Properties

Label 1350.3.b.b.1349.4
Level $1350$
Weight $3$
Character 1350.1349
Analytic conductor $36.785$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1350,3,Mod(1349,1350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1350.1349"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1350.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,8,0,0,0,0,0,0,0,0,0,0,0,16,0,0,-116] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7848356886\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1349.4
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1350.1349
Dual form 1350.3.b.b.1349.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421 q^{2} +2.00000 q^{4} +5.00000i q^{7} +2.82843 q^{8} +8.48528i q^{11} +1.00000i q^{13} +7.07107i q^{14} +4.00000 q^{16} -25.4558 q^{17} -29.0000 q^{19} +12.0000i q^{22} -8.48528 q^{23} +1.41421i q^{26} +10.0000i q^{28} +16.9706i q^{29} -10.0000 q^{31} +5.65685 q^{32} -36.0000 q^{34} -25.0000i q^{37} -41.0122 q^{38} +16.9706i q^{41} -14.0000i q^{43} +16.9706i q^{44} -12.0000 q^{46} -8.48528 q^{47} +24.0000 q^{49} +2.00000i q^{52} -50.9117 q^{53} +14.1421i q^{56} +24.0000i q^{58} -93.3381i q^{59} +23.0000 q^{61} -14.1421 q^{62} +8.00000 q^{64} -19.0000i q^{67} -50.9117 q^{68} +101.823i q^{71} +97.0000i q^{73} -35.3553i q^{74} -58.0000 q^{76} -42.4264 q^{77} -77.0000 q^{79} +24.0000i q^{82} -118.794 q^{83} -19.7990i q^{86} +24.0000i q^{88} +76.3675i q^{89} -5.00000 q^{91} -16.9706 q^{92} -12.0000 q^{94} -49.0000i q^{97} +33.9411 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{4} + 16 q^{16} - 116 q^{19} - 40 q^{31} - 144 q^{34} - 48 q^{46} + 96 q^{49} + 92 q^{61} + 32 q^{64} - 232 q^{76} - 308 q^{79} - 20 q^{91} - 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421 0.707107
\(3\) 0 0
\(4\) 2.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 5.00000i 0.714286i 0.934050 + 0.357143i \(0.116249\pi\)
−0.934050 + 0.357143i \(0.883751\pi\)
\(8\) 2.82843 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 8.48528i 0.771389i 0.922627 + 0.385695i \(0.126038\pi\)
−0.922627 + 0.385695i \(0.873962\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.0769231i 0.999260 + 0.0384615i \(0.0122457\pi\)
−0.999260 + 0.0384615i \(0.987754\pi\)
\(14\) 7.07107i 0.505076i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) −25.4558 −1.49740 −0.748701 0.662908i \(-0.769322\pi\)
−0.748701 + 0.662908i \(0.769322\pi\)
\(18\) 0 0
\(19\) −29.0000 −1.52632 −0.763158 0.646212i \(-0.776352\pi\)
−0.763158 + 0.646212i \(0.776352\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 12.0000i 0.545455i
\(23\) −8.48528 −0.368925 −0.184463 0.982840i \(-0.559054\pi\)
−0.184463 + 0.982840i \(0.559054\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 1.41421i 0.0543928i
\(27\) 0 0
\(28\) 10.0000i 0.357143i
\(29\) 16.9706i 0.585192i 0.956236 + 0.292596i \(0.0945191\pi\)
−0.956236 + 0.292596i \(0.905481\pi\)
\(30\) 0 0
\(31\) −10.0000 −0.322581 −0.161290 0.986907i \(-0.551566\pi\)
−0.161290 + 0.986907i \(0.551566\pi\)
\(32\) 5.65685 0.176777
\(33\) 0 0
\(34\) −36.0000 −1.05882
\(35\) 0 0
\(36\) 0 0
\(37\) − 25.0000i − 0.675676i −0.941204 0.337838i \(-0.890304\pi\)
0.941204 0.337838i \(-0.109696\pi\)
\(38\) −41.0122 −1.07927
\(39\) 0 0
\(40\) 0 0
\(41\) 16.9706i 0.413916i 0.978350 + 0.206958i \(0.0663564\pi\)
−0.978350 + 0.206958i \(0.933644\pi\)
\(42\) 0 0
\(43\) − 14.0000i − 0.325581i −0.986661 0.162791i \(-0.947950\pi\)
0.986661 0.162791i \(-0.0520495\pi\)
\(44\) 16.9706i 0.385695i
\(45\) 0 0
\(46\) −12.0000 −0.260870
\(47\) −8.48528 −0.180538 −0.0902690 0.995917i \(-0.528773\pi\)
−0.0902690 + 0.995917i \(0.528773\pi\)
\(48\) 0 0
\(49\) 24.0000 0.489796
\(50\) 0 0
\(51\) 0 0
\(52\) 2.00000i 0.0384615i
\(53\) −50.9117 −0.960598 −0.480299 0.877105i \(-0.659472\pi\)
−0.480299 + 0.877105i \(0.659472\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 14.1421i 0.252538i
\(57\) 0 0
\(58\) 24.0000i 0.413793i
\(59\) − 93.3381i − 1.58200i −0.611815 0.791001i \(-0.709560\pi\)
0.611815 0.791001i \(-0.290440\pi\)
\(60\) 0 0
\(61\) 23.0000 0.377049 0.188525 0.982068i \(-0.439629\pi\)
0.188525 + 0.982068i \(0.439629\pi\)
\(62\) −14.1421 −0.228099
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 19.0000i − 0.283582i −0.989897 0.141791i \(-0.954714\pi\)
0.989897 0.141791i \(-0.0452861\pi\)
\(68\) −50.9117 −0.748701
\(69\) 0 0
\(70\) 0 0
\(71\) 101.823i 1.43413i 0.697005 + 0.717066i \(0.254515\pi\)
−0.697005 + 0.717066i \(0.745485\pi\)
\(72\) 0 0
\(73\) 97.0000i 1.32877i 0.747392 + 0.664384i \(0.231306\pi\)
−0.747392 + 0.664384i \(0.768694\pi\)
