501\) 32.4773 + 18.7508i 1.45098 + 0.837723i
\(502\) 0 0
\(503\) 17.4040 30.1447i 0.776007 1.34408i −0.158219 0.987404i \(-0.550575\pi\)
0.934226 0.356680i \(-0.116091\pi\)
\(504\) 0 0
\(505\) 15.8876 9.17272i 0.706990 0.408181i
\(506\) 0 0
\(507\) −28.8533 6.63591i −1.28142 0.294711i
\(508\) 0 0
\(509\) −4.52370 + 2.61176i −0.200510 + 0.115764i −0.596893 0.802321i \(-0.703598\pi\)
0.396384 + 0.918085i \(0.370265\pi\)
\(510\) 0 0
\(511\) −0.421983 + 0.730896i −0.0186674 + 0.0323329i
\(512\) 0 0
\(513\) −12.7442 7.35787i −0.562670 0.324858i
\(514\) 0 0
\(515\) 2.51694i 0.110910i
\(516\) 0 0
\(517\) −3.47894 6.02570i −0.153004 0.265010i
\(518\) 0 0
\(519\) 54.1559 2.37718
\(520\) 0 0
\(521\) −7.92917 −0.347383 −0.173692 0.984800i \(-0.555570\pi\)
−0.173692 + 0.984800i \(0.555570\pi\)
\(522\) 0 0
\(523\) −15.9683 27.6578i −0.698243 1.20939i −0.969075 0.246766i \(-0.920632\pi\)
0.270832 0.962627i \(-0.412701\pi\)
\(524\) 0 0
\(525\) 22.2420i 0.970719i
\(526\) 0 0
\(527\) 39.7484 + 22.9487i 1.73147 + 0.999663i
\(528\) 0 0
\(529\) 8.90666 15.4268i 0.387246 0.670730i
\(530\) 0 0
\(531\) −7.25426 + 4.18825i −0.314808 + 0.181755i
\(532\) 0 0
\(533\) −12.2864 + 16.6186i −0.532182 + 0.719832i
\(534\) 0 0
\(535\) −10.5238 + 6.07591i −0.454983 + 0.262685i
\(536\) 0 0
\(537\) 5.78001 10.0113i 0.249426 0.432018i
\(538\) 0 0
\(539\) −0.421983 0.243632i −0.0181761 0.0104940i
\(540\) 0 0
\(541\) 17.1534i 0.737483i −0.929532 0.368742i \(-0.879789\pi\)
0.929532 0.368742i \(-0.120211\pi\)
\(542\) 0 0
\(543\) −10.4382 18.0795i −0.447946 0.775866i
\(544\) 0 0
\(545\) −3.28491 −0.140710
\(546\) 0 0
\(547\) 15.4885 0.662241 0.331121 0.943588i \(-0.392573\pi\)
0.331121 + 0.943588i \(0.392573\pi\)
\(548\) 0 0
\(549\) 8.40183 + 14.5524i 0.358581 + 0.621081i
\(550\) 0 0
\(551\) 61.9560i 2.63941i
\(552\) 0 0
\(553\) 6.03283 + 3.48306i 0.256542 + 0.148115i
\(554\) 0 0
\(555\) −4.60172 + 7.97041i −0.195332 + 0.338325i
\(556\) 0 0
\(557\) 27.4972 15.8755i 1.16509 0.672667i 0.212574 0.977145i \(-0.431815\pi\)
0.952519 + 0.304478i \(0.0984821\pi\)
\(558\) 0 0
\(559\) −1.64039 + 14.4513i −0.0693813 + 0.611223i
\(560\) 0 0
\(561\) 28.5975 16.5107i 1.20739 0.697084i
\(562\) 0 0
\(563\) −17.0739 + 29.5728i −0.719577 + 1.24634i 0.241590 + 0.970378i \(0.422331\pi\)
−0.961167 + 0.275966i \(0.911002\pi\)
\(564\) 0 0
\(565\) −9.75613 5.63270i −0.410444 0.236970i
\(566\) 0 0
\(567\) 28.1344i 1.18153i
\(568\) 0 0
\(569\) 1.13987 + 1.97431i 0.0477858 + 0.0827674i 0.888929 0.458045i \(-0.151450\pi\)
−0.841143 + 0.540812i \(0.818117\pi\)
\(570\) 0 0
