Properties

Label 1338.2.e.i.931.5
Level $1338$
Weight $2$
Character 1338.931
Analytic conductor $10.684$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1338,2,Mod(931,1338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1338.931"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,14,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.6839837904\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 25 x^{12} - 30 x^{11} + 502 x^{10} - 434 x^{9} + 3060 x^{8} - 1136 x^{7} + 13014 x^{6} + \cdots + 961 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 931.5
Root \(1.86875 - 3.23677i\) of defining polynomial
Character \(\chi\) \(=\) 1338.931
Dual form 1338.2.e.i.1075.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(0.500000 - 0.866025i) q^{3} +1.00000 q^{4} +(0.887260 + 1.53678i) q^{5} +(0.500000 - 0.866025i) q^{6} -3.74585 q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(0.887260 + 1.53678i) q^{10} +(2.36875 + 4.10280i) q^{11} +(0.500000 - 0.866025i) q^{12} +2.39040 q^{13} -3.74585 q^{14} +1.77452 q^{15} +1.00000 q^{16} +4.75863 q^{17} +(-0.500000 - 0.866025i) q^{18} +(1.21405 - 2.10279i) q^{19} +(0.887260 + 1.53678i) q^{20} +(-1.87292 + 3.24400i) q^{21} +(2.36875 + 4.10280i) q^{22} +(-4.36080 + 7.55313i) q^{23} +(0.500000 - 0.866025i) q^{24} +(0.925541 - 1.60308i) q^{25} +2.39040 q^{26} -1.00000 q^{27} -3.74585 q^{28} +(1.36875 + 2.37075i) q^{29} +1.77452 q^{30} +(2.90277 - 5.02774i) q^{31} +1.00000 q^{32} +4.73750 q^{33} +4.75863 q^{34} +(-3.32354 - 5.75654i) q^{35} +(-0.500000 - 0.866025i) q^{36} +(4.83896 + 8.38133i) q^{37} +(1.21405 - 2.10279i) q^{38} +(1.19520 - 2.07015i) q^{39} +(0.887260 + 1.53678i) q^{40} -0.632448 q^{41} +(-1.87292 + 3.24400i) q^{42} +(3.14676 - 5.45034i) q^{43} +(2.36875 + 4.10280i) q^{44} +(0.887260 - 1.53678i) q^{45} +(-4.36080 + 7.55313i) q^{46} +(5.30059 + 9.18089i) q^{47} +(0.500000 - 0.866025i) q^{48} +7.03138 q^{49} +(0.925541 - 1.60308i) q^{50} +(2.37931 - 4.12109i) q^{51} +2.39040 q^{52} +(-0.401996 - 0.696278i) q^{53} -1.00000 q^{54} +(-4.20339 + 7.28049i) q^{55} -3.74585 q^{56} +(-1.21405 - 2.10279i) q^{57} +(1.36875 + 2.37075i) q^{58} -0.772969 q^{59} +1.77452 q^{60} +(-2.78610 + 4.82566i) q^{61} +(2.90277 - 5.02774i) q^{62} +(1.87292 + 3.24400i) q^{63} +1.00000 q^{64} +(2.12091 + 3.67352i) q^{65} +4.73750 q^{66} +(-2.20654 + 3.82184i) q^{67} +4.75863 q^{68} +(4.36080 + 7.55313i) q^{69} +(-3.32354 - 5.75654i) q^{70} +(0.965893 - 1.67297i) q^{71} +(-0.500000 - 0.866025i) q^{72} +(-8.22631 - 14.2484i) q^{73} +(4.83896 + 8.38133i) q^{74} +(-0.925541 - 1.60308i) q^{75} +(1.21405 - 2.10279i) q^{76} +(-8.87298 - 15.3685i) q^{77} +(1.19520 - 2.07015i) q^{78} +(-6.71908 - 11.6378i) q^{79} +(0.887260 + 1.53678i) q^{80} +(-0.500000 + 0.866025i) q^{81} -0.632448 q^{82} +(-8.19331 - 14.1912i) q^{83} +(-1.87292 + 3.24400i) q^{84} +(4.22214 + 7.31296i) q^{85} +(3.14676 - 5.45034i) q^{86} +2.73750 q^{87} +(2.36875 + 4.10280i) q^{88} +(-7.04593 + 12.2039i) q^{89} +(0.887260 - 1.53678i) q^{90} -8.95408 q^{91} +(-4.36080 + 7.55313i) q^{92} +(-2.90277 - 5.02774i) q^{93} +(5.30059 + 9.18089i) q^{94} +4.30870 q^{95} +(0.500000 - 0.866025i) q^{96} +(-6.85370 - 11.8710i) q^{97} +7.03138 q^{98} +(2.36875 - 4.10280i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 14 q^{2} + 7 q^{3} + 14 q^{4} + 3 q^{5} + 7 q^{6} + 4 q^{7} + 14 q^{8} - 7 q^{9} + 3 q^{10} + 7 q^{11} + 7 q^{12} - 12 q^{13} + 4 q^{14} + 6 q^{15} + 14 q^{16} + 6 q^{17} - 7 q^{18} - 6 q^{19} + 3 q^{20}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1338\mathbb{Z}\right)^\times\).

\(n\) \(893\) \(895\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 1.00000 0.500000
\(5\) 0.887260 + 1.53678i 0.396795 + 0.687268i 0.993328 0.115320i \(-0.0367892\pi\)
−0.596534 + 0.802588i \(0.703456\pi\)
\(6\) 0.500000 0.866025i 0.204124 0.353553i
\(7\) −3.74585 −1.41580 −0.707899 0.706314i \(-0.750357\pi\)
−0.707899 + 0.706314i \(0.750357\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0.887260 + 1.53678i 0.280576 + 0.485972i
\(11\) 2.36875 + 4.10280i 0.714205 + 1.23704i 0.963265 + 0.268552i \(0.0865450\pi\)
−0.249060 + 0.968488i \(0.580122\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) 2.39040 0.662978 0.331489 0.943459i \(-0.392449\pi\)
0.331489 + 0.943459i \(0.392449\pi\)
\(14\) −3.74585 −1.00112
\(15\) 1.77452 0.458179
\(16\) 1.00000 0.250000
\(17\) 4.75863 1.15414 0.577068 0.816696i \(-0.304197\pi\)
0.577068 + 0.816696i \(0.304197\pi\)
\(18\) −0.500000 0.866025i −0.117851 0.204124i
\(19\) 1.21405 2.10279i 0.278521 0.482413i −0.692496 0.721422i \(-0.743489\pi\)
0.971017 + 0.239008i \(0.0768224\pi\)
\(20\) 0.887260 + 1.53678i 0.198397 + 0.343634i
\(21\) −1.87292 + 3.24400i −0.408706 + 0.707899i
\(22\) 2.36875 + 4.10280i 0.505019 + 0.874719i
\(23\) −4.36080 + 7.55313i −0.909291 + 1.57494i −0.0942385 + 0.995550i \(0.530042\pi\)
−0.815052 + 0.579388i \(0.803292\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) 0.925541 1.60308i 0.185108 0.320617i
\(26\) 2.39040 0.468796
\(27\) −1.00000 −0.192450
\(28\) −3.74585 −0.707899
\(29\) 1.36875 + 2.37075i 0.254171 + 0.440236i 0.964670 0.263462i \(-0.0848642\pi\)
−0.710499 + 0.703698i \(0.751531\pi\)