\(74\) − 35.3553i − 0.477775i
\(75\) 0 0
\(76\) −58.0000 −0.763158
\(77\) −42.4264 −0.550992
\(78\) 0 0
\(79\) −77.0000 −0.974684 −0.487342 0.873211i \(-0.662033\pi\)
−0.487342 + 0.873211i \(0.662033\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 24.0000i 0.292683i
\(83\) −118.794 −1.43125 −0.715626 0.698484i \(-0.753859\pi\)
−0.715626 + 0.698484i \(0.753859\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) − 19.7990i − 0.230221i
\(87\) 0 0
\(88\) 24.0000i 0.272727i
\(89\) 76.3675i 0.858062i 0.903290 + 0.429031i \(0.141145\pi\)
−0.903290 + 0.429031i \(0.858855\pi\)
\(90\) 0 0
\(91\) −5.00000 −0.0549451
\(92\) −16.9706 −0.184463
\(93\) 0 0
\(94\) −12.0000 −0.127660
\(95\) 0 0
\(96\) 0 0
\(97\) − 49.0000i − 0.505155i −0.967577 0.252577i \(-0.918722\pi\)
0.967577 0.252577i \(-0.0812782\pi\)
\(98\) 33.9411 0.346338
\(99\) 0 0
\(100\) 0 0
\(101\) 135.765i 1.34420i 0.740459 + 0.672101i \(0.234608\pi\)
−0.740459 + 0.672101i \(0.765392\pi\)
\(102\) 0 0
\(103\) 163.000i 1.58252i 0.611477 + 0.791262i \(0.290576\pi\)
−0.611477 + 0.791262i \(0.709424\pi\)
\(104\) 2.82843i 0.0271964i
\(105\) 0 0
\(106\) −72.0000 −0.679245
\(107\) −25.4558 −0.237905 −0.118953 0.992900i \(-0.537954\pi\)
−0.118953 + 0.992900i \(0.537954\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.0183486 −0.00917431 0.999958i \(-0.502920\pi\)
−0.00917431 + 0.999958i \(0.502920\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 20.0000i 0.178571i
\(113\) −110.309 −0.976183 −0.488091 0.872793i \(-0.662307\pi\)
−0.488091 + 0.872793i \(0.662307\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 33.9411i 0.292596i
\(117\) 0 0
\(118\) − 132.000i − 1.11864i
\(119\) − 127.279i − 1.06957i
\(120\) 0 0
\(121\) 49.0000 0.404959
\(122\) 32.5269 0.266614
\(123\) 0 0
\(124\) −20.0000 −0.161290
\(125\) 0 0
\(126\) 0 0
\(127\) − 178.000i − 1.40157i −0.713370 0.700787i \(-0.752832\pi\)
0.713370 0.700787i \(-0.247168\pi\)
\(128\) 11.3137 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 118.794i 0.906824i 0.891301 + 0.453412i \(0.149793\pi\)
−0.891301 + 0.453412i \(0.850207\pi\)
\(132\) 0 0
\(133\) − 145.000i − 1.09023i
\(134\) − 26.8701i − 0.200523i
\(135\) 0 0
\(136\) −72.0000 −0.529412
\(137\) 93.3381 0.681300 0.340650 0.940190i \(-0.389353\pi\)
0.340650 + 0.940190i \(0.389353\pi\)
\(138\) 0 0
\(139\) 163.000 1.17266 0.586331 0.810072i \(-0.300572\pi\)
0.586331 + 0.810072i \(0.300572\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 144.000i 1.01408i
\(143\) −8.48528 −0.0593376
\(144\) 0 0
\(145\) 0 0
\(146\) 137.179i 0.939580i
\(147\) 0 0
\(148\) − 50.0000i − 0.337838i
\(149\) 33.9411i 0.227793i 0.993493 + 0.113896i \(0.0363332\pi\)
−0.993493 + 0.113896i \(0.963667\pi\)
\(150\) 0 0
\(151\) 149.000 0.986755 0.493377 0.869815i \(-0.335762\pi\)
0.493377 + 0.869815i \(0.335762\pi\)
\(152\) −82.0244 −0.539634
\(153\) 0 0
\(154\) −60.0000 −0.389610
\(155\) 0 0
\(156\) 0 0
\(157\) 242.000i 1.54140i 0.637197 + 0.770701i \(0.280094\pi\)
−0.637197 + 0.770701i \(0.719906\pi\)
\(158\) −108.894 −0.689205
\(159\) 0 0
\(160\) 0 0
\(161\) − 42.4264i − 0.263518i
\(162\) 0 0
\(163\) − 173.000i − 1.06135i −0.847575 0.530675i \(-0.821939\pi\)
0.847575 0.530675i \(-0.178061\pi\)
\(164\) 33.9411i 0.206958i
\(165\) 0 0
\(166\) −168.000 −1.01205
\(167\) −195.161 −1.16863 −0.584316 0.811526i \(-0.698637\pi\)
−0.584316 + 0.811526i \(0.698637\pi\)
\(168\) 0 0
\(169\) 168.000 0.994083
\(170\) 0 0
\(171\) 0 0
\(172\) − 28.0000i − 0.162791i
\(173\) −322.441 −1.86382 −0.931910 0.362691i \(-0.881858\pi\)
−0.931910 + 0.362691i \(0.881858\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 33.9411i 0.192847i
\(177\) 0 0
\(178\) 108.000i 0.606742i
\(179\) 305.470i 1.70654i 0.521472 + 0.853269i \(0.325383\pi\)
−0.521472 + 0.853269i \(0.674617\pi\)
\(180\) 0 0
\(181\) 263.000 1.45304 0.726519 0.687146i \(-0.241137\pi\)
0.726519 + 0.687146i \(0.241137\pi\)
\(182\) −7.07107 −0.0388520
\(183\) 0 0
\(184\) −24.0000 −0.130435
\(185\) 0 0
\(186\) 0 0
\(187\) − 216.000i − 1.15508i
\(188\) −16.9706 −0.0902690
\(189\) 0 0
\(190\) 0 0
\(191\) − 144.250i − 0.755234i −0.925962 0.377617i \(-0.876744\pi\)
0.925962 0.377617i \(-0.123256\pi\)
\(192\) 0 0
\(193\) − 71.0000i − 0.367876i −0.982938 0.183938i \(-0.941115\pi\)
0.982938 0.183938i \(-0.0588845\pi\)
\(194\) − 69.2965i − 0.357198i
\(195\) 0 0
\(196\) 48.0000 0.244898
\(197\) 76.3675 0.387652 0.193826 0.981036i \(-0.437910\pi\)
0.193826 + 0.981036i \(0.437910\pi\)
\(198\) 0 0
\(199\) −173.000 −0.869347 −0.434673 0.900588i \(-0.643136\pi\)
−0.434673 + 0.900588i \(0.643136\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 192.000i 0.950495i
