Properties

Label 1296.3.q.i.593.2
Level $1296$
Weight $3$
Character 1296.593
Analytic conductor $35.313$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1296,3,Mod(593,1296)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1296.593"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1296, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1296 = 2^{4} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1296.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,10,0,0,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(35.3134422611\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 593.2
Root \(1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1296.593
Dual form 1296.3.q.i.1025.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(7.34847 - 4.24264i) q^{5} +(2.50000 - 4.33013i) q^{7} +(-7.34847 - 4.24264i) q^{11} +(0.500000 + 0.866025i) q^{13} -25.4558i q^{17} -29.0000 q^{19} +(-7.34847 + 4.24264i) q^{23} +(23.5000 - 40.7032i) q^{25} +(-14.6969 - 8.48528i) q^{29} +(-5.00000 - 8.66025i) q^{31} -42.4264i q^{35} -25.0000 q^{37} +(-14.6969 + 8.48528i) q^{41} +(7.00000 - 12.1244i) q^{43} +(-7.34847 - 4.24264i) q^{47} +(12.0000 + 20.7846i) q^{49} +50.9117i q^{53} -72.0000 q^{55} +(80.8332 - 46.6690i) q^{59} +(-11.5000 + 19.9186i) q^{61} +(7.34847 + 4.24264i) q^{65} +(-9.50000 - 16.4545i) q^{67} +101.823i q^{71} -97.0000 q^{73} +(-36.7423 + 21.2132i) q^{77} +(38.5000 - 66.6840i) q^{79} +(102.879 + 59.3970i) q^{83} +(-108.000 - 187.061i) q^{85} +76.3675i q^{89} +5.00000 q^{91} +(-213.106 + 123.037i) q^{95} +(24.5000 - 42.4352i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 10 q^{7} + 2 q^{13} - 116 q^{19} + 94 q^{25} - 20 q^{31} - 100 q^{37} + 28 q^{43} + 48 q^{49} - 288 q^{55} - 46 q^{61} - 38 q^{67} - 388 q^{73} + 154 q^{79} - 432 q^{85} + 20 q^{91} + 98 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1296\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 7.34847 4.24264i 1.46969 0.848528i 0.470272 0.882522i \(-0.344156\pi\)
0.999422 + 0.0339935i \(0.0108226\pi\)
\(6\) 0 0
\(7\) 2.50000 4.33013i 0.357143 0.618590i −0.630339 0.776320i \(-0.717084\pi\)
0.987482 + 0.157730i \(0.0504176\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −7.34847 4.24264i −0.668043 0.385695i 0.127292 0.991865i \(-0.459371\pi\)
−0.795335 + 0.606171i \(0.792705\pi\)
\(12\) 0 0
\(13\) 0.500000 + 0.866025i 0.0384615 + 0.0666173i 0.884615 0.466321i \(-0.154421\pi\)
−0.846154 + 0.532939i \(0.821088\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 25.4558i 1.49740i −0.662908 0.748701i \(-0.730678\pi\)
0.662908 0.748701i \(-0.269322\pi\)
\(18\) 0 0
\(19\) −29.0000 −1.52632 −0.763158 0.646212i \(-0.776352\pi\)
−0.763158 + 0.646212i \(0.776352\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.34847 + 4.24264i −0.319499 + 0.184463i −0.651169 0.758933i \(-0.725721\pi\)
0.331670 + 0.943395i \(0.392388\pi\)
\(24\) 0 0
\(25\) 23.5000 40.7032i 0.940000 1.62813i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −14.6969 8.48528i −0.506791 0.292596i 0.224723 0.974423i \(-0.427852\pi\)
−0.731514 + 0.681827i \(0.761186\pi\)
\(30\) 0 0
\(31\) −5.00000 8.66025i −0.161290 0.279363i 0.774041 0.633135i \(-0.218232\pi\)
−0.935332 + 0.353772i \(0.884899\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 42.4264i 1.21218i
\(36\) 0 0
\(37\) −25.0000 −0.675676 −0.337838 0.941204i \(-0.609696\pi\)
−0.337838 + 0.941204i \(0.609696\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −14.6969 + 8.48528i −0.358462 + 0.206958i −0.668406 0.743797i \(-0.733023\pi\)
0.309944 + 0.950755i \(0.399690\pi\)
\(42\) 0 0
\(43\) 7.00000 12.1244i 0.162791 0.281962i −0.773078 0.634311i \(-0.781284\pi\)
0.935869 + 0.352349i \(0.114617\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.34847 4.24264i −0.156350 0.0902690i 0.419784 0.907624i \(-0.362106\pi\)
−0.576134 + 0.817355i \(0.695439\pi\)
\(48\) 0 0
\(49\) 12.0000 + 20.7846i 0.244898 + 0.424176i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 50.9117i 0.960598i 0.877105 + 0.480299i \(0.159472\pi\)
−0.877105 + 0.480299i \(0.840528\pi\)
\(54\) 0 0
\(55\) −72.0000 −1.30909
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 80.8332 46.6690i 1.37005 0.791001i 0.379119 0.925348i \(-0.376227\pi\)
0.990934 + 0.134347i \(0.0428937\pi\)
\(60\) 0 0
\(61\) −11.5000 + 19.9186i −0.188525 + 0.326534i −0.944759 0.327767i \(-0.893704\pi\)
0.756234 + 0.654301i \(0.227037\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.34847 + 4.24264i 0.113053 + 0.0652714i
\(66\) 0 0
\(67\) −9.50000 16.4545i −0.141791 0.245589i 0.786380 0.617743i \(-0.211953\pi\)
−0.928171 + 0.372154i \(0.878619\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 101.823i 1.43413i 0.697005 + 0.717066i \(0.254515\pi\)
−0.697005 + 0.717066i \(0.745485\pi\)
\(72\) 0 0