\(30\) 1.77452 0.323981
\(31\) 2.90277 5.02774i 0.521353 0.903009i −0.478339 0.878175i \(-0.658761\pi\)
0.999692 0.0248338i \(-0.00790567\pi\)
\(32\) 1.00000 0.176777
\(33\) 4.73750 0.824693
\(34\) 4.75863 0.816098
\(35\) −3.32354 5.75654i −0.561781 0.973033i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 4.83896 + 8.38133i 0.795520 + 1.37788i 0.922508 + 0.385977i \(0.126136\pi\)
−0.126988 + 0.991904i \(0.540531\pi\)
\(38\) 1.21405 2.10279i 0.196944 0.341118i
\(39\) 1.19520 2.07015i 0.191385 0.331489i
\(40\) 0.887260 + 1.53678i 0.140288 + 0.242986i
\(41\) −0.632448 −0.0987717 −0.0493859 0.998780i \(-0.515726\pi\)
−0.0493859 + 0.998780i \(0.515726\pi\)
\(42\) −1.87292 + 3.24400i −0.288998 + 0.500560i
\(43\) 3.14676 5.45034i 0.479876 0.831170i −0.519857 0.854253i \(-0.674015\pi\)
0.999734 + 0.0230833i \(0.00734828\pi\)
\(44\) 2.36875 + 4.10280i 0.357103 + 0.618520i
\(45\) 0.887260 1.53678i 0.132265 0.229089i
\(46\) −4.36080 + 7.55313i −0.642966 + 1.11365i
\(47\) 5.30059 + 9.18089i 0.773171 + 1.33917i 0.935817 + 0.352486i \(0.114664\pi\)
−0.162646 + 0.986684i \(0.552003\pi\)
\(48\) 0.500000 0.866025i 0.0721688 0.125000i
\(49\) 7.03138 1.00448
\(50\) 0.925541 1.60308i 0.130891 0.226710i
\(51\) 2.37931 4.12109i 0.333171 0.577068i
\(52\) 2.39040 0.331489
\(53\) −0.401996 0.696278i −0.0552184 0.0956411i 0.837095 0.547058i \(-0.184252\pi\)
−0.892313 + 0.451417i \(0.850919\pi\)
\(54\) −1.00000 −0.136083
\(55\) −4.20339 + 7.28049i −0.566785 + 0.981701i
\(56\) −3.74585 −0.500560
\(57\) −1.21405 2.10279i −0.160804 0.278521i
\(58\) 1.36875 + 2.37075i 0.179726 + 0.311294i
\(59\) −0.772969 −0.100632 −0.0503160 0.998733i \(-0.516023\pi\)
−0.0503160 + 0.998733i \(0.516023\pi\)
\(60\) 1.77452 0.229089
\(61\) −2.78610 + 4.82566i −0.356723 + 0.617863i −0.987411 0.158174i \(-0.949439\pi\)
0.630688 + 0.776037i \(0.282773\pi\)
\(62\) 2.90277 5.02774i 0.368652 0.638524i
\(63\) 1.87292 + 3.24400i 0.235966 + 0.408706i
\(64\) 1.00000 0.125000
\(65\) 2.12091 + 3.67352i 0.263066 + 0.455644i
\(66\) 4.73750 0.583146
\(67\) −2.20654 + 3.82184i −0.269572 + 0.466912i −0.968751 0.248034i \(-0.920215\pi\)
0.699180 + 0.714946i \(0.253549\pi\)
\(68\) 4.75863 0.577068
\(69\) 4.36080 + 7.55313i 0.524979 + 0.909291i
\(70\) −3.32354 5.75654i −0.397239 0.688038i
\(71\) 0.965893 1.67297i 0.114630 0.198546i −0.803002 0.595977i \(-0.796765\pi\)
0.917632 + 0.397431i \(0.130098\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) −8.22631 14.2484i −0.962817 1.66765i −0.715369 0.698746i \(-0.753742\pi\)
−0.247447 0.968901i \(-0.579592\pi\)
\(74\) 4.83896 + 8.38133i 0.562518 + 0.974309i
\(75\) −0.925541 1.60308i −0.106872 0.185108i
\(76\) 1.21405 2.10279i 0.139261 0.241207i
\(77\) −8.87298 15.3685i −1.01117 1.75140i
\(78\) 1.19520 2.07015i 0.135330 0.234398i
\(79\) −6.71908 11.6378i −0.755956 1.30935i −0.944898 0.327366i \(-0.893839\pi\)
0.188942 0.981988i \(-0.439494\pi\)
\(80\) 0.887260 + 1.53678i 0.0991986 + 0.171817i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −0.632448 −0.0698421
\(83\) −8.19331 14.1912i −0.899333 1.55769i −0.828349 0.560213i \(-0.810719\pi\)
−0.0709840 0.997477i \(-0.522614\pi\)
\(84\) −1.87292 + 3.24400i −0.204353 + 0.353949i
\(85\) 4.22214 + 7.31296i 0.457955 + 0.793202i
\(86\) 3.14676 5.45034i 0.339324 0.587726i
\(87\) 2.73750 0.293491
\(88\) 2.36875 + 4.10280i 0.252510 + 0.437360i
\(89\) −7.04593 + 12.2039i −0.746867 + 1.29361i 0.202450 + 0.979293i \(0.435110\pi\)
−0.949317 + 0.314320i \(0.898224\pi\)
\(90\) 0.887260 1.53678i 0.0935254 0.161991i
\(91\) −8.95408 −0.938643
\(92\) −4.36080 + 7.55313i −0.454645 + 0.787469i
\(93\) −2.90277 5.02774i −0.301003 0.521353i
\(94\) 5.30059 + 9.18089i 0.546714 + 0.946937i
\(95\) 4.30870 0.442063
\(96\) 0.500000 0.866025i 0.0510310 0.0883883i
\(97\) −6.85370 11.8710i −0.695888 1.20531i −0.969881 0.243581i \(-0.921678\pi\)
0.273993 0.961732i \(-0.411655\pi\)
\(98\) 7.03138 0.710276
\(99\) 2.36875 4.10280i 0.238068 0.412347i
\(100\) 0.925541 1.60308i 0.0925541 0.160308i
\(101\) 9.00074 15.5897i 0.895607 1.55124i 0.0625550 0.998042i \(-0.480075\pi\)
0.833052 0.553195i \(-0.186592\pi\)
\(102\) 2.37931 4.12109i 0.235587 0.408049i
\(103\) −2.30804 −0.227418 −0.113709 0.993514i \(-0.536273\pi\)
−0.113709 + 0.993514i \(0.536273\pi\)
\(104\) 2.39040 0.234398
\(105\) −6.64708 −0.648689
\(106\) −0.401996 0.696278i −0.0390453 0.0676285i
\(107\) 0.952509 + 1.64979i 0.0920825 + 0.159492i 0.908387 0.418130i \(-0.137314\pi\)
−0.816305 + 0.577621i \(0.803981\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 5.57998 + 9.66480i 0.534465 + 0.925720i 0.999189 + 0.0402647i \(0.0128201\pi\)
−0.464724 + 0.885455i \(0.653847\pi\)
\(110\) −4.20339 + 7.28049i −0.400778 + 0.694168i
\(111\) 9.67792 0.918588
\(112\) −3.74585 −0.353949
\(113\) 0.0278961 0.0483175i 0.00262424 0.00454533i −0.864710 0.502271i \(-0.832498\pi\)
0.867335 + 0.497726i \(0.165831\pi\)
\(114\) −1.21405 2.10279i −0.113706 0.196944i
\(115\) −15.4767 −1.44321
\(116\) 1.36875 + 2.37075i 0.127085 + 0.220118i
\(117\) −1.19520 2.07015i −0.110496 0.191385i
\(118\) −0.772969 −0.0711575
\(119\) −17.8251 −1.63402
\(120\) 1.77452 0.161991
\(121\) −5.72196 + 9.91072i −0.520178 + 0.900975i