\(203\) −84.8528 −0.417994
\(204\) 0 0
\(205\) 0 0
\(206\) 230.517i 1.11901i
\(207\) 0 0
\(208\) 4.00000i 0.0192308i
\(209\) − 246.073i − 1.17738i
\(210\) 0 0
\(211\) 341.000 1.61611 0.808057 0.589104i \(-0.200519\pi\)
0.808057 + 0.589104i \(0.200519\pi\)
\(212\) −101.823 −0.480299
\(213\) 0 0
\(214\) −36.0000 −0.168224
\(215\) 0 0
\(216\) 0 0
\(217\) − 50.0000i − 0.230415i
\(218\) −2.82843 −0.0129744
\(219\) 0 0
\(220\) 0 0
\(221\) − 25.4558i − 0.115185i
\(222\) 0 0
\(223\) 58.0000i 0.260090i 0.991508 + 0.130045i \(0.0415121\pi\)
−0.991508 + 0.130045i \(0.958488\pi\)
\(224\) 28.2843i 0.126269i
\(225\) 0 0
\(226\) −156.000 −0.690265
\(227\) −135.765 −0.598082 −0.299041 0.954240i \(-0.596667\pi\)
−0.299041 + 0.954240i \(0.596667\pi\)
\(228\) 0 0
\(229\) 262.000 1.14410 0.572052 0.820217i \(-0.306147\pi\)
0.572052 + 0.820217i \(0.306147\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 48.0000i 0.206897i
\(233\) 305.470 1.31103 0.655515 0.755182i \(-0.272451\pi\)
0.655515 + 0.755182i \(0.272451\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) − 186.676i − 0.791001i
\(237\) 0 0
\(238\) − 180.000i − 0.756303i
\(239\) − 169.706i − 0.710065i −0.934854 0.355033i \(-0.884470\pi\)
0.934854 0.355033i \(-0.115530\pi\)
\(240\) 0 0
\(241\) −121.000 −0.502075 −0.251037 0.967977i \(-0.580772\pi\)
−0.251037 + 0.967977i \(0.580772\pi\)
\(242\) 69.2965 0.286349
\(243\) 0 0
\(244\) 46.0000 0.188525
\(245\) 0 0
\(246\) 0 0
\(247\) − 29.0000i − 0.117409i
\(248\) −28.2843 −0.114049
\(249\) 0 0
\(250\) 0 0
\(251\) 356.382i 1.41985i 0.704278 + 0.709924i \(0.251271\pi\)
−0.704278 + 0.709924i \(0.748729\pi\)
\(252\) 0 0
\(253\) − 72.0000i − 0.284585i
\(254\) − 251.730i − 0.991063i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 84.8528 0.330167 0.165083 0.986280i \(-0.447211\pi\)
0.165083 + 0.986280i \(0.447211\pi\)
\(258\) 0 0
\(259\) 125.000 0.482625
\(260\) 0 0
\(261\) 0 0
\(262\) 168.000i 0.641221i
\(263\) −169.706 −0.645269 −0.322634 0.946524i \(-0.604568\pi\)
−0.322634 + 0.946524i \(0.604568\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) − 205.061i − 0.770906i
\(267\) 0 0
\(268\) − 38.0000i − 0.141791i
\(269\) 280.014i 1.04095i 0.853878 + 0.520473i \(0.174244\pi\)
−0.853878 + 0.520473i \(0.825756\pi\)
\(270\) 0 0
\(271\) 29.0000 0.107011 0.0535055 0.998568i \(-0.482961\pi\)
0.0535055 + 0.998568i \(0.482961\pi\)
\(272\) −101.823 −0.374351
\(273\) 0 0
\(274\) 132.000 0.481752
\(275\) 0 0
\(276\) 0 0
\(277\) − 382.000i − 1.37906i −0.724256 0.689531i \(-0.757817\pi\)
0.724256 0.689531i \(-0.242183\pi\)
\(278\) 230.517 0.829197
\(279\) 0 0
\(280\) 0 0
\(281\) − 220.617i − 0.785115i −0.919727 0.392558i \(-0.871590\pi\)
0.919727 0.392558i \(-0.128410\pi\)
\(282\) 0 0
\(283\) − 62.0000i − 0.219081i −0.993982 0.109541i \(-0.965062\pi\)
0.993982 0.109541i \(-0.0349380\pi\)
\(284\) 203.647i 0.717066i
\(285\) 0 0
\(286\) −12.0000 −0.0419580
\(287\) −84.8528 −0.295654
\(288\) 0 0
\(289\) 359.000 1.24221
\(290\) 0 0
\(291\) 0 0
\(292\) 194.000i 0.664384i
\(293\) −313.955 −1.07152 −0.535760 0.844370i \(-0.679975\pi\)
−0.535760 + 0.844370i \(0.679975\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) − 70.7107i − 0.238887i
\(297\) 0 0
\(298\) 48.0000i 0.161074i
\(299\) − 8.48528i − 0.0283789i
\(300\) 0 0
\(301\) 70.0000 0.232558
\(302\) 210.718 0.697741
\(303\) 0 0
\(304\) −116.000 −0.381579
\(305\) 0 0
\(306\) 0 0
\(307\) − 34.0000i − 0.110749i −0.998466 0.0553746i \(-0.982365\pi\)
0.998466 0.0553746i \(-0.0176353\pi\)
\(308\) −84.8528 −0.275496
\(309\) 0 0
\(310\) 0 0
\(311\) − 59.3970i − 0.190987i −0.995430 0.0954935i \(-0.969557\pi\)
0.995430 0.0954935i \(-0.0304429\pi\)
\(312\) 0 0
\(313\) − 239.000i − 0.763578i −0.924249 0.381789i \(-0.875308\pi\)
0.924249 0.381789i \(-0.124692\pi\)
\(314\) 342.240i 1.08994i
\(315\) 0 0
\(316\) −154.000 −0.487342
\(317\) 16.9706 0.0535349 0.0267674 0.999642i \(-0.491479\pi\)
0.0267674 + 0.999642i \(0.491479\pi\)
\(318\) 0 0
\(319\) −144.000 −0.451411
\(320\) 0 0
\(321\) 0 0
\(322\) − 60.0000i − 0.186335i
\(323\) 738.219 2.28551
\(324\) 0 0
\(325\) 0 0
\(326\) − 244.659i − 0.750488i
\(327\) 0 0
\(328\) 48.0000i 0.146341i
\(329\) − 42.4264i − 0.128956i
\(330\) 0 0
\(331\) −499.000 −1.50755 −0.753776 0.657131i \(-0.771770\pi\)
−0.753776 + 0.657131i \(0.771770\pi\)
\(332\) −237.588 −0.715626
\(333\) 0 0
\(334\) −276.000 −0.826347
\(335\) 0 0
\(336\) 0 0
\(337\) − 145.000i − 0.430267i −0.976585 0.215134i \(-0.930981\pi\)
0.976585 0.215134i \(-0.0690187\pi\)
\(338\) 237.588 0.702923
\(339\) 0 0
\(340\) 0 0