\(73\) −97.0000 −1.32877 −0.664384 0.747392i \(-0.731306\pi\)
−0.664384 + 0.747392i \(0.731306\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −36.7423 + 21.2132i −0.477173 + 0.275496i
\(78\) 0 0
\(79\) 38.5000 66.6840i 0.487342 0.844101i −0.512552 0.858656i \(-0.671300\pi\)
0.999894 + 0.0145553i \(0.00463326\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 102.879 + 59.3970i 1.23950 + 0.715626i 0.968992 0.247091i \(-0.0794748\pi\)
0.270509 + 0.962718i \(0.412808\pi\)
\(84\) 0 0
\(85\) −108.000 187.061i −1.27059 2.20072i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 76.3675i 0.858062i 0.903290 + 0.429031i \(0.141145\pi\)
−0.903290 + 0.429031i \(0.858855\pi\)
\(90\) 0 0
\(91\) 5.00000 0.0549451
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −213.106 + 123.037i −2.24322 + 1.29512i
\(96\) 0 0
\(97\) 24.5000 42.4352i 0.252577 0.437477i −0.711657 0.702527i \(-0.752055\pi\)
0.964235 + 0.265050i \(0.0853885\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 117.576 + 67.8823i 1.16411 + 0.672101i 0.952286 0.305206i \(-0.0987252\pi\)
0.211827 + 0.977307i \(0.432059\pi\)
\(102\) 0 0
\(103\) −81.5000 141.162i −0.791262 1.37051i −0.925186 0.379515i \(-0.876091\pi\)
0.133924 0.990992i \(-0.457242\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 25.4558i 0.237905i 0.992900 + 0.118953i \(0.0379536\pi\)
−0.992900 + 0.118953i \(0.962046\pi\)
\(108\) 0 0
\(109\) 2.00000 0.0183486 0.00917431 0.999958i \(-0.497080\pi\)
0.00917431 + 0.999958i \(0.497080\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 95.5301 55.1543i 0.845399 0.488091i −0.0136967 0.999906i \(-0.504360\pi\)
0.859096 + 0.511815i \(0.171027\pi\)
\(114\) 0 0
\(115\) −36.0000 + 62.3538i −0.313043 + 0.542207i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −110.227 63.6396i −0.926278 0.534787i
\(120\) 0 0
\(121\) −24.5000 42.4352i −0.202479 0.350705i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 186.676i 1.49341i
\(126\) 0 0
\(127\) 178.000 1.40157 0.700787 0.713370i \(-0.252832\pi\)
0.700787 + 0.713370i \(0.252832\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 102.879 59.3970i 0.785333 0.453412i −0.0529842 0.998595i \(-0.516873\pi\)
0.838317 + 0.545183i \(0.183540\pi\)
\(132\) 0 0
\(133\) −72.5000 + 125.574i −0.545113 + 0.944163i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −80.8332 46.6690i −0.590023 0.340650i 0.175084 0.984554i \(-0.443980\pi\)
−0.765107 + 0.643904i \(0.777314\pi\)
\(138\) 0 0
\(139\) −81.5000 141.162i −0.586331 1.01555i −0.994708 0.102742i \(-0.967238\pi\)
0.408377 0.912813i \(-0.366095\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.48528i 0.0593376i
\(144\) 0 0
\(145\) −144.000 −0.993103
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 29.3939 16.9706i 0.197274 0.113896i −0.398109 0.917338i \(-0.630333\pi\)
0.595383 + 0.803442i \(0.297000\pi\)
\(150\) 0 0
\(151\) 74.5000 129.038i 0.493377 0.854555i −0.506593 0.862185i \(-0.669095\pi\)
0.999971 + 0.00763022i \(0.00242880\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −73.4847 42.4264i −0.474095 0.273719i
\(156\) 0 0
\(157\) −121.000 209.578i −0.770701 1.33489i −0.937179 0.348848i \(-0.886573\pi\)
0.166479 0.986045i \(-0.446760\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 42.4264i 0.263518i
\(162\) 0 0
\(163\) −173.000 −1.06135 −0.530675 0.847575i \(-0.678061\pi\)
−0.530675 + 0.847575i \(0.678061\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 169.015 97.5807i 1.01206 0.584316i 0.100269 0.994960i \(-0.468030\pi\)
0.911796 + 0.410645i \(0.134696\pi\)
\(168\) 0 0
\(169\) 84.0000 145.492i 0.497041 0.860901i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −279.242 161.220i −1.61411 0.931910i −0.988403 0.151855i \(-0.951475\pi\)
−0.625712 0.780054i \(-0.715191\pi\)
\(174\) 0 0
\(175\) −117.500 203.516i −0.671429 1.16295i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 305.470i 1.70654i −0.521472 0.853269i \(-0.674617\pi\)
0.521472 0.853269i \(-0.325383\pi\)
\(180\) 0 0
\(181\) 263.000 1.45304 0.726519 0.687146i \(-0.241137\pi\)
0.726519 + 0.687146i \(0.241137\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −183.712 + 106.066i −0.993036 + 0.573330i
\(186\) 0 0
\(187\) −108.000 + 187.061i −0.577540 + 1.00033i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 124.924 + 72.1249i 0.654052 + 0.377617i 0.790007 0.613098i \(-0.210077\pi\)
−0.135955 + 0.990715i \(0.543410\pi\)
\(192\) 0 0
\(193\) −35.5000 61.4878i −0.183938 0.318590i 0.759280 0.650764i \(-0.225551\pi\)
−0.943218 + 0.332174i \(0.892218\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 76.3675i 0.387652i 0.981036 + 0.193826i \(0.0620898\pi\)
−0.981036 + 0.193826i \(0.937910\pi\)
\(198\) 0 0
\(199\) −173.000 −0.869347 −0.434673 0.900588i \(-0.643136\pi\)