\(122\) −2.78610 + 4.82566i −0.252242 + 0.436895i
\(123\) −0.316224 + 0.547716i −0.0285129 + 0.0493859i
\(124\) 2.90277 5.02774i 0.260676 0.451505i
\(125\) 12.1574 1.08739
\(126\) 1.87292 + 3.24400i 0.166853 + 0.288998i
\(127\) −9.70566 + 16.8107i −0.861238 + 1.49171i 0.00949578 + 0.999955i \(0.496977\pi\)
−0.870734 + 0.491754i \(0.836356\pi\)
\(128\) 1.00000 0.0883883
\(129\) −3.14676 5.45034i −0.277057 0.479876i
\(130\) 2.12091 + 3.67352i 0.186016 + 0.322189i
\(131\) −0.740902 + 1.28328i −0.0647329 + 0.112121i −0.896575 0.442891i \(-0.853953\pi\)
0.831843 + 0.555012i \(0.187286\pi\)
\(132\) 4.73750 0.412347
\(133\) −4.54763 + 7.87673i −0.394330 + 0.682999i
\(134\) −2.20654 + 3.82184i −0.190616 + 0.330157i
\(135\) −0.887260 1.53678i −0.0763632 0.132265i
\(136\) 4.75863 0.408049
\(137\) 7.78257 13.4798i 0.664910 1.15166i −0.314400 0.949291i \(-0.601803\pi\)
0.979310 0.202367i \(-0.0648635\pi\)
\(138\) 4.36080 + 7.55313i 0.371216 + 0.642966i
\(139\) −4.96109 + 8.59286i −0.420794 + 0.728837i −0.996017 0.0891598i \(-0.971582\pi\)
0.575223 + 0.817996i \(0.304915\pi\)
\(140\) −3.32354 5.75654i −0.280890 0.486516i
\(141\) 10.6012 0.892781
\(142\) 0.965893 1.67297i 0.0810559 0.140393i
\(143\) 5.66227 + 9.80733i 0.473502 + 0.820130i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) −2.42887 + 4.20693i −0.201707 + 0.349367i
\(146\) −8.22631 14.2484i −0.680814 1.17921i
\(147\) 3.51569 6.08935i 0.289969 0.502241i
\(148\) 4.83896 + 8.38133i 0.397760 + 0.688941i
\(149\) 3.99258 + 6.91535i 0.327085 + 0.566528i 0.981932 0.189234i \(-0.0606004\pi\)
−0.654847 + 0.755761i \(0.727267\pi\)
\(150\) −0.925541 1.60308i −0.0755701 0.130891i
\(151\) −5.95146 10.3082i −0.484323 0.838872i 0.515515 0.856881i \(-0.327601\pi\)
−0.999838 + 0.0180089i \(0.994267\pi\)
\(152\) 1.21405 2.10279i 0.0984722 0.170559i
\(153\) −2.37931 4.12109i −0.192356 0.333171i
\(154\) −8.87298 15.3685i −0.715005 1.23843i
\(155\) 10.3020 0.827479
\(156\) 1.19520 2.07015i 0.0956927 0.165745i
\(157\) 3.63665 0.290236 0.145118 0.989414i \(-0.453644\pi\)
0.145118 + 0.989414i \(0.453644\pi\)
\(158\) −6.71908 11.6378i −0.534541 0.925853i
\(159\) −0.803992 −0.0637607
\(160\) 0.887260 + 1.53678i 0.0701440 + 0.121493i
\(161\) 16.3349 28.2929i 1.28737 2.22979i
\(162\) −0.500000 + 0.866025i −0.0392837 + 0.0680414i
\(163\) 6.95712 0.544923 0.272462 0.962167i \(-0.412162\pi\)
0.272462 + 0.962167i \(0.412162\pi\)
\(164\) −0.632448 −0.0493859
\(165\) 4.20339 + 7.28049i 0.327234 + 0.566785i
\(166\) −8.19331 14.1912i −0.635924 1.10145i
\(167\) −18.8502 −1.45867 −0.729337 0.684155i \(-0.760171\pi\)
−0.729337 + 0.684155i \(0.760171\pi\)
\(168\) −1.87292 + 3.24400i −0.144499 + 0.250280i
\(169\) −7.28598 −0.560460
\(170\) 4.22214 + 7.31296i 0.323823 + 0.560878i
\(171\) −2.42809 −0.185681
\(172\) 3.14676 5.45034i 0.239938 0.415585i
\(173\) 9.13704 15.8258i 0.694676 1.20321i −0.275614 0.961268i \(-0.588881\pi\)
0.970290 0.241946i \(-0.0777856\pi\)
\(174\) 2.73750 0.207529
\(175\) −3.46693 + 6.00491i −0.262076 + 0.453928i
\(176\) 2.36875 + 4.10280i 0.178551 + 0.309260i
\(177\) −0.386484 + 0.669411i −0.0290499 + 0.0503160i
\(178\) −7.04593 + 12.2039i −0.528115 + 0.914722i
\(179\) 1.31142 + 2.27145i 0.0980201 + 0.169776i 0.910865 0.412704i \(-0.135416\pi\)
−0.812845 + 0.582480i \(0.802082\pi\)
\(180\) 0.887260 1.53678i 0.0661324 0.114545i
\(181\) 9.83095 17.0277i 0.730729 1.26566i −0.225844 0.974164i \(-0.572514\pi\)
0.956572 0.291495i \(-0.0941528\pi\)
\(182\) −8.95408 −0.663721
\(183\) 2.78610 + 4.82566i 0.205954 + 0.356723i
\(184\) −4.36080 + 7.55313i −0.321483 + 0.556824i
\(185\) −8.58683 + 14.8728i −0.631316 + 1.09347i
\(186\) −2.90277 5.02774i −0.212841 0.368652i
\(187\) 11.2720 + 19.5237i 0.824290 + 1.42771i
\(188\) 5.30059 + 9.18089i 0.386585 + 0.669585i
\(189\) 3.74585 0.272470
\(190\) 4.30870 0.312586
\(191\) −8.84394 −0.639925 −0.319963 0.947430i \(-0.603670\pi\)
−0.319963 + 0.947430i \(0.603670\pi\)
\(192\) 0.500000 0.866025i 0.0360844 0.0625000i
\(193\) −10.4172 −0.749844 −0.374922 0.927056i \(-0.622331\pi\)
−0.374922 + 0.927056i \(0.622331\pi\)
\(194\) −6.85370 11.8710i −0.492067 0.852285i
\(195\) 4.24181 0.303763
\(196\) 7.03138 0.502241
\(197\) 10.6771 0.760713 0.380356 0.924840i \(-0.375801\pi\)
0.380356 + 0.924840i \(0.375801\pi\)
\(198\) 2.36875 4.10280i 0.168340 0.291573i
\(199\) 0.216180 0.374435i 0.0153246 0.0265430i −0.858261 0.513213i \(-0.828455\pi\)
0.873586 + 0.486670i \(0.161788\pi\)
\(200\) 0.925541 1.60308i 0.0654456 0.113355i
\(201\) 2.20654 + 3.82184i 0.155637 + 0.269572i
\(202\) 9.00074 15.5897i 0.633290 1.09689i
\(203\) −5.12713 8.88045i −0.359854 0.623286i
\(204\) 2.37931 4.12109i 0.166585 0.288534i
\(205\) −0.561145 0.971932i −0.0391921 0.0678827i
\(206\) −2.30804 −0.160809
\(207\) 8.72161 0.606194
\(208\) 2.39040 0.165745
\(209\) 11.5031 0.795685
\(210\) −6.64708 −0.458692
\(211\) 2.78934 4.83127i 0.192026 0.332598i −0.753896 0.656994i \(-0.771828\pi\)
0.945921 + 0.324396i \(0.105161\pi\)
\(212\) −0.401996 0.696278i −0.0276092 0.0478205i
\(213\) −0.965893 1.67297i −0.0661819 0.114630i
\(214\) 0.952509 + 1.64979i 0.0651122 + 0.112778i
\(215\) 11.1680 0.761649