\(341\) − 84.8528i − 0.248835i
\(342\) 0 0
\(343\) 365.000i 1.06414i
\(344\) − 39.5980i − 0.115110i
\(345\) 0 0
\(346\) −456.000 −1.31792
\(347\) 441.235 1.27157 0.635785 0.771866i \(-0.280677\pi\)
0.635785 + 0.771866i \(0.280677\pi\)
\(348\) 0 0
\(349\) 121.000 0.346705 0.173352 0.984860i \(-0.444540\pi\)
0.173352 + 0.984860i \(0.444540\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 48.0000i 0.136364i
\(353\) 441.235 1.24996 0.624978 0.780642i \(-0.285108\pi\)
0.624978 + 0.780642i \(0.285108\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 152.735i 0.429031i
\(357\) 0 0
\(358\) 432.000i 1.20670i
\(359\) 432.749i 1.20543i 0.797957 + 0.602715i \(0.205914\pi\)
−0.797957 + 0.602715i \(0.794086\pi\)
\(360\) 0 0
\(361\) 480.000 1.32964
\(362\) 371.938 1.02745
\(363\) 0 0
\(364\) −10.0000 −0.0274725
\(365\) 0 0
\(366\) 0 0
\(367\) 149.000i 0.405995i 0.979179 + 0.202997i \(0.0650683\pi\)
−0.979179 + 0.202997i \(0.934932\pi\)
\(368\) −33.9411 −0.0922313
\(369\) 0 0
\(370\) 0 0
\(371\) − 254.558i − 0.686141i
\(372\) 0 0
\(373\) 361.000i 0.967828i 0.875115 + 0.483914i \(0.160785\pi\)
−0.875115 + 0.483914i \(0.839215\pi\)
\(374\) − 305.470i − 0.816765i
\(375\) 0 0
\(376\) −24.0000 −0.0638298
\(377\) −16.9706 −0.0450148
\(378\) 0 0
\(379\) −173.000 −0.456464 −0.228232 0.973607i \(-0.573295\pi\)
−0.228232 + 0.973607i \(0.573295\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 204.000i − 0.534031i
\(383\) 678.823 1.77238 0.886191 0.463320i \(-0.153342\pi\)
0.886191 + 0.463320i \(0.153342\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) − 100.409i − 0.260127i
\(387\) 0 0
\(388\) − 98.0000i − 0.252577i
\(389\) − 415.779i − 1.06884i −0.845219 0.534420i \(-0.820530\pi\)
0.845219 0.534420i \(-0.179470\pi\)
\(390\) 0 0
\(391\) 216.000 0.552430
\(392\) 67.8823 0.173169
\(393\) 0 0
\(394\) 108.000 0.274112
\(395\) 0 0
\(396\) 0 0
\(397\) − 286.000i − 0.720403i −0.932875 0.360202i \(-0.882708\pi\)
0.932875 0.360202i \(-0.117292\pi\)
\(398\) −244.659 −0.614721
\(399\) 0 0
\(400\) 0 0
\(401\) − 339.411i − 0.846412i −0.906033 0.423206i \(-0.860905\pi\)
0.906033 0.423206i \(-0.139095\pi\)
\(402\) 0 0
\(403\) − 10.0000i − 0.0248139i
\(404\) 271.529i 0.672101i
\(405\) 0 0
\(406\) −120.000 −0.295567
\(407\) 212.132 0.521209
\(408\) 0 0
\(409\) −215.000 −0.525672 −0.262836 0.964840i \(-0.584658\pi\)
−0.262836 + 0.964840i \(0.584658\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 326.000i 0.791262i
\(413\) 466.690 1.13000
\(414\) 0 0
\(415\) 0 0
\(416\) 5.65685i 0.0135982i
\(417\) 0 0
\(418\) − 348.000i − 0.832536i
\(419\) − 602.455i − 1.43784i −0.695093 0.718920i \(-0.744637\pi\)
0.695093 0.718920i \(-0.255363\pi\)
\(420\) 0 0
\(421\) 455.000 1.08076 0.540380 0.841421i \(-0.318280\pi\)
0.540380 + 0.841421i \(0.318280\pi\)
\(422\) 482.247 1.14276
\(423\) 0 0
\(424\) −144.000 −0.339623
\(425\) 0 0
\(426\) 0 0
\(427\) 115.000i 0.269321i
\(428\) −50.9117 −0.118953
\(429\) 0 0
\(430\) 0 0
\(431\) − 330.926i − 0.767810i −0.923373 0.383905i \(-0.874579\pi\)
0.923373 0.383905i \(-0.125421\pi\)
\(432\) 0 0
\(433\) − 218.000i − 0.503464i −0.967797 0.251732i \(-0.919000\pi\)
0.967797 0.251732i \(-0.0810002\pi\)
\(434\) − 70.7107i − 0.162928i
\(435\) 0 0
\(436\) −4.00000 −0.00917431
\(437\) 246.073 0.563096
\(438\) 0 0
\(439\) −374.000 −0.851936 −0.425968 0.904738i \(-0.640066\pi\)
−0.425968 + 0.904738i \(0.640066\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 36.0000i − 0.0814480i
\(443\) −16.9706 −0.0383083 −0.0191541 0.999817i \(-0.506097\pi\)
−0.0191541 + 0.999817i \(0.506097\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 82.0244i 0.183911i
\(447\) 0 0
\(448\) 40.0000i 0.0892857i
\(449\) 483.661i 1.07720i 0.842563 + 0.538598i \(0.181046\pi\)
−0.842563 + 0.538598i \(0.818954\pi\)
\(450\) 0 0
\(451\) −144.000 −0.319290
\(452\) −220.617 −0.488091
\(453\) 0 0
\(454\) −192.000 −0.422907
\(455\) 0 0
\(456\) 0 0
\(457\) − 22.0000i − 0.0481400i −0.999710 0.0240700i \(-0.992338\pi\)
0.999710 0.0240700i \(-0.00766247\pi\)
\(458\) 370.524 0.809004
\(459\) 0 0
\(460\) 0 0
\(461\) − 398.808i − 0.865094i −0.901611 0.432547i \(-0.857615\pi\)
0.901611 0.432547i \(-0.142385\pi\)
\(462\) 0 0
\(463\) 883.000i 1.90713i 0.301191 + 0.953564i \(0.402616\pi\)
−0.301191 + 0.953564i \(0.597384\pi\)
\(464\) 67.8823i 0.146298i
\(465\) 0 0
\(466\) 432.000 0.927039
\(467\) −127.279 −0.272547 −0.136273 0.990671i \(-0.543513\pi\)
−0.136273 + 0.990671i \(0.543513\pi\)
\(468\) 0 0
\(469\) 95.0000 0.202559
\(470\) 0 0
\(471\) 0 0
\(472\) − 264.000i − 0.559322i
\(473\) 118.794 0.251150
\(474\) 0 0
\(475\) 0 0
