L(s) = 1 | + (−1.13 + 1.97i)3-s − 1.12i·5-s + (2.26 − 1.30i)7-s + (−1.09 − 1.89i)9-s + (−2.26 − 1.30i)11-s + (2.21 + 1.27i)15-s + (−2.77 − 4.81i)17-s + (−6.88 + 3.97i)19-s + 5.94i·21-s + (−1.13 + 1.97i)23-s + 3.74·25-s − 1.85·27-s + (−3.89 + 6.75i)29-s + 8.26i·31-s + (5.14 − 2.97i)33-s + ⋯ |
L(s) = 1 | + (−0.657 + 1.13i)3-s − 0.501i·5-s + (0.854 − 0.493i)7-s + (−0.364 − 0.631i)9-s + (−0.681 − 0.393i)11-s + (0.571 + 0.329i)15-s + (−0.673 − 1.16i)17-s + (−1.57 + 0.911i)19-s + 1.29i·21-s + (−0.237 + 0.411i)23-s + 0.748·25-s − 0.356·27-s + (−0.724 + 1.25i)29-s + 1.48i·31-s + (0.896 − 0.517i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.967 + 0.252i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.967 + 0.252i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2123076434\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2123076434\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (1.13 - 1.97i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 1.12iT - 5T^{2} \) |
| 7 | \( 1 + (-2.26 + 1.30i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.26 + 1.30i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.77 + 4.81i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (6.88 - 3.97i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.13 - 1.97i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.89 - 6.75i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 8.26iT - 31T^{2} \) |
| 37 | \( 1 + (3.11 + 1.80i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.96 + 2.86i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.01 - 3.49i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 2.66iT - 47T^{2} \) |
| 53 | \( 1 + 9.54T + 53T^{2} \) |
| 59 | \( 1 + (3.31 - 1.91i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.84 + 6.65i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.52 - 0.881i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (0.880 - 0.508i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 0.323iT - 73T^{2} \) |
| 79 | \( 1 + 2.66T + 79T^{2} \) |
| 83 | \( 1 + 2.77iT - 83T^{2} \) |
| 89 | \( 1 + (-9.99 - 5.77i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (13.5 - 7.82i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.25252524108270070593565205688, −9.245435699872126653965712479828, −8.581451452452803378992068613884, −7.71891385407968536743759234249, −6.69622886044804224882740197740, −5.53573389085613400888930451565, −4.90345108717356295915100288908, −4.39618436469124154574358754581, −3.27887828600260924939225756962, −1.66727260574101310899267056837,
0.089431085805345631277611551993, 1.85652968182424199270854521903, 2.41067965872056017977528390456, 4.13545137171559726521454126583, 5.06342432930428046863991386898, 6.16223720039183958559248133468, 6.52848751108282381195237465053, 7.53442374009099168993483866666, 8.162808094961643459878578572117, 8.954170796500351693710078112277