\(571\) 24.5631 1.02793 0.513967 0.857810i \(-0.328176\pi\)
0.513967 + 0.857810i \(0.328176\pi\)
\(572\) 0 0
\(573\) 38.6801 1.61588
\(574\) 0 0
\(575\) 4.26053 + 7.37945i 0.177676 + 0.307744i
\(576\) 0 0
\(577\) 10.6670i 0.444073i 0.975038 + 0.222037i \(0.0712704\pi\)
−0.975038 + 0.222037i \(0.928730\pi\)
\(578\) 0 0
\(579\) 40.4074 + 23.3292i 1.67928 + 0.969530i
\(580\) 0 0
\(581\) 3.62761 6.28321i 0.150499 0.260672i
\(582\) 0 0
\(583\) 21.5655 12.4508i 0.893151 0.515661i
\(584\) 0 0
\(585\) 8.78815 + 0.997563i 0.363345 + 0.0412441i
\(586\) 0 0
\(587\) −1.74262 + 1.00610i −0.0719258 + 0.0415264i −0.535532 0.844515i \(-0.679889\pi\)
0.463606 + 0.886042i \(0.346555\pi\)
\(588\) 0 0
\(589\) 32.8216 56.8486i 1.35239 2.34241i
\(590\) 0 0
\(591\) −30.6528 17.6974i −1.26089 0.727975i
\(592\) 0 0
\(593\) 38.9058i 1.59767i 0.601552 + 0.798834i \(0.294549\pi\)
−0.601552 + 0.798834i \(0.705451\pi\)
\(594\) 0 0
\(595\) −8.13287 14.0865i −0.333415 0.577492i
\(596\) 0 0
\(597\) −44.0852 −1.80429
\(598\) 0 0
\(599\) −14.2815 −0.583528 −0.291764 0.956490i \(-0.594242\pi\)
−0.291764 + 0.956490i \(0.594242\pi\)
\(600\) 0 0
\(601\) −17.0590 29.5470i −0.695850 1.20525i −0.969893 0.243530i \(-0.921695\pi\)
0.274043 0.961717i \(-0.411639\pi\)
\(602\) 0 0
\(603\) 3.85536i 0.157002i
\(604\) 0 0
\(605\) −4.06744 2.34834i −0.165365 0.0954736i
\(606\) 0 0
\(607\) 3.28327 5.68679i 0.133264 0.230820i −0.791669 0.610950i \(-0.790788\pi\)
0.924933 + 0.380130i \(0.124121\pi\)
\(608\) 0 0
\(609\) 40.1481 23.1795i 1.62688 0.939281i
\(610\) 0 0
\(611\) 3.83607 + 8.81227i 0.155191 + 0.356506i
\(612\) 0 0
\(613\) 40.0955 23.1491i 1.61944 0.934985i 0.632378 0.774660i \(-0.282079\pi\)
0.987064 0.160325i \(-0.0512542\pi\)
\(614\) 0 0
\(615\) 7.32228 12.6826i 0.295263 0.511410i
\(616\) 0 0
\(617\) 17.1021 + 9.87393i 0.688506 + 0.397509i 0.803052 0.595909i \(-0.203208\pi\)
−0.114546 + 0.993418i \(0.536541\pi\)
\(618\) 0 0
\(619\) 6.07074i 0.244004i 0.992530 + 0.122002i \(0.0389314\pi\)
−0.992530 + 0.122002i \(0.961069\pi\)
\(620\) 0 0
\(621\) −2.10923 3.65329i −0.0846404 0.146601i
\(622\) 0 0
\(623\) −30.1263 −1.20698
\(624\) 0 0
\(625\) 7.70668 0.308267
\(626\) 0 0
\(627\) −23.6139 40.9004i −0.943047 1.63341i
\(628\) 0 0
\(629\) 20.0104i 0.797869i
\(630\) 0 0
\(631\) 20.9641 + 12.1036i 0.834566 + 0.481837i 0.855413 0.517946i \(-0.173303\pi\)
−0.0208475 + 0.999783i \(0.506636\pi\)
\(632\) 0 0
\(633\) −22.6312 + 39.1985i −0.899511 + 1.55800i
\(634\) 0 0
\(635\) 0.380197 0.219507i 0.0150877 0.00871087i
\(636\) 0 0
\(637\) 0.541215 + 0.400128i 0.0214437 + 0.0158536i