\(476\) − 254.558i − 0.534787i
\(477\) 0 0
\(478\) − 240.000i − 0.502092i
\(479\) − 390.323i − 0.814870i −0.913234 0.407435i \(-0.866423\pi\)
0.913234 0.407435i \(-0.133577\pi\)
\(480\) 0 0
\(481\) 25.0000 0.0519751
\(482\) −171.120 −0.355020
\(483\) 0 0
\(484\) 98.0000 0.202479
\(485\) 0 0
\(486\) 0 0
\(487\) 317.000i 0.650924i 0.945555 + 0.325462i \(0.105520\pi\)
−0.945555 + 0.325462i \(0.894480\pi\)
\(488\) 65.0538 0.133307
\(489\) 0 0
\(490\) 0 0
\(491\) − 364.867i − 0.743110i −0.928411 0.371555i \(-0.878825\pi\)
0.928411 0.371555i \(-0.121175\pi\)
\(492\) 0 0
\(493\) − 432.000i − 0.876268i
\(494\) − 41.0122i − 0.0830206i
\(495\) 0 0
\(496\) −40.0000 −0.0806452
\(497\) −509.117 −1.02438
\(498\) 0 0
\(499\) −710.000 −1.42285 −0.711423 0.702764i \(-0.751949\pi\)
−0.711423 + 0.702764i \(0.751949\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 504.000i 1.00398i
\(503\) 280.014 0.556688 0.278344 0.960481i \(-0.410214\pi\)
0.278344 + 0.960481i \(0.410214\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 101.823i − 0.201232i
\(507\) 0 0
\(508\) − 356.000i − 0.700787i
\(509\) 263.044i 0.516785i 0.966040 + 0.258393i \(0.0831928\pi\)
−0.966040 + 0.258393i \(0.916807\pi\)
\(510\) 0 0
\(511\) −485.000 −0.949119
\(512\) 22.6274 0.0441942
\(513\) 0 0
\(514\) 120.000 0.233463
\(515\) 0 0
\(516\) 0 0
\(517\) − 72.0000i − 0.139265i
\(518\) 176.777 0.341268
\(519\) 0 0
\(520\) 0 0
\(521\) 687.308i 1.31921i 0.751613 + 0.659604i \(0.229276\pi\)
−0.751613 + 0.659604i \(0.770724\pi\)
\(522\) 0 0
\(523\) 763.000i 1.45889i 0.684039 + 0.729446i \(0.260222\pi\)
−0.684039 + 0.729446i \(0.739778\pi\)
\(524\) 237.588i 0.453412i
\(525\) 0 0
\(526\) −240.000 −0.456274
\(527\) 254.558 0.483033
\(528\) 0 0
\(529\) −457.000 −0.863894
\(530\) 0 0
\(531\) 0 0
\(532\) − 290.000i − 0.545113i
\(533\) −16.9706 −0.0318397
\(534\) 0 0
\(535\) 0 0
\(536\) − 53.7401i − 0.100261i
\(537\) 0 0
\(538\) 396.000i 0.736059i
\(539\) 203.647i 0.377823i
\(540\) 0 0
\(541\) −313.000 −0.578558 −0.289279 0.957245i \(-0.593416\pi\)
−0.289279 + 0.957245i \(0.593416\pi\)
\(542\) 41.0122 0.0756683
\(543\) 0 0
\(544\) −144.000 −0.264706
\(545\) 0 0
\(546\) 0 0
\(547\) − 139.000i − 0.254113i −0.991895 0.127057i \(-0.959447\pi\)
0.991895 0.127057i \(-0.0405530\pi\)
\(548\) 186.676 0.340650
\(549\) 0 0
\(550\) 0 0
\(551\) − 492.146i − 0.893188i
\(552\) 0 0
\(553\) − 385.000i − 0.696203i
\(554\) − 540.230i − 0.975144i
\(555\) 0 0
\(556\) 326.000 0.586331
\(557\) 280.014 0.502719 0.251359 0.967894i \(-0.419122\pi\)
0.251359 + 0.967894i \(0.419122\pi\)
\(558\) 0 0
\(559\) 14.0000 0.0250447
\(560\) 0 0
\(561\) 0 0
\(562\) − 312.000i − 0.555160i
\(563\) −593.970 −1.05501 −0.527504 0.849552i \(-0.676872\pi\)
−0.527504 + 0.849552i \(0.676872\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) − 87.6812i − 0.154914i
\(567\) 0 0
\(568\) 288.000i 0.507042i
\(569\) − 619.426i − 1.08862i −0.838884 0.544311i \(-0.816791\pi\)
0.838884 0.544311i \(-0.183209\pi\)
\(570\) 0 0
\(571\) −163.000 −0.285464 −0.142732 0.989761i \(-0.545589\pi\)
−0.142732 + 0.989761i \(0.545589\pi\)
\(572\) −16.9706 −0.0296688
\(573\) 0 0
\(574\) −120.000 −0.209059
\(575\) 0 0
\(576\) 0 0
\(577\) 1127.00i 1.95321i 0.215050 + 0.976603i \(0.431009\pi\)
−0.215050 + 0.976603i \(0.568991\pi\)
\(578\) 507.703 0.878378
\(579\) 0 0
\(580\) 0 0
\(581\) − 593.970i − 1.02232i
\(582\) 0 0
\(583\) − 432.000i − 0.740995i
\(584\) 274.357i 0.469790i
\(585\) 0 0
\(586\) −444.000 −0.757679
\(587\) 1009.75 1.72018 0.860092 0.510138i \(-0.170406\pi\)
0.860092 + 0.510138i \(0.170406\pi\)
\(588\) 0 0
\(589\) 290.000 0.492360
\(590\) 0 0
\(591\) 0 0
\(592\) − 100.000i − 0.168919i
\(593\) 356.382 0.600981 0.300491 0.953785i \(-0.402850\pi\)
0.300491 + 0.953785i \(0.402850\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 67.8823i 0.113896i
\(597\) 0 0
\(598\) − 12.0000i − 0.0200669i
\(599\) 899.440i 1.50157i 0.660547 + 0.750784i \(0.270324\pi\)
−0.660547 + 0.750784i \(0.729676\pi\)
\(600\) 0 0
\(601\) −166.000 −0.276206 −0.138103 0.990418i \(-0.544101\pi\)
−0.138103 + 0.990418i \(0.544101\pi\)
\(602\) 98.9949 0.164443
\(603\) 0 0
\(604\) 298.000 0.493377
\(605\) 0 0
\(606\) 0 0
\(607\) − 523.000i − 0.861614i −0.902444 0.430807i \(-0.858229\pi\)
0.902444 0.430807i \(-0.141771\pi\)
\(608\) −164.049 −0.269817
\(609\) 0 0
\(610\) 0 0
\(611\) − 8.48528i − 0.0138875i
\(612\) 0 0
\(613\) − 335.000i − 0.546493i −0.961944 0.273246i \(-0.911903\pi\)
0.961944 0.273246i \(-0.0880974\pi\)
\(614\) − 48.0833i − 0.0783115i
\(615\) 0 0
\(616\) −120.000 −0.194805
\(617\) −500.632 −0.811396 −0.405698 0.914007i \(-0.632972\pi\)