−0.434673 + 0.900588i \(0.643136\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −73.4847 + 42.4264i −0.361994 + 0.208997i
\(204\) 0 0
\(205\) −72.0000 + 124.708i −0.351220 + 0.608330i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 213.106 + 123.037i 1.01964 + 0.588692i
\(210\) 0 0
\(211\) 170.500 + 295.315i 0.808057 + 1.39960i 0.914208 + 0.405246i \(0.132814\pi\)
−0.106151 + 0.994350i \(0.533853\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 118.794i 0.552530i
\(216\) 0 0
\(217\) −50.0000 −0.230415
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 22.0454 12.7279i 0.0997530 0.0575924i
\(222\) 0 0
\(223\) −29.0000 + 50.2295i −0.130045 + 0.225244i −0.923694 0.383132i \(-0.874845\pi\)
0.793649 + 0.608376i \(0.208179\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −117.576 67.8823i −0.517954 0.299041i 0.218143 0.975917i \(-0.430000\pi\)
−0.736097 + 0.676876i \(0.763333\pi\)
\(228\) 0 0
\(229\) 131.000 + 226.899i 0.572052 + 0.990824i 0.996355 + 0.0853034i \(0.0271859\pi\)
−0.424303 + 0.905520i \(0.639481\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 305.470i 1.31103i −0.755182 0.655515i \(-0.772451\pi\)
0.755182 0.655515i \(-0.227549\pi\)
\(234\) 0 0
\(235\) −72.0000 −0.306383
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 146.969 84.8528i 0.614935 0.355033i −0.159960 0.987124i \(-0.551136\pi\)
0.774894 + 0.632091i \(0.217803\pi\)
\(240\) 0 0
\(241\) 60.5000 104.789i 0.251037 0.434809i −0.712774 0.701393i \(-0.752562\pi\)
0.963812 + 0.266584i \(0.0858950\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 176.363 + 101.823i 0.719850 + 0.415606i
\(246\) 0 0
\(247\) −14.5000 25.1147i −0.0587045 0.101679i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 356.382i 1.41985i 0.704278 + 0.709924i \(0.251271\pi\)
−0.704278 + 0.709924i \(0.748729\pi\)
\(252\) 0 0
\(253\) 72.0000 0.284585
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 73.4847 42.4264i 0.285933 0.165083i −0.350173 0.936685i \(-0.613877\pi\)
0.636106 + 0.771602i \(0.280544\pi\)
\(258\) 0 0
\(259\) −62.5000 + 108.253i −0.241313 + 0.417966i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 146.969 + 84.8528i 0.558819 + 0.322634i 0.752671 0.658396i \(-0.228765\pi\)
−0.193852 + 0.981031i \(0.562098\pi\)
\(264\) 0 0
\(265\) 216.000 + 374.123i 0.815094 + 1.41178i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 280.014i 1.04095i 0.853878 + 0.520473i \(0.174244\pi\)
−0.853878 + 0.520473i \(0.825756\pi\)
\(270\) 0 0
\(271\) −29.0000 −0.107011 −0.0535055 0.998568i \(-0.517039\pi\)
−0.0535055 + 0.998568i \(0.517039\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −345.378 + 199.404i −1.25592 + 0.725106i
\(276\) 0 0
\(277\) 191.000 330.822i 0.689531 1.19430i −0.282459 0.959279i \(-0.591150\pi\)
0.971990 0.235023i \(-0.0755165\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −191.060 110.309i −0.679930 0.392558i 0.119899 0.992786i \(-0.461743\pi\)
−0.799829 + 0.600229i \(0.795076\pi\)
\(282\) 0 0
\(283\) 31.0000 + 53.6936i 0.109541 + 0.189730i 0.915584 0.402126i \(-0.131729\pi\)
−0.806044 + 0.591856i \(0.798395\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 84.8528i 0.295654i
\(288\) 0 0
\(289\) −359.000 −1.24221
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 271.893 156.978i 0.927964 0.535760i 0.0417967 0.999126i \(-0.486692\pi\)
0.886167 + 0.463366i \(0.153358\pi\)
\(294\) 0 0
\(295\) 396.000 685.892i 1.34237 2.32506i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −7.34847 4.24264i −0.0245768 0.0141894i
\(300\) 0 0
\(301\) −35.0000 60.6218i −0.116279 0.201401i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 195.161i 0.639874i
\(306\) 0 0
\(307\) 34.0000 0.110749 0.0553746 0.998466i \(-0.482365\pi\)
0.0553746 + 0.998466i \(0.482365\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −51.4393 + 29.6985i −0.165400 + 0.0954935i −0.580415 0.814321i \(-0.697110\pi\)
0.415015 + 0.909814i \(0.363776\pi\)
\(312\) 0 0
\(313\) −119.500 + 206.980i −0.381789 + 0.661278i −0.991318 0.131486i \(-0.958025\pi\)
0.609529 + 0.792764i \(0.291359\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −14.6969 8.48528i −0.0463626 0.0267674i 0.476640 0.879099i \(-0.341855\pi\)
−0.523002 + 0.852331i \(0.675188\pi\)
\(318\) 0 0
\(319\) 72.0000 + 124.708i 0.225705 + 0.390933i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 738.219i 2.28551i
\(324\) 0 0
\(325\) 47.0000 0.144615
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −36.7423 + 21.2132i −0.111679 + 0.0644778i
\(330\) 0 0
\(331\) −249.500 + 432.147i −0.753776 + 1.30558i 0.192204 + 0.981355i \(0.438437\pi\)
−0.945980 + 0.324224i \(0.894897\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −139.621 80.6102i −0.416779 0.240627i
\(336\) 0 0
\(337\) 72.5000 + 125.574i 0.215134 + 0.372622i 0.953314 0.301981i \(-0.0976480\pi\)
