Properties

Label 1350.3.b
Level $1350$
Weight $3$
Character orbit 1350.b
Rep. character $\chi_{1350}(1349,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $9$
Sturm bound $810$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1350.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(810\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(7\), \(11\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1350, [\chi])\).

Total New Old
Modular forms 576 48 528
Cusp forms 504 48 456
Eisenstein series 72 0 72

Trace form

\( 48 q + 96 q^{4} + 192 q^{16} - 36 q^{19} - 84 q^{31} - 192 q^{34} - 144 q^{46} - 36 q^{49} + 300 q^{61} + 384 q^{64} - 72 q^{76} - 96 q^{79} + 396 q^{91} + 288 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1350, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1350.3.b.a 1350.b 15.d $4$ $36.785$ \(\Q(\zeta_{8})\) None 1350.3.d.l \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_{3} q^{2}+2 q^{4}+(-3\beta_{2}+4\beta_1)q^{7}+\cdots\)
1350.3.b.b 1350.b 15.d $4$ $36.785$ \(\Q(\zeta_{8})\) None 54.3.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_{3} q^{2}+2 q^{4}+5\beta_1 q^{7}-2\beta_{3} q^{8}+\cdots\)
1350.3.b.c 1350.b 15.d $4$ $36.785$ \(\Q(\zeta_{8})\) None 1350.3.d.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{3} q^{2}+2 q^{4}+10\beta_1 q^{7}+2\beta_{3} q^{8}+\cdots\)
1350.3.b.d 1350.b 15.d $4$ $36.785$ \(\Q(\zeta_{8})\) None 1350.3.d.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{3} q^{2}+2 q^{4}+5\beta_1 q^{7}+2\beta_{3} q^{8}+\cdots\)
1350.3.b.e 1350.b 15.d $4$ $36.785$ \(\Q(\zeta_{8})\) None 1350.3.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_{3} q^{2}+2 q^{4}+11\beta_1 q^{7}-2\beta_{3} q^{8}+\cdots\)
1350.3.b.f 1350.b 15.d $4$ $36.785$ \(\Q(\zeta_{8})\) None 1350.3.d.l \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{3} q^{2}+2 q^{4}+(-3\beta_{2}+4\beta_1)q^{7}+\cdots\)
1350.3.b.g 1350.b 15.d $8$ $36.785$ 8.0.40960000.1 None 270.3.d.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}+2q^{4}+(-2\beta _{3}-\beta _{4})q^{7}+\cdots\)
1350.3.b.h 1350.b 15.d $8$ $36.785$ 8.0.40960000.1 None 270.3.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{2}+2q^{4}+\beta _{1}q^{7}-2\beta _{3}q^{8}+\cdots\)
1350.3.b.i 1350.b 15.d $8$ $36.785$ 8.0.40960000.1 None 270.3.d.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}+2q^{4}+(-2\beta _{3}-\beta _{4})q^{7}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(1350, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1350, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(450, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(675, [\chi])\)\(^{\oplus 2}\)