\(216\) −1.00000 −0.0680414
\(217\) −10.8733 + 18.8332i −0.738130 + 1.27848i
\(218\) 5.57998 + 9.66480i 0.377924 + 0.654583i
\(219\) −16.4526 −1.11177
\(220\) −4.20339 + 7.28049i −0.283393 + 0.490851i
\(221\) 11.3750 0.765167
\(222\) 9.67792 0.649540
\(223\) 0.344793 + 14.9292i 0.0230890 + 0.999733i
\(224\) −3.74585 −0.250280
\(225\) −1.85108 −0.123405
\(226\) 0.0278961 0.0483175i 0.00185562 0.00321403i
\(227\) −6.99895 −0.464537 −0.232268 0.972652i \(-0.574615\pi\)
−0.232268 + 0.972652i \(0.574615\pi\)
\(228\) −1.21405 2.10279i −0.0804022 0.139261i
\(229\) 10.9526 18.9705i 0.723769 1.25361i −0.235709 0.971824i \(-0.575741\pi\)
0.959479 0.281782i \(-0.0909254\pi\)
\(230\) −15.4767 −1.02050
\(231\) −17.7460 −1.16760
\(232\) 1.36875 + 2.37075i 0.0898629 + 0.155647i
\(233\) 8.65849 + 14.9970i 0.567237 + 0.982483i 0.996838 + 0.0794641i \(0.0253209\pi\)
−0.429601 + 0.903019i \(0.641346\pi\)
\(234\) −1.19520 2.07015i −0.0781327 0.135330i
\(235\) −9.40600 + 16.2917i −0.613580 + 1.06275i
\(236\) −0.772969 −0.0503160
\(237\) −13.4382 −0.872903
\(238\) −17.8251 −1.15543
\(239\) −18.4003 −1.19022 −0.595108 0.803646i \(-0.702891\pi\)
−0.595108 + 0.803646i \(0.702891\pi\)
\(240\) 1.77452 0.114545
\(241\) 1.57469 + 2.72745i 0.101435 + 0.175691i 0.912276 0.409576i \(-0.134323\pi\)
−0.810841 + 0.585266i \(0.800990\pi\)
\(242\) −5.72196 + 9.91072i −0.367821 + 0.637085i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) −2.78610 + 4.82566i −0.178362 + 0.308932i
\(245\) 6.23866 + 10.8057i 0.398573 + 0.690349i
\(246\) −0.316224 + 0.547716i −0.0201617 + 0.0349211i
\(247\) 2.90206 5.02651i 0.184654 0.319829i
\(248\) 2.90277 5.02774i 0.184326 0.319262i
\(249\) −16.3866 −1.03846
\(250\) 12.1574 0.768900
\(251\) −17.4639 −1.10231 −0.551156 0.834402i \(-0.685813\pi\)
−0.551156 + 0.834402i \(0.685813\pi\)
\(252\) 1.87292 + 3.24400i 0.117983 + 0.204353i
\(253\) −41.3186 −2.59768
\(254\) −9.70566 + 16.8107i −0.608988 + 1.05480i
\(255\) 8.44428 0.528801
\(256\) 1.00000 0.0625000
\(257\) 1.19413 0.0744879 0.0372440 0.999306i \(-0.488142\pi\)
0.0372440 + 0.999306i \(0.488142\pi\)
\(258\) −3.14676 5.45034i −0.195909 0.339324i
\(259\) −18.1260 31.3952i −1.12630 1.95080i
\(260\) 2.12091 + 3.67352i 0.131533 + 0.227822i
\(261\) 1.36875 2.37075i 0.0847235 0.146745i
\(262\) −0.740902 + 1.28328i −0.0457731 + 0.0792813i
\(263\) −10.2134 17.6900i −0.629782 1.09081i −0.987595 0.157022i \(-0.949811\pi\)
0.357813 0.933793i \(-0.383523\pi\)
\(264\) 4.73750 0.291573
\(265\) 0.713350 1.23556i 0.0438207 0.0758997i
\(266\) −4.54763 + 7.87673i −0.278833 + 0.482953i
\(267\) 7.04593 + 12.2039i 0.431204 + 0.746867i
\(268\) −2.20654 + 3.82184i −0.134786 + 0.233456i
\(269\) −2.79455 + 4.84030i −0.170387 + 0.295118i −0.938555 0.345130i \(-0.887835\pi\)
0.768169 + 0.640248i \(0.221168\pi\)
\(270\) −0.887260 1.53678i −0.0539969 0.0935254i
\(271\) 11.4081 19.7594i 0.692992 1.20030i −0.277861 0.960621i \(-0.589626\pi\)
0.970853 0.239676i \(-0.0770411\pi\)
\(272\) 4.75863 0.288534
\(273\) −4.47704 + 7.75446i −0.270963 + 0.469321i
\(274\) 7.78257 13.4798i 0.470162 0.814345i
\(275\) 8.76950 0.528821
\(276\) 4.36080 + 7.55313i 0.262490 + 0.454645i
\(277\) −14.4006 −0.865249 −0.432624 0.901574i \(-0.642412\pi\)
−0.432624 + 0.901574i \(0.642412\pi\)
\(278\) −4.96109 + 8.59286i −0.297546 + 0.515365i
\(279\) −5.80554 −0.347568
\(280\) −3.32354 5.75654i −0.198619 0.344019i
\(281\) −15.7826 27.3363i −0.941512 1.63075i −0.762589 0.646884i \(-0.776072\pi\)
−0.178923 0.983863i \(-0.557261\pi\)
\(282\) 10.6012 0.631291
\(283\) 13.8005 0.820356 0.410178 0.912006i \(-0.365467\pi\)
0.410178 + 0.912006i \(0.365467\pi\)
\(284\) 0.965893 1.67297i 0.0573152 0.0992728i
\(285\) 2.15435 3.73144i 0.127613 0.221032i
\(286\) 5.66227 + 9.80733i 0.334817 + 0.579920i
\(287\) 2.36905 0.139841
\(288\) −0.500000 0.866025i −0.0294628 0.0510310i
\(289\) 5.64453 0.332031
\(290\) −2.42887 + 4.20693i −0.142628 + 0.247040i
\(291\) −13.7074 −0.803542
\(292\) −8.22631 14.2484i −0.481408 0.833824i
\(293\) 9.59900 + 16.6260i 0.560780 + 0.971299i 0.997429 + 0.0716669i \(0.0228319\pi\)
−0.436649 + 0.899632i \(0.643835\pi\)
\(294\) 3.51569 6.08935i 0.205039 0.355138i
\(295\) −0.685824 1.18788i −0.0399302 0.0691612i
\(296\) 4.83896 + 8.38133i 0.281259 + 0.487155i
\(297\) −2.36875 4.10280i −0.137449 0.238068i
\(298\) 3.99258 + 6.91535i 0.231284 + 0.400596i
\(299\) −10.4241 + 18.0550i −0.602840 + 1.04415i
\(300\) −0.925541 1.60308i −0.0534361 0.0925541i
\(301\) −11.7873 + 20.4162i −0.679407 + 1.17677i
\(302\) −5.95146 10.3082i −0.342468 0.593172i
\(303\) −9.00074 15.5897i −0.517079 0.895607i
\(304\) 1.21405 2.10279i 0.0696303 0.120603i
\(305\) −9.88797 −0.566184
\(306\) −2.37931 4.12109i −0.136016 0.235587i
\(307\) −1.57486 + 2.72774i −0.0898822 + 0.155681i −0.907461 0.420136i \(-0.861982\pi\)
0.817579 + 0.575816i \(0.195316\pi\)
\(308\) −8.87298 15.3685i −0.505585 0.875699i
\(309\) −1.15402 + 1.99882i −0.0656498 + 0.113709i
\(310\) 10.3020 0.585116
\(311\) −6.93960 12.0197i −0.393509 0.681577i 0.599401 0.800449i \(-0.295406\pi\)
−0.992910 + 0.118872i \(0.962072\pi\)
\(312\) 1.19520 2.07015i 0.0676649 0.117199i