−0.738180 + 0.674603i \(0.764315\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 84.8528i 0.248835i
\(342\) 0 0
\(343\) 365.000 1.06414
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −382.120 + 220.617i −1.10121 + 0.635785i −0.936539 0.350564i \(-0.885990\pi\)
−0.164673 + 0.986348i \(0.552657\pi\)
\(348\) 0 0
\(349\) 60.5000 104.789i 0.173352 0.300255i −0.766237 0.642558i \(-0.777873\pi\)
0.939590 + 0.342302i \(0.111207\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 382.120 + 220.617i 1.08249 + 0.624978i 0.931568 0.363567i \(-0.118441\pi\)
0.150926 + 0.988545i \(0.451775\pi\)
\(354\) 0 0
\(355\) 432.000 + 748.246i 1.21690 + 2.10774i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 432.749i 1.20543i −0.797957 0.602715i \(-0.794086\pi\)
0.797957 0.602715i \(-0.205914\pi\)
\(360\) 0 0
\(361\) 480.000 1.32964
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −712.802 + 411.536i −1.95288 + 1.12750i
\(366\) 0 0
\(367\) 74.5000 129.038i 0.202997 0.351602i −0.746496 0.665390i \(-0.768265\pi\)
0.949493 + 0.313789i \(0.101598\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 220.454 + 127.279i 0.594216 + 0.343071i
\(372\) 0 0
\(373\) 180.500 + 312.635i 0.483914 + 0.838164i 0.999829 0.0184757i \(-0.00588134\pi\)
−0.515915 + 0.856640i \(0.672548\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16.9706i 0.0450148i
\(378\) 0 0
\(379\) −173.000 −0.456464 −0.228232 0.973607i \(-0.573295\pi\)
−0.228232 + 0.973607i \(0.573295\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 587.878 339.411i 1.53493 0.886191i 0.535804 0.844342i \(-0.320008\pi\)
0.999124 0.0418491i \(-0.0133249\pi\)
\(384\) 0 0
\(385\) −180.000 + 311.769i −0.467532 + 0.809790i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 360.075 + 207.889i 0.925643 + 0.534420i 0.885431 0.464771i \(-0.153863\pi\)
0.0402118 + 0.999191i \(0.487197\pi\)
\(390\) 0 0
\(391\) 108.000 + 187.061i 0.276215 + 0.478418i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 653.367i 1.65409i
\(396\) 0 0
\(397\) −286.000 −0.720403 −0.360202 0.932875i \(-0.617292\pi\)
−0.360202 + 0.932875i \(0.617292\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 293.939 169.706i 0.733014 0.423206i −0.0865095 0.996251i \(-0.527571\pi\)
0.819524 + 0.573045i \(0.194238\pi\)
\(402\) 0 0
\(403\) 5.00000 8.66025i 0.0124069 0.0214895i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 183.712 + 106.066i 0.451380 + 0.260604i
\(408\) 0 0
\(409\) −107.500 186.195i −0.262836 0.455246i 0.704158 0.710043i \(-0.251325\pi\)
−0.966994 + 0.254797i \(0.917991\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 466.690i 1.13000i
\(414\) 0 0
\(415\) 1008.00 2.42892
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 521.741 301.227i 1.24521 0.718920i 0.275057 0.961428i \(-0.411303\pi\)
0.970149 + 0.242508i \(0.0779701\pi\)
\(420\) 0 0
\(421\) −227.500 + 394.042i −0.540380 + 0.935966i 0.458502 + 0.888693i \(0.348386\pi\)
−0.998882 + 0.0472723i \(0.984947\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1036.13 598.212i −2.43796 1.40756i
\(426\) 0 0
\(427\) 57.5000 + 99.5929i 0.134660 + 0.233239i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 330.926i 0.767810i −0.923373 0.383905i \(-0.874579\pi\)
0.923373 0.383905i \(-0.125421\pi\)
\(432\) 0 0
\(433\) 218.000 0.503464 0.251732 0.967797i \(-0.419000\pi\)
0.251732 + 0.967797i \(0.419000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 213.106 123.037i 0.487656 0.281548i
\(438\) 0 0
\(439\) 187.000 323.894i 0.425968 0.737798i −0.570542 0.821268i \(-0.693267\pi\)
0.996510 + 0.0834699i \(0.0266002\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 14.6969 + 8.48528i 0.0331759 + 0.0191541i 0.516496 0.856289i \(-0.327236\pi\)
−0.483320 + 0.875444i \(0.660569\pi\)
\(444\) 0 0
\(445\) 324.000 + 561.184i 0.728090 + 1.26109i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 483.661i 1.07720i 0.842563 + 0.538598i \(0.181046\pi\)
−0.842563 + 0.538598i \(0.818954\pi\)
\(450\) 0 0
\(451\) 144.000 0.319290
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 36.7423 21.2132i 0.0807524 0.0466224i
\(456\) 0 0
\(457\) 11.0000 19.0526i 0.0240700 0.0416905i −0.853739 0.520700i \(-0.825671\pi\)
0.877810 + 0.479010i \(0.159004\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −345.378 199.404i −0.749193 0.432547i 0.0762091 0.997092i \(-0.475718\pi\)
−0.825402 + 0.564545i \(0.809052\pi\)
\(462\) 0 0
\(463\) −441.500 764.700i −0.953564 1.65162i −0.737621 0.675215i \(-0.764051\pi\)
−0.215942 0.976406i \(-0.569282\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 127.279i 0.272547i 0.990671 + 0.136273i \(0.0435125\pi\)
−0.990671 + 0.136273i \(0.956487\pi\)
\(468\) 0 0
\(469\) −95.0000 −0.202559
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −102.879 + 59.3970i −0.217502 + 0.125575i
\(474\) 0 0