\(638\) 0 0
\(639\) 1.92480 1.11129i 0.0761440 0.0439618i
\(640\) 0 0
\(641\) 16.8871 29.2494i 0.667002 1.15528i −0.311737 0.950169i \(-0.600911\pi\)
0.978738 0.205112i \(-0.0657560\pi\)
\(642\) 0 0
\(643\) 28.4102 + 16.4026i 1.12039 + 0.646856i 0.941500 0.337013i \(-0.109417\pi\)
0.178888 + 0.983869i \(0.442750\pi\)
\(644\) 0 0
\(645\) 10.3058i 0.405789i
\(646\) 0 0
\(647\) −19.0100 32.9262i −0.747359 1.29446i −0.949085 0.315021i \(-0.897988\pi\)
0.201726 0.979442i \(-0.435345\pi\)
\(648\) 0 0
\(649\) 9.99904 0.392497
\(650\) 0 0
\(651\) −49.1179 −1.92508
\(652\) 0 0
\(653\) −10.0005 17.3213i −0.391349 0.677836i 0.601279 0.799039i \(-0.294658\pi\)
−0.992628 + 0.121203i \(0.961325\pi\)
\(654\) 0 0
\(655\) 21.7109i 0.848315i
\(656\) 0 0
\(657\) −0.612294 0.353508i −0.0238879 0.0137917i
\(658\) 0 0
\(659\) −5.59588 + 9.69234i −0.217984 + 0.377560i −0.954192 0.299196i \(-0.903282\pi\)
0.736207 + 0.676756i \(0.236615\pi\)
\(660\) 0 0
\(661\) −22.5870 + 13.0406i −0.878531 + 0.507220i −0.870174 0.492745i \(-0.835994\pi\)
−0.00835740 + 0.999965i \(0.502660\pi\)
\(662\) 0 0
\(663\) −41.8223 + 18.2056i −1.62424 + 0.707048i
\(664\) 0 0
\(665\) −20.1467 + 11.6317i −0.781257 + 0.451059i
\(666\) 0 0
\(667\) −8.88024 + 15.3810i −0.343844 + 0.595556i
\(668\) 0 0
\(669\) −34.0733 19.6722i −1.31735 0.760573i
\(670\) 0 0
\(671\) 20.0585i 0.774351i
\(672\) 0 0
\(673\) −22.6667 39.2598i −0.873736 1.51335i −0.858103 0.513477i \(-0.828357\pi\)
−0.0156324 0.999878i \(-0.504976\pi\)
\(674\) 0 0
\(675\) −6.93040 −0.266751
\(676\) 0 0
\(677\) −23.6942 −0.910644 −0.455322 0.890327i \(-0.650476\pi\)
−0.455322 + 0.890327i \(0.650476\pi\)
\(678\) 0 0
\(679\) 20.4282 + 35.3826i 0.783961 + 1.35786i
\(680\) 0 0
\(681\) 18.3455i 0.703003i
\(682\) 0 0
\(683\) −37.1501 21.4486i −1.42151 0.820709i −0.425081 0.905155i \(-0.639754\pi\)
−0.996428 + 0.0844466i \(0.973088\pi\)
\(684\) 0 0
\(685\) −2.22999 + 3.86246i −0.0852036 + 0.147577i
\(686\) 0 0
\(687\) −21.5538 + 12.4441i −0.822329 + 0.474772i
\(688\) 0 0
\(689\) −31.5384 + 13.7290i −1.20152 + 0.523032i
\(690\) 0 0
\(691\) −41.6801 + 24.0640i −1.58559 + 0.915439i −0.591564 + 0.806258i \(0.701489\pi\)
−0.994022 + 0.109181i \(0.965177\pi\)
\(692\) 0 0
\(693\) −7.44926 + 12.9025i −0.282974 + 0.490125i
\(694\) 0 0
\(695\) 18.4220 + 10.6359i 0.698786 + 0.403444i
\(696\) 0 0
\(697\) 31.8407i 1.20605i
\(698\) 0 0
\(699\) −5.31639 9.20826i −0.201084 0.348288i
\(700\) 0 0
\(701\) 21.6433 0.817456 0.408728 0.912656i \(-0.365972\pi\)
0.408728 + 0.912656i \(0.365972\pi\)
\(702\) 0 0