−0.405698 + 0.914007i \(0.632972\pi\)
\(618\) 0 0
\(619\) −5.00000 −0.00807754 −0.00403877 0.999992i \(-0.501286\pi\)
−0.00403877 + 0.999992i \(0.501286\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 84.0000i − 0.135048i
\(623\) −381.838 −0.612902
\(624\) 0 0
\(625\) 0 0
\(626\) − 337.997i − 0.539931i
\(627\) 0 0
\(628\) 484.000i 0.770701i
\(629\) 636.396i 1.01176i
\(630\) 0 0
\(631\) 245.000 0.388273 0.194136 0.980975i \(-0.437810\pi\)
0.194136 + 0.980975i \(0.437810\pi\)
\(632\) −217.789 −0.344603
\(633\) 0 0
\(634\) 24.0000 0.0378549
\(635\) 0 0
\(636\) 0 0
\(637\) 24.0000i 0.0376766i
\(638\) −203.647 −0.319196
\(639\) 0 0
\(640\) 0 0
\(641\) 644.881i 1.00606i 0.864270 + 0.503028i \(0.167781\pi\)
−0.864270 + 0.503028i \(0.832219\pi\)
\(642\) 0 0
\(643\) 82.0000i 0.127527i 0.997965 + 0.0637636i \(0.0203104\pi\)
−0.997965 + 0.0637636i \(0.979690\pi\)
\(644\) − 84.8528i − 0.131759i
\(645\) 0 0
\(646\) 1044.00 1.61610
\(647\) −458.205 −0.708200 −0.354100 0.935208i \(-0.615213\pi\)
−0.354100 + 0.935208i \(0.615213\pi\)
\(648\) 0 0
\(649\) 792.000 1.22034
\(650\) 0 0
\(651\) 0 0
\(652\) − 346.000i − 0.530675i
\(653\) 322.441 0.493784 0.246892 0.969043i \(-0.420591\pi\)
0.246892 + 0.969043i \(0.420591\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 67.8823i 0.103479i
\(657\) 0 0
\(658\) − 60.0000i − 0.0911854i
\(659\) 1035.20i 1.57087i 0.618943 + 0.785436i \(0.287561\pi\)
−0.618943 + 0.785436i \(0.712439\pi\)
\(660\) 0 0
\(661\) 143.000 0.216339 0.108169 0.994132i \(-0.465501\pi\)
0.108169 + 0.994132i \(0.465501\pi\)
\(662\) −705.693 −1.06600
\(663\) 0 0
\(664\) −336.000 −0.506024
\(665\) 0 0
\(666\) 0 0
\(667\) − 144.000i − 0.215892i
\(668\) −390.323 −0.584316
\(669\) 0 0
\(670\) 0 0
\(671\) 195.161i 0.290852i
\(672\) 0 0
\(673\) − 671.000i − 0.997028i −0.866882 0.498514i \(-0.833879\pi\)
0.866882 0.498514i \(-0.166121\pi\)
\(674\) − 205.061i − 0.304245i
\(675\) 0 0
\(676\) 336.000 0.497041
\(677\) −8.48528 −0.0125337 −0.00626683 0.999980i \(-0.501995\pi\)
−0.00626683 + 0.999980i \(0.501995\pi\)
\(678\) 0 0
\(679\) 245.000 0.360825
\(680\) 0 0
\(681\) 0 0
\(682\) − 120.000i − 0.175953i
\(683\) 101.823 0.149083 0.0745413 0.997218i \(-0.476251\pi\)
0.0745413 + 0.997218i \(0.476251\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 516.188i 0.752461i
\(687\) 0 0
\(688\) − 56.0000i − 0.0813953i
\(689\) − 50.9117i − 0.0738921i
\(690\) 0 0
\(691\) −850.000 −1.23010 −0.615051 0.788488i \(-0.710864\pi\)
−0.615051 + 0.788488i \(0.710864\pi\)
\(692\) −644.881 −0.931910
\(693\) 0 0
\(694\) 624.000 0.899135
\(695\) 0 0
\(696\) 0 0
\(697\) − 432.000i − 0.619799i
\(698\) 171.120 0.245157
\(699\) 0 0
\(700\) 0 0
\(701\) − 280.014i − 0.399450i −0.979852 0.199725i \(-0.935995\pi\)
0.979852 0.199725i \(-0.0640048\pi\)
\(702\) 0 0
\(703\) 725.000i 1.03129i
\(704\) 67.8823i 0.0964237i
\(705\) 0 0
\(706\) 624.000 0.883853
\(707\) −678.823 −0.960145
\(708\) 0 0
\(709\) 1201.00 1.69394 0.846968 0.531645i \(-0.178426\pi\)
0.846968 + 0.531645i \(0.178426\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 216.000i 0.303371i
\(713\) 84.8528 0.119008
\(714\) 0 0
\(715\) 0 0
\(716\) 610.940i 0.853269i
\(717\) 0 0
\(718\) 612.000i 0.852368i
\(719\) − 967.322i − 1.34537i −0.739928 0.672686i \(-0.765141\pi\)
0.739928 0.672686i \(-0.234859\pi\)
\(720\) 0 0
\(721\) −815.000 −1.13037
\(722\) 678.823 0.940197
\(723\) 0 0
\(724\) 526.000 0.726519
\(725\) 0 0
\(726\) 0 0
\(727\) 950.000i 1.30674i 0.757039 + 0.653370i \(0.226645\pi\)
−0.757039 + 0.653370i \(0.773355\pi\)
\(728\) −14.1421 −0.0194260
\(729\) 0 0
\(730\) 0 0
\(731\) 356.382i 0.487526i
\(732\) 0 0
\(733\) − 98.0000i − 0.133697i −0.997763 0.0668486i \(-0.978706\pi\)
0.997763 0.0668486i \(-0.0212944\pi\)
\(734\) 210.718i 0.287081i
\(735\) 0 0
\(736\) −48.0000 −0.0652174
\(737\) 161.220 0.218752
\(738\) 0 0
\(739\) −1262.00 −1.70771 −0.853857 0.520508i \(-0.825742\pi\)
−0.853857 + 0.520508i \(0.825742\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 360.000i − 0.485175i
\(743\) −772.161 −1.03925 −0.519624 0.854395i \(-0.673928\pi\)
−0.519624 + 0.854395i \(0.673928\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 510.531i 0.684358i
\(747\) 0 0
\(748\) − 432.000i − 0.577540i
\(749\) − 127.279i − 0.169932i
\(750\) 0 0
\(751\) 197.000 0.262317 0.131158 0.991361i \(-0.458130\pi\)
0.131158 + 0.991361i \(0.458130\pi\)
\(752\) −33.9411 −0.0451345
\(753\) 0 0
\(754\) −24.0000 −0.0318302
\(755\) 0 0
\(756\) 0 0
\(757\) − 241.000i − 0.318362i −0.987249 0.159181i \(-0.949115\pi\)
0.987249 0.159181i \(-0.0508853\pi\)