\(475\) −681.500 + 1180.39i −1.43474 + 2.48504i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −338.030 195.161i −0.705699 0.407435i 0.103768 0.994602i \(-0.466910\pi\)
−0.809466 + 0.587166i \(0.800243\pi\)
\(480\) 0 0
\(481\) −12.5000 21.6506i −0.0259875 0.0450117i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 415.779i 0.857276i
\(486\) 0 0
\(487\) −317.000 −0.650924 −0.325462 0.945555i \(-0.605520\pi\)
−0.325462 + 0.945555i \(0.605520\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −315.984 + 182.434i −0.643552 + 0.371555i −0.785982 0.618250i \(-0.787842\pi\)
0.142429 + 0.989805i \(0.454509\pi\)
\(492\) 0 0
\(493\) −216.000 + 374.123i −0.438134 + 0.758870i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 440.908 + 254.558i 0.887139 + 0.512190i
\(498\) 0 0
\(499\) 355.000 + 614.878i 0.711423 + 1.23222i 0.964323 + 0.264728i \(0.0852822\pi\)
−0.252900 + 0.967492i \(0.581384\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 280.014i 0.556688i 0.960481 + 0.278344i \(0.0897856\pi\)
−0.960481 + 0.278344i \(0.910214\pi\)
\(504\) 0 0
\(505\) 1152.00 2.28119
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 227.803 131.522i 0.447549 0.258393i −0.259245 0.965811i \(-0.583474\pi\)
0.706795 + 0.707419i \(0.250141\pi\)
\(510\) 0 0
\(511\) −242.500 + 420.022i −0.474560 + 0.821961i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1197.80 691.550i −2.32583 1.34282i
\(516\) 0 0
\(517\) 36.0000 + 62.3538i 0.0696325 + 0.120607i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 687.308i 1.31921i −0.751613 0.659604i \(-0.770724\pi\)
0.751613 0.659604i \(-0.229276\pi\)
\(522\) 0 0
\(523\) 763.000 1.45889 0.729446 0.684039i \(-0.239778\pi\)
0.729446 + 0.684039i \(0.239778\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −220.454 + 127.279i −0.418319 + 0.241517i
\(528\) 0 0
\(529\) −228.500 + 395.774i −0.431947 + 0.748154i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −14.6969 8.48528i −0.0275740 0.0159199i
\(534\) 0 0
\(535\) 108.000 + 187.061i 0.201869 + 0.349648i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 203.647i 0.377823i
\(540\) 0 0
\(541\) −313.000 −0.578558 −0.289279 0.957245i \(-0.593416\pi\)
−0.289279 + 0.957245i \(0.593416\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14.6969 8.48528i 0.0269669 0.0155693i
\(546\) 0 0
\(547\) −69.5000 + 120.378i −0.127057 + 0.220069i −0.922535 0.385913i \(-0.873886\pi\)
0.795478 + 0.605982i \(0.207220\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 426.211 + 246.073i 0.773523 + 0.446594i
\(552\) 0 0
\(553\) −192.500 333.420i −0.348101 0.602929i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 280.014i 0.502719i 0.967894 + 0.251359i \(0.0808776\pi\)
−0.967894 + 0.251359i \(0.919122\pi\)
\(558\) 0 0
\(559\) 14.0000 0.0250447
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −514.393 + 296.985i −0.913664 + 0.527504i −0.881608 0.471982i \(-0.843539\pi\)
−0.0320558 + 0.999486i \(0.510205\pi\)
\(564\) 0 0
\(565\) 468.000 810.600i 0.828319 1.43469i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 536.438 + 309.713i 0.942774 + 0.544311i 0.890829 0.454339i \(-0.150125\pi\)
0.0519450 + 0.998650i \(0.483458\pi\)
\(570\) 0 0
\(571\) −81.5000 141.162i −0.142732 0.247219i 0.785792 0.618490i \(-0.212255\pi\)
−0.928525 + 0.371271i \(0.878922\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 398.808i 0.693580i
\(576\) 0 0
\(577\) 1127.00 1.95321 0.976603 0.215050i \(-0.0689913\pi\)
0.976603 + 0.215050i \(0.0689913\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 514.393 296.985i 0.885358 0.511162i
\(582\) 0 0
\(583\) 216.000 374.123i 0.370497 0.641720i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 874.468 + 504.874i 1.48972 + 0.860092i 0.999931 0.0117465i \(-0.00373911\pi\)
0.489793 + 0.871839i \(0.337072\pi\)
\(588\) 0 0
\(589\) 145.000 + 251.147i 0.246180 + 0.426396i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 356.382i 0.600981i −0.953785 0.300491i \(-0.902850\pi\)
0.953785 0.300491i \(-0.0971504\pi\)
\(594\) 0 0
\(595\) −1080.00 −1.81513
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −778.938 + 449.720i −1.30040 + 0.750784i −0.980472 0.196658i \(-0.936991\pi\)
−0.319925 + 0.947443i \(0.603658\pi\)
\(600\) 0 0
\(601\) 83.0000 143.760i 0.138103 0.239202i −0.788675 0.614810i \(-0.789233\pi\)
0.926779 + 0.375608i \(0.122566\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −360.075 207.889i −0.595165 0.343619i
\(606\) 0 0
\(607\) −261.500 452.931i −0.430807 0.746180i 0.566136 0.824312i \(-0.308438\pi\)
−0.996943 + 0.0781320i \(0.975104\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.48528i 0.0138875i
\(612\) 0 0
\(613\) 335.000 0.546493 0.273246 0.961944i \(-0.411903\pi\)
0.273246 + 0.961944i \(0.411903\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −433.560 + 250.316i −0.702690 + 0.405698i −0.808349 0.588704i \(-0.799638\pi\)