\(703\) −28.6192 −1.07939
\(704\) 0 0
\(705\) −3.40513 5.89786i −0.128245 0.222126i
\(706\) 0 0
\(707\) 42.6861i 1.60537i
\(708\) 0 0
\(709\) 10.5449 + 6.08807i 0.396020 + 0.228642i 0.684765 0.728764i \(-0.259905\pi\)
−0.288745 + 0.957406i \(0.593238\pi\)
\(710\) 0 0
\(711\) −2.91787 + 5.05389i −0.109428 + 0.189536i
\(712\) 0 0
\(713\) 16.2964 9.40872i 0.610304 0.352359i
\(714\) 0 0
\(715\) −8.48957 6.27646i −0.317492 0.234726i
\(716\) 0 0
\(717\) −34.4882 + 19.9118i −1.28799 + 0.743619i
\(718\) 0 0
\(719\) 8.66767 15.0129i 0.323250 0.559885i −0.657907 0.753099i \(-0.728558\pi\)
0.981157 + 0.193214i \(0.0618913\pi\)
\(720\) 0 0
\(721\) −5.07180 2.92820i −0.188884 0.109052i
\(722\) 0 0
\(723\) 32.1312i 1.19497i
\(724\) 0 0
\(725\) 14.5891 + 25.2691i 0.541827 + 0.938471i
\(726\) 0 0
\(727\) 21.9600 0.814451 0.407225 0.913328i \(-0.366496\pi\)
0.407225 + 0.913328i \(0.366496\pi\)
\(728\) 0 0
\(729\) −10.9137 −0.404210
\(730\) 0 0
\(731\) 11.2036 + 19.4052i 0.414379 + 0.717726i
\(732\) 0 0
\(733\) 4.24733i 0.156879i −0.996919 0.0784393i \(-0.975006\pi\)
0.996919 0.0784393i \(-0.0249937\pi\)
\(734\) 0 0
\(735\) −0.413030 0.238463i −0.0152348 0.00879584i
\(736\) 0 0
\(737\) −2.30107 + 3.98557i −0.0847610 + 0.146810i
\(738\) 0 0
\(739\) 12.1138 6.99390i 0.445613 0.257275i −0.260363 0.965511i \(-0.583842\pi\)
0.705976 + 0.708236i \(0.250509\pi\)
\(740\) 0 0
\(741\) 26.0379 + 59.8147i 0.956527 + 2.19735i
\(742\) 0 0
\(743\) −41.8143 + 24.1415i −1.53402 + 0.885666i −0.534848 + 0.844948i \(0.679631\pi\)
−0.999171 + 0.0407183i \(0.987035\pi\)
\(744\) 0 0
\(745\) −0.824233 + 1.42761i −0.0301976 + 0.0523037i
\(746\) 0 0
\(747\) 5.26364 + 3.03896i 0.192587 + 0.111190i
\(748\) 0 0
\(749\) 28.2748i 1.03314i
\(750\) 0 0
\(751\) 7.90298 + 13.6884i 0.288384 + 0.499496i 0.973424 0.229010i \(-0.0735487\pi\)
−0.685040 + 0.728505i \(0.740215\pi\)
\(752\) 0 0
\(753\) 42.2983 1.54144
\(754\) 0 0
\(755\) −6.27524 −0.228379
\(756\) 0 0
\(757\) 5.30107 + 9.18172i 0.192671 + 0.333715i 0.946134 0.323774i \(-0.104952\pi\)
−0.753464 + 0.657489i \(0.771618\pi\)
\(758\) 0 0
\(759\) 13.5384i 0.491414i
\(760\) 0 0
\(761\) −30.8970 17.8384i −1.12002 0.646641i −0.178610 0.983920i \(-0.557160\pi\)
−0.941405 + 0.337279i \(0.890493\pi\)
\(762\) 0 0
\(763\) −3.82165 + 6.61929i −0.138353 + 0.239634i
\(764\) 0 0
\(765\) 11.8007 6.81316i 0.426656 0.246330i
\(766\) 0 0
\(767\) −13.7237 1.55780i −0.495533 0.0562491i
\(768\) 0 0
\(769\) 2.96572 1.71226i 0.106947 0.0617457i −0.445573 0.895246i \(-0.647000\pi\)
0.552519 + 0.833500i \(0.313667\pi\)
\(770\) 0 0