\(313\) −15.3020 + 26.5038i −0.864920 + 1.49809i 0.00220623 + 0.999998i \(0.499298\pi\)
−0.867126 + 0.498088i \(0.834036\pi\)
\(314\) 3.63665 0.205228
\(315\) −3.32354 + 5.75654i −0.187260 + 0.324344i
\(316\) −6.71908 11.6378i −0.377978 0.654677i
\(317\) −3.77596 6.54015i −0.212079 0.367332i 0.740286 0.672292i \(-0.234690\pi\)
−0.952365 + 0.304961i \(0.901357\pi\)
\(318\) −0.803992 −0.0450856
\(319\) −6.48446 + 11.2314i −0.363060 + 0.628838i
\(320\) 0.887260 + 1.53678i 0.0495993 + 0.0859085i
\(321\) 1.90502 0.106328
\(322\) 16.3349 28.2929i 0.910309 1.57670i
\(323\) 5.77719 10.0064i 0.321452 0.556771i
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) 2.21241 3.83201i 0.122723 0.212562i
\(326\) 6.95712 0.385319
\(327\) 11.1600 0.617147
\(328\) −0.632448 −0.0349211
\(329\) −19.8552 34.3902i −1.09465 1.89599i
\(330\) 4.20339 + 7.28049i 0.231389 + 0.400778i
\(331\) 6.63419 0.364648 0.182324 0.983238i \(-0.441638\pi\)
0.182324 + 0.983238i \(0.441638\pi\)
\(332\) −8.19331 14.1912i −0.449666 0.778845i
\(333\) 4.83896 8.38133i 0.265173 0.459294i
\(334\) −18.8502 −1.03144
\(335\) −7.83109 −0.427858
\(336\) −1.87292 + 3.24400i −0.102176 + 0.176975i
\(337\) 10.5094 + 18.2029i 0.572485 + 0.991574i 0.996310 + 0.0858296i \(0.0273541\pi\)
−0.423824 + 0.905744i \(0.639313\pi\)
\(338\) −7.28598 −0.396305
\(339\) −0.0278961 0.0483175i −0.00151511 0.00262424i
\(340\) 4.22214 + 7.31296i 0.228978 + 0.396601i
\(341\) 27.5037 1.48941
\(342\) −2.42809 −0.131296
\(343\) −0.117532 −0.00634611
\(344\) 3.14676 5.45034i 0.169662 0.293863i
\(345\) −7.73833 + 13.4032i −0.416618 + 0.721603i
\(346\) 9.13704 15.8258i 0.491210 0.850801i
\(347\) 1.71558 2.97147i 0.0920970 0.159517i −0.816296 0.577633i \(-0.803976\pi\)
0.908393 + 0.418117i \(0.137310\pi\)
\(348\) 2.73750 0.146745
\(349\) 2.22641 + 3.85625i 0.119177 + 0.206420i 0.919442 0.393226i \(-0.128641\pi\)
−0.800265 + 0.599647i \(0.795308\pi\)
\(350\) −3.46693 + 6.00491i −0.185315 + 0.320976i
\(351\) −2.39040 −0.127590
\(352\) 2.36875 + 4.10280i 0.126255 + 0.218680i
\(353\) −4.81975 8.34806i −0.256530 0.444322i 0.708780 0.705429i \(-0.249246\pi\)
−0.965310 + 0.261107i \(0.915912\pi\)
\(354\) −0.386484 + 0.669411i −0.0205414 + 0.0355788i
\(355\) 3.42799 0.181939
\(356\) −7.04593 + 12.2039i −0.373434 + 0.646806i
\(357\) −8.91255 + 15.4370i −0.471702 + 0.817012i
\(358\) 1.31142 + 2.27145i 0.0693107 + 0.120050i
\(359\) 30.0913 1.58816 0.794079 0.607814i \(-0.207953\pi\)
0.794079 + 0.607814i \(0.207953\pi\)
\(360\) 0.887260 1.53678i 0.0467627 0.0809954i
\(361\) 6.55218 + 11.3487i 0.344852 + 0.597301i
\(362\) 9.83095 17.0277i 0.516703 0.894956i
\(363\) 5.72196 + 9.91072i 0.300325 + 0.520178i
\(364\) −8.95408 −0.469321
\(365\) 14.5977 25.2840i 0.764081 1.32343i
\(366\) 2.78610 + 4.82566i 0.145632 + 0.252242i
\(367\) 4.75430 + 8.23468i 0.248172 + 0.429847i 0.963019 0.269435i \(-0.0868368\pi\)
−0.714847 + 0.699281i \(0.753503\pi\)
\(368\) −4.36080 + 7.55313i −0.227323 + 0.393734i
\(369\) 0.316224 + 0.547716i 0.0164620 + 0.0285129i
\(370\) −8.58683 + 14.8728i −0.446408 + 0.773201i
\(371\) 1.50582 + 2.60815i 0.0781781 + 0.135408i
\(372\) −2.90277 5.02774i −0.150502 0.260676i
\(373\) −9.70475 16.8091i −0.502493 0.870343i −0.999996 0.00288109i \(-0.999083\pi\)
0.497503 0.867462i \(-0.334250\pi\)
\(374\) 11.2720 + 19.5237i 0.582861 + 1.00955i
\(375\) 6.07869 10.5286i 0.313902 0.543694i
\(376\) 5.30059 + 9.18089i 0.273357 + 0.473468i
\(377\) 3.27186 + 5.66703i 0.168510 + 0.291867i
\(378\) 3.74585 0.192666
\(379\) 0.939270 1.62686i 0.0482471 0.0835664i −0.840893 0.541201i \(-0.817970\pi\)
0.889140 + 0.457635i \(0.151303\pi\)
\(380\) 4.30870 0.221032
\(381\) 9.70566 + 16.8107i 0.497236 + 0.861238i
\(382\) −8.84394 −0.452496
\(383\) −2.17888 3.77392i −0.111335 0.192839i 0.804974 0.593311i \(-0.202179\pi\)
−0.916309 + 0.400472i \(0.868846\pi\)
\(384\) 0.500000 0.866025i 0.0255155 0.0441942i
\(385\) 15.7453 27.2716i 0.802453 1.38989i
\(386\) −10.4172 −0.530220
\(387\) −6.29352 −0.319917
\(388\) −6.85370 11.8710i −0.347944 0.602656i
\(389\) 12.8343 + 22.2297i 0.650726 + 1.12709i 0.982947 + 0.183888i \(0.0588685\pi\)
−0.332222 + 0.943201i \(0.607798\pi\)
\(390\) 4.24181 0.214793
\(391\) −20.7514 + 35.9425i −1.04945 + 1.81769i
\(392\) 7.03138 0.355138
\(393\) 0.740902 + 1.28328i 0.0373736 + 0.0647329i
\(394\) 10.6771 0.537905
\(395\) 11.9231 20.6515i 0.599918 1.03909i
\(396\) 2.36875 4.10280i 0.119034 0.206173i
\(397\) 21.8495 1.09659 0.548297 0.836283i \(-0.315276\pi\)
0.548297 + 0.836283i \(0.315276\pi\)
\(398\) 0.216180 0.374435i 0.0108361 0.0187687i
\(399\) 4.54763 + 7.87673i 0.227666 + 0.394330i
\(400\) 0.925541 1.60308i 0.0462770 0.0801542i
\(401\) 7.09149 12.2828i 0.354132 0.613375i −0.632837 0.774285i \(-0.718110\pi\)
0.986969 + 0.160910i \(0.0514429\pi\)
\(402\) 2.20654 + 3.82184i 0.110052 + 0.190616i
\(403\) 6.93878 12.0183i 0.345645 0.598675i
\(404\) 9.00074 15.5897i 0.447803 0.775618i
\(405\) −1.77452 −0.0881766
\(406\) −5.12713 8.88045i −0.254455 0.440729i
\(407\) −22.9246 + 39.7065i −1.13633 + 1.96818i
\(408\) 2.37931 4.12109i 0.117794 0.204024i
\(409\) −18.2433 31.5984i −0.902075 1.56244i −0.824797 0.565429i \(-0.808711\pi\)
−0.0772778 0.997010i \(-0.524623\pi\)