0.105659 + 0.994402i \(0.466305\pi\)
\(618\) 0 0
\(619\) 2.50000 4.33013i 0.00403877 0.00699536i −0.863999 0.503494i \(-0.832048\pi\)
0.868038 + 0.496498i \(0.165381\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 330.681 + 190.919i 0.530788 + 0.306451i
\(624\) 0 0
\(625\) −204.500 354.204i −0.327200 0.566727i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 636.396i 1.01176i
\(630\) 0 0
\(631\) −245.000 −0.388273 −0.194136 0.980975i \(-0.562190\pi\)
−0.194136 + 0.980975i \(0.562190\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1308.03 755.190i 2.05989 1.18928i
\(636\) 0 0
\(637\) −12.0000 + 20.7846i −0.0188383 + 0.0326289i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 558.484 + 322.441i 0.871269 + 0.503028i 0.867770 0.496966i \(-0.165553\pi\)
0.00349951 + 0.999994i \(0.498886\pi\)
\(642\) 0 0
\(643\) −41.0000 71.0141i −0.0637636 0.110442i 0.832381 0.554203i \(-0.186977\pi\)
−0.896145 + 0.443762i \(0.853644\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 458.205i 0.708200i 0.935208 + 0.354100i \(0.115213\pi\)
−0.935208 + 0.354100i \(0.884787\pi\)
\(648\) 0 0
\(649\) −792.000 −1.22034
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −279.242 + 161.220i −0.427629 + 0.246892i −0.698336 0.715770i \(-0.746076\pi\)
0.270707 + 0.962662i \(0.412743\pi\)
\(654\) 0 0
\(655\) 504.000 872.954i 0.769466 1.33275i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 896.513 + 517.602i 1.36041 + 0.785436i 0.989679 0.143303i \(-0.0457722\pi\)
0.370736 + 0.928738i \(0.379106\pi\)
\(660\) 0 0
\(661\) −71.5000 123.842i −0.108169 0.187355i 0.806859 0.590744i \(-0.201166\pi\)
−0.915029 + 0.403389i \(0.867832\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1230.37i 1.85017i
\(666\) 0 0
\(667\) 144.000 0.215892
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 169.015 97.5807i 0.251885 0.145426i
\(672\) 0 0
\(673\) −335.500 + 581.103i −0.498514 + 0.863452i −0.999999 0.00171490i \(-0.999454\pi\)
0.501484 + 0.865167i \(0.332787\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.34847 + 4.24264i 0.0108545 + 0.00626683i 0.505417 0.862875i \(-0.331339\pi\)
−0.494563 + 0.869142i \(0.664672\pi\)
\(678\) 0 0
\(679\) −122.500 212.176i −0.180412 0.312483i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 101.823i 0.149083i 0.997218 + 0.0745413i \(0.0237493\pi\)
−0.997218 + 0.0745413i \(0.976251\pi\)
\(684\) 0 0
\(685\) −792.000 −1.15620
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −44.0908 + 25.4558i −0.0639925 + 0.0369461i
\(690\) 0 0
\(691\) −425.000 + 736.122i −0.615051 + 1.06530i 0.375325 + 0.926893i \(0.377531\pi\)
−0.990376 + 0.138406i \(0.955802\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1197.80 691.550i −1.72345 0.995037i
\(696\) 0 0
\(697\) 216.000 + 374.123i 0.309900 + 0.536762i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 280.014i 0.399450i 0.979852 + 0.199725i \(0.0640048\pi\)
−0.979852 + 0.199725i \(0.935995\pi\)
\(702\) 0 0
\(703\) 725.000 1.03129
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 587.878 339.411i 0.831510 0.480072i
\(708\) 0 0
\(709\) 600.500 1040.10i 0.846968 1.46699i −0.0369339 0.999318i \(-0.511759\pi\)
0.883901 0.467673i \(-0.154908\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 73.4847 + 42.4264i 0.103064 + 0.0595041i
\(714\) 0 0
\(715\) −36.0000 62.3538i −0.0503497 0.0872082i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 967.322i 1.34537i 0.739928 + 0.672686i \(0.234859\pi\)
−0.739928 + 0.672686i \(0.765141\pi\)
\(720\) 0 0
\(721\) −815.000 −1.13037
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −690.756 + 398.808i −0.952767 + 0.550080i
\(726\) 0 0
\(727\) 475.000 822.724i 0.653370 1.13167i −0.328930 0.944354i \(-0.606688\pi\)
0.982300 0.187316i \(-0.0599787\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −308.636 178.191i −0.422210 0.243763i
\(732\) 0 0
\(733\) −49.0000 84.8705i −0.0668486 0.115785i 0.830664 0.556774i \(-0.187961\pi\)
−0.897513 + 0.440989i \(0.854628\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 161.220i 0.218752i
\(738\) 0 0
\(739\) −1262.00 −1.70771 −0.853857 0.520508i \(-0.825742\pi\)
−0.853857 + 0.520508i \(0.825742\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −668.711 + 386.080i −0.900014 + 0.519624i −0.877205 0.480116i \(-0.840594\pi\)
−0.0228095 + 0.999740i \(0.507261\pi\)
\(744\) 0 0
\(745\) 144.000 249.415i 0.193289 0.334786i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 110.227 + 63.6396i 0.147166 + 0.0849661i
\(750\) 0 0
\(751\) 98.5000 + 170.607i 0.131158 + 0.227173i 0.924123 0.382094i \(-0.124797\pi\)
−0.792965 + 0.609267i \(0.791464\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1264.31i 1.67458i
\(756\) 0 0