\(771\) −4.93203 + 8.54253i −0.177623 + 0.307652i
\(772\) 0 0
\(773\) −25.8369 14.9169i −0.929288 0.536525i −0.0427017 0.999088i \(-0.513596\pi\)
−0.886586 + 0.462563i \(0.846930\pi\)
\(774\) 0 0
\(775\) 30.9147i 1.11049i
\(776\) 0 0
\(777\) 10.7073 + 18.5455i 0.384121 + 0.665316i
\(778\) 0 0
\(779\) 45.5390 1.63160
\(780\) 0 0
\(781\) −2.65309 −0.0949349
\(782\) 0 0
\(783\) −7.22253 12.5098i −0.258112 0.447063i
\(784\) 0 0
\(785\) 0.482725i 0.0172292i
\(786\) 0 0
\(787\) −25.0330 14.4528i −0.892331 0.515188i −0.0176269 0.999845i \(-0.505611\pi\)
−0.874704 + 0.484657i \(0.838944\pi\)
\(788\) 0 0
\(789\) −4.81179 + 8.33427i −0.171304 + 0.296708i
\(790\) 0 0
\(791\) −22.7005 + 13.1061i −0.807137 + 0.466001i
\(792\) 0 0
\(793\) −3.12503 + 27.5303i −0.110973 + 0.977630i
\(794\) 0 0
\(795\) 21.1079 12.1867i 0.748621 0.432217i
\(796\) 0 0
\(797\) −0.225157 + 0.389984i −0.00797548 + 0.0138139i −0.869986 0.493077i \(-0.835872\pi\)
0.862010 + 0.506891i \(0.169205\pi\)
\(798\) 0 0
\(799\) 12.8233 + 7.40355i 0.453657 + 0.261919i
\(800\) 0 0
\(801\) 25.2377i 0.891730i
\(802\) 0 0
\(803\) 0.421983 + 0.730896i 0.0148915 + 0.0257928i
\(804\) 0 0
\(805\) −6.66877 −0.235043
\(806\) 0 0
\(807\) 18.7405 0.659696
\(808\) 0 0
\(809\) −16.2605 28.1640i −0.571688 0.990193i −0.996393 0.0848610i \(-0.972955\pi\)
0.424705 0.905332i \(-0.360378\pi\)
\(810\) 0 0
\(811\) 0.00315434i 0.000110764i −1.00000 5.53819e-5i \(-0.999982\pi\)
1.00000 5.53819e-5i \(-1.76286e-5\pi\)
\(812\) 0 0
\(813\) 15.2261 + 8.79080i 0.534003 + 0.308307i
\(814\) 0 0
\(815\) 2.06528 3.57717i 0.0723436 0.125303i
\(816\) 0 0
\(817\) 27.7535 16.0235i 0.970972 0.560591i
\(818\) 0 0
\(819\) 12.2343 16.5481i 0.427500 0.578238i
\(820\) 0 0
\(821\) 37.4594 21.6272i 1.30734 0.754795i 0.325691 0.945476i \(-0.394403\pi\)
0.981652 + 0.190682i \(0.0610699\pi\)
\(822\) 0 0
\(823\) −20.3934 + 35.3224i −0.710869 + 1.23126i 0.253662 + 0.967293i \(0.418365\pi\)
−0.964531 + 0.263969i \(0.914968\pi\)
\(824\) 0 0
\(825\) −19.2621 11.1210i −0.670620 0.387183i
\(826\) 0 0
\(827\) 15.0453i 0.523175i 0.965180 + 0.261588i \(0.0842461\pi\)
−0.965180 + 0.261588i \(0.915754\pi\)
\(828\) 0 0
\(829\) 17.0196 + 29.4788i 0.591115 + 1.02384i 0.994083 + 0.108626i \(0.0346452\pi\)
−0.402968 + 0.915214i \(0.632021\pi\)
\(830\) 0 0
\(831\) −21.6425 −0.750771
\(832\) 0 0
\(833\) 1.03695 0.0359282
\(834\) 0 0
\(835\) −9.23627 15.9977i −0.319634 0.553623i
\(836\) 0 0
\(837\) 15.3047i 0.529008i
\(838\) 0 0
\(839\) −38.2873 22.1052i −1.32182 0.763156i −0.337805 0.941216i \(-0.609684\pi\)
