Properties

Label 1296.3.q.i
Level $1296$
Weight $3$
Character orbit 1296.q
Analytic conductor $35.313$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1296,3,Mod(593,1296)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1296, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1296.593");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1296 = 2^{4} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1296.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(35.3134422611\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{5} + 5 \beta_{2} q^{7} + (\beta_{3} - \beta_1) q^{11} + ( - \beta_{2} + 1) q^{13} + 3 \beta_{3} q^{17} - 29 q^{19} - \beta_1 q^{23} + 47 \beta_{2} q^{25} + (2 \beta_{3} - 2 \beta_1) q^{29}+ \cdots + 49 \beta_{2} q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 10 q^{7} + 2 q^{13} - 116 q^{19} + 94 q^{25} - 20 q^{31} - 100 q^{37} + 28 q^{43} + 48 q^{49} - 288 q^{55} - 46 q^{61} - 38 q^{67} - 388 q^{73} + 154 q^{79} - 432 q^{85} + 20 q^{91} + 98 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 6\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 3\nu^{3} \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{3} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1296\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(1 - \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
593.1
−1.22474 + 0.707107i
1.22474 0.707107i
−1.22474 0.707107i
1.22474 + 0.707107i
0 0 0 −7.34847 + 4.24264i 0 2.50000 4.33013i 0 0 0
593.2 0 0 0 7.34847 4.24264i 0 2.50000 4.33013i 0 0 0
1025.1 0 0 0 −7.34847 4.24264i 0 2.50000 + 4.33013i 0 0 0
1025.2 0 0 0 7.34847 + 4.24264i 0 2.50000 + 4.33013i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1296.3.q.i 4
3.b odd 2 1 inner 1296.3.q.i 4
4.b odd 2 1 162.3.d.a 4
9.c even 3 1 432.3.e.d 2
9.c even 3 1 inner 1296.3.q.i 4
9.d odd 6 1 432.3.e.d 2
9.d odd 6 1 inner 1296.3.q.i 4
12.b even 2 1 162.3.d.a 4
36.f odd 6 1 54.3.b.a 2
36.f odd 6 1 162.3.d.a 4
36.h even 6 1 54.3.b.a 2
36.h even 6 1 162.3.d.a 4
72.j odd 6 1 1728.3.e.f 2
72.l even 6 1 1728.3.e.l 2
72.n even 6 1 1728.3.e.f 2
72.p odd 6 1 1728.3.e.l 2
180.n even 6 1 1350.3.d.d 2
180.p odd 6 1 1350.3.d.d 2
180.v odd 12 2 1350.3.b.b 4
180.x even 12 2 1350.3.b.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
54.3.b.a 2 36.f odd 6 1
54.3.b.a 2 36.h even 6 1
162.3.d.a 4 4.b odd 2 1
162.3.d.a 4 12.b even 2 1
162.3.d.a 4 36.f odd 6 1
162.3.d.a 4 36.h even 6 1
432.3.e.d 2 9.c even 3 1
432.3.e.d 2 9.d odd 6 1
1296.3.q.i 4 1.a even 1 1 trivial
1296.3.q.i 4 3.b odd 2 1 inner
1296.3.q.i 4 9.c even 3 1 inner
1296.3.q.i 4 9.d odd 6 1 inner
1350.3.b.b 4 180.v odd 12 2
1350.3.b.b 4 180.x even 12 2
1350.3.d.d 2 180.n even 6 1
1350.3.d.d 2 180.p odd 6 1
1728.3.e.f 2 72.j odd 6 1
1728.3.e.f 2 72.n even 6 1
1728.3.e.l 2 72.l even 6 1
1728.3.e.l 2 72.p odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1296, [\chi])\):

\( T_{5}^{4} - 72T_{5}^{2} + 5184 \) Copy content Toggle raw display
\( T_{7}^{2} - 5T_{7} + 25 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 72T^{2} + 5184 \) Copy content Toggle raw display
$7$ \( (T^{2} - 5 T + 25)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 72T^{2} + 5184 \) Copy content Toggle raw display
$13$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 648)^{2} \) Copy content Toggle raw display
$19$ \( (T + 29)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 72T^{2} + 5184 \) Copy content Toggle raw display
$29$ \( T^{4} - 288 T^{2} + 82944 \) Copy content Toggle raw display
$31$ \( (T^{2} + 10 T + 100)^{2} \) Copy content Toggle raw display
$37$ \( (T + 25)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} - 288 T^{2} + 82944 \) Copy content Toggle raw display
$43$ \( (T^{2} - 14 T + 196)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 72T^{2} + 5184 \) Copy content Toggle raw display
$53$ \( (T^{2} + 2592)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 8712 T^{2} + 75898944 \) Copy content Toggle raw display
$61$ \( (T^{2} + 23 T + 529)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 19 T + 361)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 10368)^{2} \) Copy content Toggle raw display
$73$ \( (T + 97)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 77 T + 5929)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 14112 T^{2} + 199148544 \) Copy content Toggle raw display
$89$ \( (T^{2} + 5832)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 49 T + 2401)^{2} \) Copy content Toggle raw display
show more
show less