\(757\) −241.000 −0.318362 −0.159181 0.987249i \(-0.550885\pi\)
−0.159181 + 0.987249i \(0.550885\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −433.560 + 250.316i −0.569724 + 0.328930i −0.757039 0.653370i \(-0.773355\pi\)
0.187315 + 0.982300i \(0.440021\pi\)
\(762\) 0 0
\(763\) 5.00000 8.66025i 0.00655308 0.0113503i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 80.8332 + 46.6690i 0.105389 + 0.0608462i
\(768\) 0 0
\(769\) −215.500 373.257i −0.280234 0.485380i 0.691208 0.722656i \(-0.257079\pi\)
−0.971442 + 0.237276i \(0.923745\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 254.558i 0.329312i 0.986351 + 0.164656i \(0.0526515\pi\)
−0.986351 + 0.164656i \(0.947349\pi\)
\(774\) 0 0
\(775\) −470.000 −0.606452
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 426.211 246.073i 0.547126 0.315883i
\(780\) 0 0
\(781\) 432.000 748.246i 0.553137 0.958061i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1778.33 1026.72i −2.26539 1.30792i
\(786\) 0 0
\(787\) 62.5000 + 108.253i 0.0794155 + 0.137552i 0.902998 0.429645i \(-0.141361\pi\)
−0.823582 + 0.567197i \(0.808028\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 551.543i 0.697273i
\(792\) 0 0
\(793\) −23.0000 −0.0290038
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 734.847 424.264i 0.922016 0.532326i 0.0377385 0.999288i \(-0.487985\pi\)
0.884278 + 0.466961i \(0.154651\pi\)
\(798\) 0 0
\(799\) −108.000 + 187.061i −0.135169 + 0.234120i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 712.802 + 411.536i 0.887673 + 0.512498i
\(804\) 0 0
\(805\) 180.000 + 311.769i 0.223602 + 0.387291i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1120.06i 1.38450i −0.721660 0.692248i \(-0.756620\pi\)
0.721660 0.692248i \(-0.243380\pi\)
\(810\) 0 0
\(811\) 322.000 0.397041 0.198520 0.980097i \(-0.436386\pi\)
0.198520 + 0.980097i \(0.436386\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1271.29 + 733.977i −1.55986 + 0.900585i
\(816\) 0 0
\(817\) −203.000 + 351.606i −0.248470 + 0.430363i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 756.892 + 436.992i 0.921915 + 0.532268i 0.884246 0.467022i \(-0.154673\pi\)
0.0376696 + 0.999290i \(0.488007\pi\)
\(822\) 0 0
\(823\) 134.500 + 232.961i 0.163426 + 0.283063i 0.936095 0.351746i \(-0.114412\pi\)
−0.772669 + 0.634809i \(0.781079\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25.4558i 0.0307809i 0.999882 + 0.0153905i \(0.00489913\pi\)
−0.999882 + 0.0153905i \(0.995101\pi\)
\(828\) 0 0
\(829\) −1105.00 −1.33293 −0.666466 0.745536i \(-0.732194\pi\)
−0.666466 + 0.745536i \(0.732194\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 529.090 305.470i 0.635162 0.366711i
\(834\) 0 0
\(835\) 828.000 1434.14i 0.991617 1.71753i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 102.879 + 59.3970i 0.122620 + 0.0707950i 0.560056 0.828455i \(-0.310780\pi\)
−0.437435 + 0.899250i \(0.644113\pi\)
\(840\) 0 0
\(841\) −276.500 478.912i −0.328775 0.569455i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1425.53i 1.68701i
\(846\) 0 0
\(847\) −245.000 −0.289256
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 183.712 106.066i 0.215877 0.124637i
\(852\) 0 0
\(853\) −695.500 + 1204.64i −0.815358 + 1.41224i 0.0937133 + 0.995599i \(0.470126\pi\)
−0.909071 + 0.416641i \(0.863207\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 470.302 + 271.529i 0.548777 + 0.316837i 0.748629 0.662990i \(-0.230713\pi\)
−0.199851 + 0.979826i \(0.564046\pi\)
\(858\) 0 0
\(859\) 422.500 + 731.791i 0.491851 + 0.851911i 0.999956 0.00938424i \(-0.00298714\pi\)
−0.508105 + 0.861295i \(0.669654\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1247.34i 1.44535i −0.691188 0.722675i \(-0.742913\pi\)
0.691188 0.722675i \(-0.257087\pi\)
\(864\) 0 0
\(865\) −2736.00 −3.16301
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −565.832 + 326.683i −0.651130 + 0.375930i
\(870\) 0 0
\(871\) 9.50000 16.4545i 0.0109070 0.0188915i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −808.332 466.690i −0.923808 0.533361i
\(876\) 0 0
\(877\) −575.500 996.795i −0.656214 1.13660i −0.981588 0.191011i \(-0.938823\pi\)
0.325374 0.945586i \(-0.394510\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1298.25i 1.47361i −0.676107 0.736804i \(-0.736334\pi\)
0.676107 0.736804i \(-0.263666\pi\)
\(882\) 0 0
\(883\) −677.000 −0.766704 −0.383352 0.923602i \(-0.625230\pi\)
−0.383352 + 0.923602i \(0.625230\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 896.513 517.602i 1.01073 0.583542i 0.0993213 0.995055i \(-0.468333\pi\)
0.911404 + 0.411513i \(0.135000\pi\)
\(888\) 0 0
\(889\) 445.000 770.763i 0.500562 0.867000i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 213.106 + 123.037i 0.238640 + 0.137779i
\(894\) 0 0
\(895\) −1296.00 2244.74i −1.44804 2.50809i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 169.706i 0.188772i