−0.984020 + 0.178061i \(0.943018\pi\)
\(840\) 0 0
\(841\) −15.9082 + 27.5538i −0.548558 + 0.950131i
\(842\) 0 0
\(843\) −45.4223 + 26.2246i −1.56443 + 0.903223i
\(844\) 0 0
\(845\) 10.6741 + 9.93708i 0.367200 + 0.341846i
\(846\) 0 0
\(847\) −9.46410 + 5.46410i −0.325190 + 0.187749i
\(848\) 0 0
\(849\) −15.2261 + 26.3724i −0.522559 + 0.905099i
\(850\) 0 0
\(851\) −7.10492 4.10203i −0.243553 0.140616i
\(852\) 0 0
\(853\) 47.0540i 1.61110i 0.592528 + 0.805550i \(0.298130\pi\)
−0.592528 + 0.805550i \(0.701870\pi\)
\(854\) 0 0
\(855\) −9.74426 16.8776i −0.333247 0.577200i
\(856\) 0 0
\(857\) −7.26478 −0.248160 −0.124080 0.992272i \(-0.539598\pi\)
−0.124080 + 0.992272i \(0.539598\pi\)
\(858\) 0 0
\(859\) −18.3788 −0.627077 −0.313538 0.949575i \(-0.601514\pi\)
−0.313538 + 0.949575i \(0.601514\pi\)
\(860\) 0 0
\(861\) −17.0374 29.5097i −0.580634 1.00569i
\(862\) 0 0
\(863\) 15.0390i 0.511932i −0.966686 0.255966i \(-0.917606\pi\)
0.966686 0.255966i \(-0.0823936\pi\)
\(864\) 0 0
\(865\) −23.1022 13.3381i −0.785499 0.453508i
\(866\) 0 0
\(867\) −15.7785 + 27.3291i −0.535865 + 0.928146i
\(868\) 0 0
\(869\) 6.03283 3.48306i 0.204650 0.118155i
\(870\) 0 0
\(871\) 3.77915 5.11170i 0.128052 0.173203i
\(872\) 0 0
\(873\) −29.6411 + 17.1133i −1.00320 + 0.579197i
\(874\) 0 0
\(875\) −12.7985 + 22.1676i −0.432668 + 0.749403i
\(876\) 0 0
\(877\) −22.7305 13.1234i −0.767554 0.443147i 0.0644477 0.997921i \(-0.479471\pi\)
−0.832001 + 0.554774i \(0.812805\pi\)
\(878\) 0 0
\(879\) 39.6195i 1.33633i
\(880\) 0 0
\(881\) 7.20353 + 12.4769i 0.242693 + 0.420357i 0.961480 0.274873i \(-0.0886359\pi\)
−0.718787 + 0.695230i \(0.755303\pi\)
\(882\) 0 0
\(883\) −36.9503 −1.24348 −0.621739 0.783225i \(-0.713573\pi\)
−0.621739 + 0.783225i \(0.713573\pi\)
\(884\) 0 0
\(885\) 9.78689 0.328983
\(886\) 0 0
\(887\) −23.9103 41.4138i −0.802828 1.39054i −0.917748 0.397164i \(-0.869995\pi\)
0.114920 0.993375i \(-0.463339\pi\)
\(888\) 0 0
\(889\) 1.02150i 0.0342599i
\(890\) 0 0
\(891\) 24.3651 + 14.0672i 0.816261 + 0.471268i
\(892\) 0 0
\(893\) 10.5886 18.3401i 0.354336 0.613727i
\(894\) 0 0
\(895\) −4.93136 + 2.84712i −0.164837 + 0.0951687i
\(896\) 0 0
\(897\) −2.10923 + 18.5815i −0.0704251 + 0.620418i
\(898\) 0 0
\(899\) 55.8029 32.2178i 1.86113 1.07453i
\(900\) 0 0
\(901\) −26.4967 + 45.8936i −0.882733 + 1.52894i
\(902\) 0 0
\(903\) −20.7667 11.9897i −0.691074 0.398992i
\(904\) 0 0
\(905\) 10.2833i 0.341829i
\(906\) 0 0
\(907\) 10.7353 + 18.5940i 0.356459 + 0.617404i 0.987366 0.158453i \(-0.0506508\pi\)
−0.630908 + 0.775858i \(0.717317\pi\)
\(908\) 0 0