\(410\) −0.561145 0.971932i −0.0277130 0.0480003i
\(411\) −7.78257 13.4798i −0.383886 0.664910i
\(412\) −2.30804 −0.113709
\(413\) 2.89542 0.142474
\(414\) 8.72161 0.428644
\(415\) 14.5392 25.1826i 0.713701 1.23617i
\(416\) 2.39040 0.117199
\(417\) 4.96109 + 8.59286i 0.242946 + 0.420794i
\(418\) 11.5031 0.562635
\(419\) 3.27422 0.159956 0.0799781 0.996797i \(-0.474515\pi\)
0.0799781 + 0.996797i \(0.474515\pi\)
\(420\) −6.64708 −0.324344
\(421\) 7.43351 12.8752i 0.362287 0.627499i −0.626050 0.779783i \(-0.715329\pi\)
0.988337 + 0.152284i \(0.0486627\pi\)
\(422\) 2.78934 4.83127i 0.135783 0.235183i
\(423\) 5.30059 9.18089i 0.257724 0.446390i
\(424\) −0.401996 0.696278i −0.0195227 0.0338142i
\(425\) 4.40430 7.62848i 0.213640 0.370035i
\(426\) −0.965893 1.67297i −0.0467976 0.0810559i
\(427\) 10.4363 18.0762i 0.505048 0.874769i
\(428\) 0.952509 + 1.64979i 0.0460412 + 0.0797458i
\(429\) 11.3245 0.546754
\(430\) 11.1680 0.538567
\(431\) 18.7446 0.902897 0.451449 0.892297i \(-0.350907\pi\)
0.451449 + 0.892297i \(0.350907\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −36.0021 −1.73015 −0.865074 0.501644i \(-0.832729\pi\)
−0.865074 + 0.501644i \(0.832729\pi\)
\(434\) −10.8733 + 18.8332i −0.521936 + 0.904020i
\(435\) 2.42887 + 4.20693i 0.116456 + 0.201707i
\(436\) 5.57998 + 9.66480i 0.267232 + 0.462860i
\(437\) 10.5884 + 18.3397i 0.506514 + 0.877307i
\(438\) −16.4526 −0.786137
\(439\) 1.35629 0.0647322 0.0323661 0.999476i \(-0.489696\pi\)
0.0323661 + 0.999476i \(0.489696\pi\)
\(440\) −4.20339 + 7.28049i −0.200389 + 0.347084i
\(441\) −3.51569 6.08935i −0.167414 0.289969i
\(442\) 11.3750 0.541055
\(443\) −13.9058 + 24.0855i −0.660684 + 1.14434i 0.319753 + 0.947501i \(0.396400\pi\)
−0.980436 + 0.196837i \(0.936933\pi\)
\(444\) 9.67792 0.459294
\(445\) −25.0063 −1.18541
\(446\) 0.344793 + 14.9292i 0.0163264 + 0.706918i
\(447\) 7.98516 0.377685
\(448\) −3.74585 −0.176975
\(449\) 1.51834 2.62983i 0.0716547 0.124110i −0.827972 0.560770i \(-0.810505\pi\)
0.899627 + 0.436660i \(0.143839\pi\)
\(450\) −1.85108 −0.0872608
\(451\) −1.49811 2.59480i −0.0705433 0.122185i
\(452\) 0.0278961 0.0483175i 0.00131212 0.00227266i
\(453\) −11.9029 −0.559248
\(454\) −6.99895 −0.328477
\(455\) −7.94460 13.7604i −0.372448 0.645100i
\(456\) −1.21405 2.10279i −0.0568529 0.0984722i
\(457\) 6.67371 + 11.5592i 0.312183 + 0.540717i 0.978835 0.204653i \(-0.0656065\pi\)
−0.666652 + 0.745369i \(0.732273\pi\)
\(458\) 10.9526 18.9705i 0.511782 0.886433i
\(459\) −4.75863 −0.222114
\(460\) −15.4767 −0.721603
\(461\) 29.6966 1.38311 0.691555 0.722324i \(-0.256926\pi\)
0.691555 + 0.722324i \(0.256926\pi\)
\(462\) −17.7460 −0.825617
\(463\) −2.66639 −0.123918 −0.0619589 0.998079i \(-0.519735\pi\)
−0.0619589 + 0.998079i \(0.519735\pi\)
\(464\) 1.36875 + 2.37075i 0.0635426 + 0.110059i
\(465\) 5.15102 8.92182i 0.238873 0.413740i
\(466\) 8.65849 + 14.9970i 0.401097 + 0.694720i
\(467\) 18.0945 31.3406i 0.837315 1.45027i −0.0548172 0.998496i \(-0.517458\pi\)
0.892132 0.451775i \(-0.149209\pi\)
\(468\) −1.19520 2.07015i −0.0552482 0.0956927i
\(469\) 8.26536 14.3160i 0.381659 0.661053i
\(470\) −9.40600 + 16.2917i −0.433866 + 0.751479i
\(471\) 1.81832 3.14943i 0.0837840 0.145118i
\(472\) −0.772969 −0.0355788
\(473\) 29.8155 1.37092
\(474\) −13.4382 −0.617235
\(475\) −2.24730 3.89244i −0.103113 0.178597i
\(476\) −17.8251 −0.817012
\(477\) −0.401996 + 0.696278i −0.0184061 + 0.0318804i
\(478\) −18.4003 −0.841609
\(479\) 1.35910 0.0620987 0.0310493 0.999518i \(-0.490115\pi\)
0.0310493 + 0.999518i \(0.490115\pi\)
\(480\) 1.77452 0.0809954
\(481\) 11.5671 + 20.0347i 0.527413 + 0.913506i
\(482\) 1.57469 + 2.72745i 0.0717254 + 0.124232i
\(483\) −16.3349 28.2929i −0.743264 1.28737i
\(484\) −5.72196 + 9.91072i −0.260089 + 0.450487i
\(485\) 12.1620 21.0652i 0.552249 0.956523i
\(486\) 0.500000 + 0.866025i 0.0226805 + 0.0392837i
\(487\) −35.1048 −1.59075 −0.795375 0.606118i \(-0.792726\pi\)
−0.795375 + 0.606118i \(0.792726\pi\)
\(488\) −2.78610 + 4.82566i −0.126121 + 0.218448i
\(489\) 3.47856 6.02504i 0.157306 0.272462i
\(490\) 6.23866 + 10.8057i 0.281834 + 0.488150i
\(491\) 17.5638 30.4214i 0.792643 1.37290i −0.131682 0.991292i \(-0.542038\pi\)
0.924325 0.381606i \(-0.124629\pi\)
\(492\) −0.316224 + 0.547716i −0.0142565 + 0.0246929i
\(493\) 6.51337 + 11.2815i 0.293348 + 0.508093i
\(494\) 2.90206 5.02651i 0.130570 0.226154i
\(495\) 8.40679 0.377857
\(496\) 2.90277 5.02774i 0.130338 0.225752i
\(497\) −3.61809 + 6.26671i −0.162293 + 0.281100i
\(498\) −16.3866 −0.734302
\(499\) −18.0271 31.2239i −0.807006 1.39778i −0.914928 0.403616i \(-0.867753\pi\)
0.107922 0.994159i \(-0.465580\pi\)
\(500\) 12.1574 0.543694
\(501\) −9.42511 + 16.3248i −0.421083 + 0.729337i
\(502\) −17.4639 −0.779452
\(503\) 11.4549 + 19.8405i 0.510749 + 0.884643i 0.999922 + 0.0124563i \(0.00396505\pi\)
−0.489174 + 0.872186i \(0.662702\pi\)
\(504\) 1.87292 + 3.24400i 0.0834267 + 0.144499i
\(505\) 31.9440 1.42149
\(506\) −41.3186 −1.83684
\(507\) −3.64299 + 6.30984i −0.161791 + 0.280230i
\(508\) −9.70566 + 16.8107i −0.430619 + 0.745854i
\(509\) 4.38330 + 7.59210i 0.194286 + 0.336514i 0.946666 0.322215i \(-0.104428\pi\)
−0.752380 + 0.658729i \(0.771094\pi\)