\(758\) −244.659 −0.322769
\(759\) 0 0
\(760\) 0 0
\(761\) 500.632i 0.657860i 0.944354 + 0.328930i \(0.106688\pi\)
−0.944354 + 0.328930i \(0.893312\pi\)
\(762\) 0 0
\(763\) − 10.0000i − 0.0131062i
\(764\) − 288.500i − 0.377617i
\(765\) 0 0
\(766\) 960.000 1.25326
\(767\) 93.3381 0.121692
\(768\) 0 0
\(769\) −431.000 −0.560468 −0.280234 0.959932i \(-0.590412\pi\)
−0.280234 + 0.959932i \(0.590412\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 142.000i − 0.183938i
\(773\) −254.558 −0.329312 −0.164656 0.986351i \(-0.552651\pi\)
−0.164656 + 0.986351i \(0.552651\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) − 138.593i − 0.178599i
\(777\) 0 0
\(778\) − 588.000i − 0.755784i
\(779\) − 492.146i − 0.631767i
\(780\) 0 0
\(781\) −864.000 −1.10627
\(782\) 305.470 0.390627
\(783\) 0 0
\(784\) 96.0000 0.122449
\(785\) 0 0
\(786\) 0 0
\(787\) 125.000i 0.158831i 0.996842 + 0.0794155i \(0.0253054\pi\)
−0.996842 + 0.0794155i \(0.974695\pi\)
\(788\) 152.735 0.193826
\(789\) 0 0
\(790\) 0 0
\(791\) − 551.543i − 0.697273i
\(792\) 0 0
\(793\) 23.0000i 0.0290038i
\(794\) − 404.465i − 0.509402i
\(795\) 0 0
\(796\) −346.000 −0.434673
\(797\) 848.528 1.06465 0.532326 0.846539i \(-0.321318\pi\)
0.532326 + 0.846539i \(0.321318\pi\)
\(798\) 0 0
\(799\) 216.000 0.270338
\(800\) 0 0
\(801\) 0 0
\(802\) − 480.000i − 0.598504i
\(803\) −823.072 −1.02500
\(804\) 0 0
\(805\) 0 0
\(806\) − 14.1421i − 0.0175461i
\(807\) 0 0
\(808\) 384.000i 0.475248i
\(809\) − 1120.06i − 1.38450i −0.721660 0.692248i \(-0.756620\pi\)
0.721660 0.692248i \(-0.243380\pi\)
\(810\) 0 0
\(811\) −322.000 −0.397041 −0.198520 0.980097i \(-0.563614\pi\)
−0.198520 + 0.980097i \(0.563614\pi\)
\(812\) −169.706 −0.208997
\(813\) 0 0
\(814\) 300.000 0.368550
\(815\) 0 0
\(816\) 0 0
\(817\) 406.000i 0.496940i
\(818\) −304.056 −0.371706
\(819\) 0 0
\(820\) 0 0
\(821\) 873.984i 1.06454i 0.846576 + 0.532268i \(0.178660\pi\)
−0.846576 + 0.532268i \(0.821340\pi\)
\(822\) 0 0
\(823\) − 269.000i − 0.326853i −0.986556 0.163426i \(-0.947745\pi\)
0.986556 0.163426i \(-0.0522547\pi\)
\(824\) 461.034i 0.559507i
\(825\) 0 0
\(826\) 660.000 0.799031
\(827\) −25.4558 −0.0307809 −0.0153905 0.999882i \(-0.504899\pi\)
−0.0153905 + 0.999882i \(0.504899\pi\)
\(828\) 0 0
\(829\) 1105.00 1.33293 0.666466 0.745536i \(-0.267806\pi\)
0.666466 + 0.745536i \(0.267806\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 8.00000i 0.00961538i
\(833\) −610.940 −0.733422
\(834\) 0 0
\(835\) 0 0
\(836\) − 492.146i − 0.588692i
\(837\) 0 0
\(838\) − 852.000i − 1.01671i
\(839\) 118.794i 0.141590i 0.997491 + 0.0707950i \(0.0225536\pi\)
−0.997491 + 0.0707950i \(0.977446\pi\)
\(840\) 0 0
\(841\) 553.000 0.657551
\(842\) 643.467 0.764213
\(843\) 0 0
\(844\) 682.000 0.808057
\(845\) 0 0
\(846\) 0 0
\(847\) 245.000i 0.289256i
\(848\) −203.647 −0.240149
\(849\) 0 0
\(850\) 0 0
\(851\) 212.132i 0.249274i
\(852\) 0 0
\(853\) − 1391.00i − 1.63072i −0.578958 0.815358i \(-0.696540\pi\)
0.578958 0.815358i \(-0.303460\pi\)
\(854\) 162.635i 0.190439i
\(855\) 0 0
\(856\) −72.0000 −0.0841121
\(857\) −543.058 −0.633673 −0.316837 0.948480i \(-0.602621\pi\)
−0.316837 + 0.948480i \(0.602621\pi\)
\(858\) 0 0
\(859\) −845.000 −0.983702 −0.491851 0.870679i \(-0.663680\pi\)
−0.491851 + 0.870679i \(0.663680\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 468.000i − 0.542923i
\(863\) −1247.34 −1.44535 −0.722675 0.691188i \(-0.757087\pi\)
−0.722675 + 0.691188i \(0.757087\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) − 308.299i − 0.356003i
\(867\) 0 0
\(868\) − 100.000i − 0.115207i
\(869\) − 653.367i − 0.751860i
\(870\) 0 0
\(871\) 19.0000 0.0218140
\(872\) −5.65685 −0.00648722
\(873\) 0 0
\(874\) 348.000 0.398169
\(875\) 0 0
\(876\) 0 0
\(877\) 1151.00i 1.31243i 0.754575 + 0.656214i \(0.227843\pi\)
−0.754575 + 0.656214i \(0.772157\pi\)
\(878\) −528.916 −0.602410
\(879\) 0 0
\(880\) 0 0
\(881\) 1298.25i 1.47361i 0.676107 + 0.736804i \(0.263666\pi\)
−0.676107 + 0.736804i \(0.736334\pi\)
\(882\) 0 0
\(883\) − 677.000i − 0.766704i −0.923602 0.383352i \(-0.874770\pi\)
0.923602 0.383352i \(-0.125230\pi\)
\(884\) − 50.9117i − 0.0575924i
\(885\) 0 0
\(886\) −24.0000 −0.0270880
\(887\) −1035.20 −1.16708 −0.583542 0.812083i \(-0.698334\pi\)
−0.583542 + 0.812083i \(0.698334\pi\)
\(888\) 0 0
\(889\) 890.000 1.00112
\(890\) 0 0
\(891\) 0 0
\(892\) 116.000i 0.130045i
\(893\) 246.073 0.275558
\(894\) 0 0
\(895\) 0 0
\(896\) 56.5685i 0.0631345i
\(897\) 0 0
\(898\) 684.000i 0.761693i
\(899\) − 169.706i − 0.188772i
\(900\) 0 0
\(901\) 1296.00 1.43840
\(902\) −203.647 −0.225772
\(903\) 0 0