\(909\) 35.7594 1.18607
\(910\) 0 0
\(911\) 28.2594 0.936277 0.468138 0.883655i \(-0.344925\pi\)
0.468138 + 0.883655i \(0.344925\pi\)
\(912\) 0 0
\(913\) −3.62761 6.28321i −0.120056 0.207944i
\(914\) 0 0
\(915\) 19.6330i 0.649046i
\(916\) 0 0
\(917\) −43.7488 25.2584i −1.44471 0.834105i
\(918\) 0 0
\(919\) 22.7232 39.3577i 0.749568 1.29829i −0.198462 0.980109i \(-0.563595\pi\)
0.948030 0.318181i \(-0.103072\pi\)
\(920\) 0 0
\(921\) −7.89546 + 4.55845i −0.260164 + 0.150206i
\(922\) 0 0
\(923\) 3.64136 + 0.413339i 0.119857 + 0.0136052i
\(924\) 0 0
\(925\) −11.6725 + 6.73912i −0.383789 + 0.221581i
\(926\) 0 0
\(927\) 2.45305 4.24880i 0.0805686 0.139549i
\(928\) 0 0
\(929\) 15.1077 + 8.72243i 0.495667 + 0.286174i 0.726923 0.686719i \(-0.240950\pi\)
−0.231255 + 0.972893i \(0.574283\pi\)
\(930\) 0 0
\(931\) 1.48306i 0.0486052i
\(932\) 0 0
\(933\) −32.4113 56.1380i −1.06110 1.83787i
\(934\) 0 0
\(935\) −16.2657 −0.531947
\(936\) 0 0
\(937\) 44.7794 1.46288 0.731440 0.681906i \(-0.238848\pi\)
0.731440 + 0.681906i \(0.238848\pi\)
\(938\) 0 0
\(939\) 4.05275 + 7.01957i 0.132257 + 0.229075i
\(940\) 0 0
\(941\) 0.525176i 0.0171202i −0.999963 0.00856012i \(-0.997275\pi\)
0.999963 0.00856012i \(-0.00272481\pi\)
\(942\) 0 0
\(943\) 11.3054 + 6.52716i 0.368154 + 0.212554i
\(944\) 0 0
\(945\) 2.71194 4.69722i 0.0882194 0.152801i
\(946\) 0 0
\(947\) −21.0744 + 12.1673i −0.684826 + 0.395384i −0.801671 0.597766i \(-0.796055\pi\)
0.116845 + 0.993150i \(0.462722\pi\)
\(948\) 0 0
\(949\) −0.465301 1.06890i −0.0151043 0.0346979i
\(950\) 0 0
\(951\) −2.72425 + 1.57285i −0.0883399 + 0.0510031i
\(952\) 0 0
\(953\) 26.5257 45.9438i 0.859250 1.48827i −0.0133948 0.999910i \(-0.504264\pi\)
0.872645 0.488355i \(-0.162403\pi\)
\(954\) 0 0
\(955\) −16.5004 9.52652i −0.533941 0.308271i
\(956\) 0 0
\(957\) 46.3590i 1.49857i
\(958\) 0 0
\(959\) 5.18873 + 8.98715i 0.167553 + 0.290210i
\(960\) 0 0
\(961\) −37.2704 −1.20227
\(962\) 0 0
\(963\) −23.6867 −0.763292
\(964\) 0 0
\(965\) −11.4915 19.9039i −0.369925 0.640730i
\(966\) 0 0
\(967\) 26.5793i 0.854732i 0.904079 + 0.427366i \(0.140558\pi\)
−0.904079 + 0.427366i \(0.859442\pi\)
\(968\) 0 0
\(969\) 87.0404 + 50.2528i 2.79614 + 1.61435i
\(970\) 0 0
\(971\) 27.5500 47.7180i 0.884121 1.53134i 0.0374027 0.999300i \(-0.488092\pi\)
0.846718 0.532042i \(-0.178575\pi\)
\(972\) 0 0
\(973\) 42.8642 24.7476i 1.37416 0.793373i
\(974\) 0 0
\(975\) 24.7046 + 18.2645i 0.791181 + 0.584932i
\(976\) 0 0
\(977\) 29.5834 17.0800i 0.946457 0.546437i 0.0544782 0.998515i \(-0.482650\pi\)
0.891978 + 0.452078i \(0.149317\pi\)