\(510\) 8.44428 0.373919
\(511\) 30.8145 + 53.3723i 1.36315 + 2.36105i
\(512\) 1.00000 0.0441942
\(513\) −1.21405 + 2.10279i −0.0536015 + 0.0928404i
\(514\) 1.19413 0.0526709
\(515\) −2.04783 3.54694i −0.0902381 0.156297i
\(516\) −3.14676 5.45034i −0.138528 0.239938i
\(517\) −25.1116 + 43.4945i −1.10440 + 1.91289i
\(518\) −18.1260 31.3952i −0.796411 1.37942i
\(519\) −9.13704 15.8258i −0.401071 0.694676i
\(520\) 2.12091 + 3.67352i 0.0930079 + 0.161094i
\(521\) 0.409003 + 0.708414i 0.0179187 + 0.0310362i 0.874846 0.484402i \(-0.160963\pi\)
−0.856927 + 0.515438i \(0.827629\pi\)
\(522\) 1.36875 2.37075i 0.0599086 0.103765i
\(523\) 14.2201 + 24.6299i 0.621800 + 1.07699i 0.989150 + 0.146906i \(0.0469315\pi\)
−0.367351 + 0.930082i \(0.619735\pi\)
\(524\) −0.740902 + 1.28328i −0.0323665 + 0.0560604i
\(525\) 3.46693 + 6.00491i 0.151309 + 0.262076i
\(526\) −10.2134 17.6900i −0.445323 0.771323i
\(527\) 13.8132 23.9251i 0.601712 1.04220i
\(528\) 4.73750 0.206173
\(529\) −26.5332 45.9569i −1.15362 1.99813i
\(530\) 0.713350 1.23556i 0.0309859 0.0536692i
\(531\) 0.386484 + 0.669411i 0.0167720 + 0.0290499i
\(532\) −4.54763 + 7.87673i −0.197165 + 0.341500i
\(533\) −1.51180 −0.0654835
\(534\) 7.04593 + 12.2039i 0.304907 + 0.528115i
\(535\) −1.69025 + 2.92759i −0.0730757 + 0.126571i
\(536\) −2.20654 + 3.82184i −0.0953080 + 0.165078i
\(537\) 2.62284 0.113184
\(538\) −2.79455 + 4.84030i −0.120481 + 0.208680i
\(539\) 16.6556 + 28.8483i 0.717406 + 1.24258i
\(540\) −0.887260 1.53678i −0.0381816 0.0661324i
\(541\) −31.5738 −1.35747 −0.678733 0.734386i \(-0.737470\pi\)
−0.678733 + 0.734386i \(0.737470\pi\)
\(542\) 11.4081 19.7594i 0.490019 0.848738i
\(543\) −9.83095 17.0277i −0.421886 0.730729i
\(544\) 4.75863 0.204024
\(545\) −9.90178 + 17.1504i −0.424145 + 0.734641i
\(546\) −4.47704 + 7.75446i −0.191600 + 0.331860i
\(547\) −11.4521 + 19.8356i −0.489657 + 0.848111i −0.999929 0.0119020i \(-0.996211\pi\)
0.510272 + 0.860013i \(0.329545\pi\)
\(548\) 7.78257 13.4798i 0.332455 0.575829i
\(549\) 5.57220 0.237816
\(550\) 8.76950 0.373933
\(551\) 6.64691 0.283168
\(552\) 4.36080 + 7.55313i 0.185608 + 0.321483i
\(553\) 25.1687 + 43.5934i 1.07028 + 1.85378i
\(554\) −14.4006 −0.611823
\(555\) 8.58683 + 14.8728i 0.364491 + 0.631316i
\(556\) −4.96109 + 8.59286i −0.210397 + 0.364418i
\(557\) −39.9594 −1.69313 −0.846567 0.532282i \(-0.821335\pi\)
−0.846567 + 0.532282i \(0.821335\pi\)
\(558\) −5.80554 −0.245768
\(559\) 7.52202 13.0285i 0.318147 0.551047i
\(560\) −3.32354 5.75654i −0.140445 0.243258i
\(561\) 22.5440 0.951808
\(562\) −15.7826 27.3363i −0.665750 1.15311i
\(563\) 3.50732 + 6.07485i 0.147816 + 0.256024i 0.930420 0.366495i \(-0.119442\pi\)
−0.782604 + 0.622520i \(0.786109\pi\)
\(564\) 10.6012 0.446390
\(565\) 0.0990044 0.00416514
\(566\) 13.8005 0.580079
\(567\) 1.87292 3.24400i 0.0786554 0.136235i
\(568\) 0.965893 1.67297i 0.0405279 0.0701965i
\(569\) 7.81595 13.5376i 0.327662 0.567526i −0.654386 0.756161i \(-0.727073\pi\)
0.982047 + 0.188634i \(0.0604061\pi\)
\(570\) 2.15435 3.73144i 0.0902357 0.156293i
\(571\) 11.0692 0.463230 0.231615 0.972808i \(-0.425599\pi\)
0.231615 + 0.972808i \(0.425599\pi\)
\(572\) 5.66227 + 9.80733i 0.236751 + 0.410065i
\(573\) −4.42197 + 7.65908i −0.184731 + 0.319963i
\(574\) 2.36905 0.0988823
\(575\) 8.07220 + 13.9815i 0.336634 + 0.583067i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) −8.18546 + 14.1776i −0.340765 + 0.590223i −0.984575 0.174963i \(-0.944019\pi\)
0.643810 + 0.765186i \(0.277353\pi\)
\(578\) 5.64453 0.234781
\(579\) −5.20858 + 9.02153i −0.216461 + 0.374922i
\(580\) −2.42887 + 4.20693i −0.100854 + 0.174683i
\(581\) 30.6909 + 53.1582i 1.27327 + 2.20537i
\(582\) −13.7074 −0.568190
\(583\) 1.90446 3.29862i 0.0788745 0.136615i
\(584\) −8.22631 14.2484i −0.340407 0.589603i
\(585\) 2.12091 3.67352i 0.0876887 0.151881i
\(586\) 9.59900 + 16.6260i 0.396531 + 0.686812i
\(587\) 1.13628 0.0468991 0.0234496 0.999725i \(-0.492535\pi\)
0.0234496 + 0.999725i \(0.492535\pi\)
\(588\) 3.51569 6.08935i 0.144985 0.251121i
\(589\) −7.04819 12.2078i −0.290416 0.503015i
\(590\) −0.685824 1.18788i −0.0282349 0.0489043i
\(591\) 5.33856 9.24665i 0.219599 0.380356i
\(592\) 4.83896 + 8.38133i 0.198880 + 0.344470i
\(593\) −11.2720 + 19.5237i −0.462886 + 0.801742i −0.999103 0.0423378i \(-0.986519\pi\)
0.536217 + 0.844080i \(0.319853\pi\)
\(594\) −2.36875 4.10280i −0.0971910 0.168340i
\(595\) −15.8155 27.3932i −0.648372 1.12301i
\(596\) 3.99258 + 6.91535i 0.163542 + 0.283264i
\(597\) −0.216180 0.374435i −0.00884767 0.0153246i
\(598\) −10.4241 + 18.0550i −0.426272 + 0.738325i
\(599\) −7.64298 13.2380i −0.312284 0.540891i 0.666573 0.745440i \(-0.267761\pi\)
−0.978856 + 0.204549i \(0.934427\pi\)
\(600\) −0.925541 1.60308i −0.0377850 0.0654456i
\(601\) 32.9991 1.34606 0.673031 0.739614i \(-0.264992\pi\)
0.673031 + 0.739614i \(0.264992\pi\)
\(602\) −11.7873 + 20.4162i −0.480414 + 0.832101i
\(603\) 4.41308 0.179714
\(604\) −5.95146 10.3082i −0.242161 0.419436i
\(605\) −20.3074 −0.825615
\(606\) −9.00074 15.5897i −0.365630 0.633290i
\(607\) −7.42845 + 12.8665i −0.301512 + 0.522233i −0.976479 0.215615i \(-0.930825\pi\)
0.674967 + 0.737848i \(0.264158\pi\)