\(900\) 0 0
\(901\) 1296.00 1.43840
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1932.65 1115.81i 2.13552 1.23294i
\(906\) 0 0
\(907\) 2.50000 4.33013i 0.00275634 0.00477412i −0.864644 0.502385i \(-0.832456\pi\)
0.867400 + 0.497611i \(0.165789\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −867.119 500.632i −0.951832 0.549541i −0.0581828 0.998306i \(-0.518531\pi\)
−0.893650 + 0.448765i \(0.851864\pi\)
\(912\) 0 0
\(913\) −504.000 872.954i −0.552026 0.956138i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 593.970i 0.647731i
\(918\) 0 0
\(919\) −1190.00 −1.29489 −0.647443 0.762114i \(-0.724162\pi\)
−0.647443 + 0.762114i \(0.724162\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −88.1816 + 50.9117i −0.0955381 + 0.0551589i
\(924\) 0 0
\(925\) −587.500 + 1017.58i −0.635135 + 1.10009i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −411.514 237.588i −0.442965 0.255746i 0.261890 0.965098i \(-0.415654\pi\)
−0.704854 + 0.709352i \(0.748988\pi\)
\(930\) 0 0
\(931\) −348.000 602.754i −0.373792 0.647426i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1832.82i 1.96024i
\(936\) 0 0
\(937\) 1775.00 1.89434 0.947172 0.320727i \(-0.103927\pi\)
0.947172 + 0.320727i \(0.103927\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 139.621 80.6102i 0.148375 0.0856644i −0.423975 0.905674i \(-0.639365\pi\)
0.572350 + 0.820010i \(0.306032\pi\)
\(942\) 0 0
\(943\) 72.0000 124.708i 0.0763521 0.132246i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −492.347 284.257i −0.519902 0.300166i 0.216992 0.976173i \(-0.430375\pi\)
−0.736895 + 0.676008i \(0.763709\pi\)
\(948\) 0 0
\(949\) −48.5000 84.0045i −0.0511064 0.0885189i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1807.36i 1.89650i 0.317524 + 0.948250i \(0.397149\pi\)
−0.317524 + 0.948250i \(0.602851\pi\)
\(954\) 0 0
\(955\) 1224.00 1.28168
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −404.166 + 233.345i −0.421445 + 0.243321i
\(960\) 0 0
\(961\) 430.500 745.648i 0.447971 0.775908i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −521.741 301.227i −0.540665 0.312153i
\(966\) 0 0
\(967\) 350.500 + 607.084i 0.362461 + 0.627801i 0.988365 0.152099i \(-0.0486032\pi\)
−0.625904 + 0.779900i \(0.715270\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 381.838i 0.393242i 0.980480 + 0.196621i \(0.0629968\pi\)
−0.980480 + 0.196621i \(0.937003\pi\)
\(972\) 0 0
\(973\) −815.000 −0.837616
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −279.242 + 161.220i −0.285816 + 0.165016i −0.636053 0.771645i \(-0.719434\pi\)
0.350238 + 0.936661i \(0.386101\pi\)
\(978\) 0 0
\(979\) 324.000 561.184i 0.330950 0.573222i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 36.7423 + 21.2132i 0.0373778 + 0.0215801i 0.518572 0.855034i \(-0.326464\pi\)
−0.481195 + 0.876614i \(0.659797\pi\)
\(984\) 0 0
\(985\) 324.000 + 561.184i 0.328934 + 0.569730i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 118.794i 0.120115i
\(990\) 0 0
\(991\) 475.000 0.479314 0.239657 0.970858i \(-0.422965\pi\)
0.239657 + 0.970858i \(0.422965\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1271.29 + 733.977i −1.27767 + 0.737665i
\(996\) 0 0
\(997\) 767.000 1328.48i 0.769308 1.33248i −0.168631 0.985679i \(-0.553935\pi\)
0.937939 0.346801i \(-0.112732\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1296.3.q.i.593.2 4
3.2 odd 2 inner 1296.3.q.i.593.1 4
4.3 odd 2 162.3.d.a.107.1 4
9.2 odd 6 432.3.e.d.161.1 2
9.4 even 3 inner 1296.3.q.i.1025.1 4
9.5 odd 6 inner 1296.3.q.i.1025.2 4
9.7 even 3 432.3.e.d.161.2 2
12.11 even 2 162.3.d.a.107.2 4
36.7 odd 6 54.3.b.a.53.2 yes 2
36.11 even 6 54.3.b.a.53.1 2
36.23 even 6 162.3.d.a.53.1 4
36.31 odd 6 162.3.d.a.53.2 4
72.11 even 6 1728.3.e.l.1025.2 2
72.29 odd 6 1728.3.e.f.1025.2 2
72.43 odd 6 1728.3.e.l.1025.1 2
72.61 even 6 1728.3.e.f.1025.1 2
180.7 even 12 1350.3.b.b.1349.2 4
180.43 even 12 1350.3.b.b.1349.3 4
180.47 odd 12 1350.3.b.b.1349.4 4
180.79 odd 6 1350.3.d.d.701.1 2
180.83 odd 12 1350.3.b.b.1349.1 4
180.119 even 6 1350.3.d.d.701.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.3.b.a.53.1 2 36.11 even 6
54.3.b.a.53.2 yes 2 36.7 odd 6
162.3.d.a.53.1 4 36.23 even 6
162.3.d.a.53.2 4 36.31 odd 6
162.3.d.a.107.1 4 4.3 odd 2
162.3.d.a.107.2 4 12.11 even 2
432.3.e.d.161.1 2 9.2 odd 6
432.3.e.d.161.2 2 9.7 even 3
1296.3.q.i.593.1 4 3.2 odd 2 inner
1296.3.q.i.593.2 4 1.1 even 1 trivial
1296.3.q.i.1025.1 4 9.4 even 3 inner
1296.3.q.i.1025.2 4 9.5 odd 6 inner
1350.3.b.b.1349.1 4 180.83 odd 12
1350.3.b.b.1349.2 4 180.7 even 12
1350.3.b.b.1349.3 4 180.43 even 12
1350.3.b.b.1349.4 4 180.47 odd 12
1350.3.d.d.701.1 2 180.79 odd 6
1350.3.d.d.701.2 2 180.119 even 6
1728.3.e.f.1025.1 2 72.61 even 6
1728.3.e.f.1025.2 2 72.29 odd 6
1728.3.e.l.1025.1 2 72.43 odd 6
1728.3.e.l.1025.2 2 72.11 even 6