\(978\) 0 0
\(979\) −15.0631 + 26.0901i −0.481420 + 0.833844i
\(980\) 0 0
\(981\) −5.54518 3.20151i −0.177044 0.102216i
\(982\) 0 0
\(983\) 13.8912i 0.443059i −0.975154 0.221530i \(-0.928895\pi\)
0.975154 0.221530i \(-0.0711050\pi\)
\(984\) 0 0
\(985\) 8.71740 + 15.0990i 0.277760 + 0.481094i
\(986\) 0 0
\(987\) −15.8461 −0.504386
\(988\) 0 0
\(989\) 9.18667 0.292119
\(990\) 0 0
\(991\) −8.62081 14.9317i −0.273849 0.474320i 0.695995 0.718047i \(-0.254964\pi\)
−0.969844 + 0.243726i \(0.921630\pi\)
\(992\) 0 0
\(993\) 21.4708i 0.681357i
\(994\) 0 0
\(995\) 18.8062 + 10.8578i 0.596196 + 0.344214i
\(996\) 0 0
\(997\) −0.728370 + 1.26157i −0.0230677 + 0.0399545i −0.877329 0.479890i \(-0.840677\pi\)
0.854261 + 0.519844i \(0.174010\pi\)
\(998\) 0 0
\(999\) 5.77861 3.33628i 0.182827 0.105555i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.w.i.257.1 8
4.3 odd 2 832.2.w.g.257.4 8
8.3 odd 2 104.2.o.a.49.1 yes 8
8.5 even 2 208.2.w.c.49.4 8
13.4 even 6 inner 832.2.w.i.641.1 8
24.5 odd 2 1872.2.by.n.1297.2 8
24.11 even 2 936.2.bi.b.361.2 8
52.43 odd 6 832.2.w.g.641.4 8
104.3 odd 6 1352.2.f.f.337.7 8
104.11 even 12 1352.2.a.l.1.4 4
104.19 even 12 1352.2.i.k.529.1 8
104.29 even 6 2704.2.f.q.337.1 8
104.35 odd 6 1352.2.o.f.1161.1 8
104.37 odd 12 2704.2.a.be.1.1 4
104.43 odd 6 104.2.o.a.17.1 8
104.51 odd 2 1352.2.o.f.361.1 8
104.59 even 12 1352.2.i.l.529.1 8
104.67 even 12 1352.2.a.k.1.4 4
104.69 even 6 208.2.w.c.17.4 8
104.75 odd 6 1352.2.f.f.337.8 8
104.83 even 4 1352.2.i.k.1329.1 8
104.93 odd 12 2704.2.a.bd.1.1 4
104.99 even 4 1352.2.i.l.1329.1 8
104.101 even 6 2704.2.f.q.337.2 8
312.173 odd 6 1872.2.by.n.433.3 8
312.251 even 6 936.2.bi.b.433.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.o.a.17.1 8 104.43 odd 6
104.2.o.a.49.1 yes 8 8.3 odd 2
208.2.w.c.17.4 8 104.69 even 6
208.2.w.c.49.4 8 8.5 even 2
832.2.w.g.257.4 8 4.3 odd 2
832.2.w.g.641.4 8 52.43 odd 6
832.2.w.i.257.1 8 1.1 even 1 trivial
832.2.w.i.641.1 8 13.4 even 6 inner
936.2.bi.b.361.2 8 24.11 even 2
936.2.bi.b.433.3 8 312.251 even 6
1352.2.a.k.1.4 4 104.67 even 12
1352.2.a.l.1.4 4 104.11 even 12
1352.2.f.f.337.7 8 104.3 odd 6
1352.2.f.f.337.8 8 104.75 odd 6
1352.2.i.k.529.1 8 104.19 even 12
1352.2.i.k.1329.1 8 104.83 even 4
1352.2.i.l.529.1 8 104.59 even 12
1352.2.i.l.1329.1 8 104.99 even 4
1352.2.o.f.361.1 8 104.51 odd 2
1352.2.o.f.1161.1 8 104.35 odd 6
1872.2.by.n.433.3 8 312.173 odd 6
1872.2.by.n.1297.2 8 24.5 odd 2
2704.2.a.bd.1.1 4 104.93 odd 12
2704.2.a.be.1.1 4 104.37 odd 12
2704.2.f.q.337.1 8 104.29 even 6
2704.2.f.q.337.2 8 104.101 even 6