\(904\) −312.000 −0.345133
\(905\) 0 0
\(906\) 0 0
\(907\) 5.00000i 0.00551268i 0.999996 + 0.00275634i \(0.000877371\pi\)
−0.999996 + 0.00275634i \(0.999123\pi\)
\(908\) −271.529 −0.299041
\(909\) 0 0
\(910\) 0 0
\(911\) 1001.26i 1.09908i 0.835467 + 0.549541i \(0.185197\pi\)
−0.835467 + 0.549541i \(0.814803\pi\)
\(912\) 0 0
\(913\) − 1008.00i − 1.10405i
\(914\) − 31.1127i − 0.0340402i
\(915\) 0 0
\(916\) 524.000 0.572052
\(917\) −593.970 −0.647731
\(918\) 0 0
\(919\) −1190.00 −1.29489 −0.647443 0.762114i \(-0.724162\pi\)
−0.647443 + 0.762114i \(0.724162\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 564.000i − 0.611714i
\(923\) −101.823 −0.110318
\(924\) 0 0
\(925\) 0 0
\(926\) 1248.75i 1.34854i
\(927\) 0 0
\(928\) 96.0000i 0.103448i
\(929\) 475.176i 0.511492i 0.966744 + 0.255746i \(0.0823210\pi\)
−0.966744 + 0.255746i \(0.917679\pi\)
\(930\) 0 0
\(931\) −696.000 −0.747583
\(932\) 610.940 0.655515
\(933\) 0 0
\(934\) −180.000 −0.192719
\(935\) 0 0
\(936\) 0 0
\(937\) 1775.00i 1.89434i 0.320727 + 0.947172i \(0.396073\pi\)
−0.320727 + 0.947172i \(0.603927\pi\)
\(938\) 134.350 0.143231
\(939\) 0 0
\(940\) 0 0
\(941\) − 161.220i − 0.171329i −0.996324 0.0856644i \(-0.972699\pi\)
0.996324 0.0856644i \(-0.0273013\pi\)
\(942\) 0 0
\(943\) − 144.000i − 0.152704i
\(944\) − 373.352i − 0.395500i
\(945\) 0 0
\(946\) 168.000 0.177590
\(947\) −568.514 −0.600331 −0.300166 0.953887i \(-0.597042\pi\)
−0.300166 + 0.953887i \(0.597042\pi\)
\(948\) 0 0
\(949\) −97.0000 −0.102213
\(950\) 0 0
\(951\) 0 0
\(952\) − 360.000i − 0.378151i
\(953\) −1807.36 −1.89650 −0.948250 0.317524i \(-0.897149\pi\)
−0.948250 + 0.317524i \(0.897149\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) − 339.411i − 0.355033i
\(957\) 0 0
\(958\) − 552.000i − 0.576200i
\(959\) 466.690i 0.486643i
\(960\) 0 0
\(961\) −861.000 −0.895942
\(962\) 35.3553 0.0367519
\(963\) 0 0
\(964\) −242.000 −0.251037
\(965\) 0 0
\(966\) 0 0
\(967\) 701.000i 0.724922i 0.931999 + 0.362461i \(0.118063\pi\)
−0.931999 + 0.362461i \(0.881937\pi\)
\(968\) 138.593 0.143175
\(969\) 0 0
\(970\) 0 0
\(971\) 381.838i 0.393242i 0.980480 + 0.196621i \(0.0629968\pi\)
−0.980480 + 0.196621i \(0.937003\pi\)
\(972\) 0 0
\(973\) 815.000i 0.837616i
\(974\) 448.306i 0.460273i
\(975\) 0 0
\(976\) 92.0000 0.0942623
\(977\) −322.441 −0.330031 −0.165016 0.986291i \(-0.552767\pi\)
−0.165016 + 0.986291i \(0.552767\pi\)
\(978\) 0 0
\(979\) −648.000 −0.661900
\(980\) 0 0
\(981\) 0 0
\(982\) − 516.000i − 0.525458i
\(983\) −42.4264 −0.0431601 −0.0215801 0.999767i \(-0.506870\pi\)
−0.0215801 + 0.999767i \(0.506870\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) − 610.940i − 0.619615i
\(987\) 0 0
\(988\) − 58.0000i − 0.0587045i
\(989\) 118.794i 0.120115i
\(990\) 0 0
\(991\) −475.000 −0.479314 −0.239657 0.970858i \(-0.577035\pi\)
−0.239657 + 0.970858i \(0.577035\pi\)
\(992\) −56.5685 −0.0570247
\(993\) 0 0
\(994\) −720.000 −0.724346
\(995\) 0 0
\(996\) 0 0
\(997\) − 1534.00i − 1.53862i −0.638878 0.769308i \(-0.720601\pi\)
0.638878 0.769308i \(-0.279399\pi\)
\(998\) −1004.09 −1.00610
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.3.b.b.1349.4 4
3.2 odd 2 inner 1350.3.b.b.1349.2 4
5.2 odd 4 1350.3.d.d.701.2 2
5.3 odd 4 54.3.b.a.53.1 2
5.4 even 2 inner 1350.3.b.b.1349.1 4
15.2 even 4 1350.3.d.d.701.1 2
15.8 even 4 54.3.b.a.53.2 yes 2
15.14 odd 2 inner 1350.3.b.b.1349.3 4
20.3 even 4 432.3.e.d.161.1 2
40.3 even 4 1728.3.e.f.1025.2 2
40.13 odd 4 1728.3.e.l.1025.2 2
45.13 odd 12 162.3.d.a.107.2 4
45.23 even 12 162.3.d.a.107.1 4
45.38 even 12 162.3.d.a.53.2 4
45.43 odd 12 162.3.d.a.53.1 4
60.23 odd 4 432.3.e.d.161.2 2
120.53 even 4 1728.3.e.l.1025.1 2
120.83 odd 4 1728.3.e.f.1025.1 2
180.23 odd 12 1296.3.q.i.593.2 4
180.43 even 12 1296.3.q.i.1025.2 4
180.83 odd 12 1296.3.q.i.1025.1 4
180.103 even 12 1296.3.q.i.593.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.3.b.a.53.1 2 5.3 odd 4
54.3.b.a.53.2 yes 2 15.8 even 4
162.3.d.a.53.1 4 45.43 odd 12
162.3.d.a.53.2 4 45.38 even 12
162.3.d.a.107.1 4 45.23 even 12
162.3.d.a.107.2 4 45.13 odd 12
432.3.e.d.161.1 2 20.3 even 4
432.3.e.d.161.2 2 60.23 odd 4
1296.3.q.i.593.1 4 180.103 even 12
1296.3.q.i.593.2 4 180.23 odd 12
1296.3.q.i.1025.1 4 180.83 odd 12
1296.3.q.i.1025.2 4 180.43 even 12
1350.3.b.b.1349.1 4 5.4 even 2 inner
1350.3.b.b.1349.2 4 3.2 odd 2 inner
1350.3.b.b.1349.3 4 15.14 odd 2 inner
1350.3.b.b.1349.4 4 1.1 even 1 trivial
1350.3.d.d.701.1 2 15.2 even 4
1350.3.d.d.701.2 2 5.2 odd 4
1728.3.e.f.1025.1 2 120.83 odd 4
1728.3.e.f.1025.2 2 40.3 even 4
1728.3.e.l.1025.1 2 120.53 even 4
1728.3.e.l.1025.2 2 40.13 odd 4