\(608\) 1.21405 2.10279i 0.0492361 0.0852794i
\(609\) −10.2543 −0.415524
\(610\) −9.88797 −0.400352
\(611\) 12.6705 + 21.9460i 0.512595 + 0.887841i
\(612\) −2.37931 4.12109i −0.0961780 0.166585i
\(613\) 38.6867 1.56254 0.781270 0.624193i \(-0.214572\pi\)
0.781270 + 0.624193i \(0.214572\pi\)
\(614\) −1.57486 + 2.72774i −0.0635563 + 0.110083i
\(615\) −1.12229 −0.0452551
\(616\) −8.87298 15.3685i −0.357503 0.619213i
\(617\) 37.4266 1.50674 0.753369 0.657598i \(-0.228428\pi\)
0.753369 + 0.657598i \(0.228428\pi\)
\(618\) −1.15402 + 1.99882i −0.0464214 + 0.0804043i
\(619\) 14.2259 24.6400i 0.571787 0.990363i −0.424596 0.905383i \(-0.639584\pi\)
0.996383 0.0849805i \(-0.0270828\pi\)
\(620\) 10.3020 0.413740
\(621\) 4.36080 7.55313i 0.174993 0.303097i
\(622\) −6.93960 12.0197i −0.278253 0.481948i
\(623\) 26.3930 45.7140i 1.05741 1.83149i
\(624\) 1.19520 2.07015i 0.0478463 0.0828723i
\(625\) 6.15905 + 10.6678i 0.246362 + 0.426711i
\(626\) −15.3020 + 26.5038i −0.611591 + 1.05931i
\(627\) 5.75155 9.96197i 0.229695 0.397843i
\(628\) 3.63665 0.145118
\(629\) 23.0268 + 39.8836i 0.918139 + 1.59026i
\(630\) −3.32354 + 5.75654i −0.132413 + 0.229346i
\(631\) 18.8264 32.6083i 0.749467 1.29811i −0.198611 0.980078i \(-0.563643\pi\)
0.948078 0.318037i \(-0.103024\pi\)
\(632\) −6.71908 11.6378i −0.267271 0.462926i
\(633\) −2.78934 4.83127i −0.110866 0.192026i
\(634\) −3.77596 6.54015i −0.149962 0.259743i
\(635\) −34.4458 −1.36694
\(636\) −0.803992 −0.0318804
\(637\) 16.8078 0.665950
\(638\) −6.48446 + 11.2314i −0.256722 + 0.444656i
\(639\) −1.93179 −0.0764202
\(640\) 0.887260 + 1.53678i 0.0350720 + 0.0607465i
\(641\) 20.6698 0.816408 0.408204 0.912891i \(-0.366155\pi\)
0.408204 + 0.912891i \(0.366155\pi\)
\(642\) 1.90502 0.0751850
\(643\) 20.8863 0.823674 0.411837 0.911257i \(-0.364887\pi\)
0.411837 + 0.911257i \(0.364887\pi\)
\(644\) 16.3349 28.2929i 0.643686 1.11490i
\(645\) 5.58398 9.67174i 0.219869 0.380824i
\(646\) 5.77719 10.0064i 0.227301 0.393696i
\(647\) −22.0383 38.1715i −0.866417 1.50068i −0.865634 0.500678i \(-0.833084\pi\)
−0.000782807 1.00000i \(-0.500249\pi\)
\(648\) −0.500000 + 0.866025i −0.0196419 + 0.0340207i
\(649\) −1.83097 3.17133i −0.0718719 0.124486i
\(650\) 2.21241 3.83201i 0.0867780 0.150304i
\(651\) 10.8733 + 18.8332i 0.426159 + 0.738130i
\(652\) 6.95712 0.272462
\(653\) −38.2211 −1.49571 −0.747853 0.663864i \(-0.768915\pi\)
−0.747853 + 0.663864i \(0.768915\pi\)
\(654\) 11.1600 0.436389
\(655\) −2.62949 −0.102743
\(656\) −0.632448 −0.0246929
\(657\) −8.22631 + 14.2484i −0.320939 + 0.555883i
\(658\) −19.8552 34.3902i −0.774037 1.34067i
\(659\) −18.3569 31.7950i −0.715082 1.23856i −0.962928 0.269759i \(-0.913056\pi\)
0.247846 0.968800i \(-0.420277\pi\)
\(660\) 4.20339 + 7.28049i 0.163617 + 0.283393i
\(661\) −10.2281 −0.397826 −0.198913 0.980017i \(-0.563741\pi\)
−0.198913 + 0.980017i \(0.563741\pi\)
\(662\) 6.63419 0.257845
\(663\) 5.68752 9.85107i 0.220885 0.382584i
\(664\) −8.19331 14.1912i −0.317962 0.550727i
\(665\) −16.1397 −0.625872
\(666\) 4.83896 8.38133i 0.187506 0.324770i
\(667\) −23.8754 −0.924460
\(668\) −18.8502 −0.729337
\(669\) 13.1015 + 7.16600i 0.506532 + 0.277054i
\(670\) −7.83109 −0.302542
\(671\) −26.3983 −1.01909
\(672\) −1.87292 + 3.24400i −0.0722496 + 0.125140i
\(673\) 9.20822 0.354951 0.177475 0.984125i \(-0.443207\pi\)
0.177475 + 0.984125i \(0.443207\pi\)
\(674\) 10.5094 + 18.2029i 0.404808 + 0.701149i
\(675\) −0.925541 + 1.60308i −0.0356241 + 0.0617027i
\(676\) −7.28598 −0.280230
\(677\) −34.2790 −1.31745 −0.658725 0.752384i \(-0.728904\pi\)
−0.658725 + 0.752384i \(0.728904\pi\)
\(678\) −0.0278961 0.0483175i −0.00107134 0.00185562i
\(679\) 25.6729 + 44.4668i 0.985236 + 1.70648i
\(680\) 4.22214 + 7.31296i 0.161912 + 0.280439i
\(681\) −3.49947 + 6.06127i −0.134100 + 0.232268i
\(682\) 27.5037 1.05317
\(683\) 20.2071 0.773205 0.386602 0.922246i \(-0.373649\pi\)
0.386602 + 0.922246i \(0.373649\pi\)
\(684\) −2.42809 −0.0928404
\(685\) 27.6206 1.05533
\(686\) −0.117532 −0.00448738
\(687\) −10.9526 18.9705i −0.417868 0.723769i
\(688\) 3.14676 5.45034i 0.119969 0.207792i
\(689\) −0.960932 1.66438i −0.0366086 0.0634080i
\(690\) −7.73833 + 13.4032i −0.294593 + 0.510250i
\(691\) −0.915276 1.58531i −0.0348188 0.0603079i 0.848091 0.529851i \(-0.177752\pi\)
−0.882910 + 0.469543i \(0.844419\pi\)
\(692\) 9.13704 15.8258i 0.347338 0.601607i
\(693\) −8.87298 + 15.3685i −0.337057 + 0.583799i
\(694\) 1.71558 2.97147i 0.0651224 0.112795i
\(695\) −17.6071 −0.667875
\(696\) 2.73750 0.103765
\(697\) −3.00958 −0.113996
\(698\) 2.22641 + 3.85625i 0.0842708 + 0.145961i
\(699\) 17.3170 0.654989
\(700\) −3.46693 + 6.00491i −0.131038 + 0.226964i
\(701\) −42.3788 −1.60063 −0.800313 0.599583i \(-0.795333\pi\)
−0.800313 + 0.599583i \(0.795333\pi\)
\(702\) −2.39040 −0.0902199
\(703\) 23.4989 0.886278
\(704\) 2.36875 + 4.10280i 0.0892756 + 0.154630i
\(705\) 9.40600 + 16.2917i 0.354250 + 0.613580i
\(706\) −4.81975 8.34806i −0.181394 0.314183i
\(707\) −33.7154 + 58.3968i −1.26800 + 2.19624i
\(708\) −0.386484 + 0.669411i −0.0145250 + 0.0251580i
\(709\) 4.93668 + 8.55057i 0.185401 + 0.321123i 0.943711 0.330770i \(-0.107308\pi\)
−0.758311 + 0.651893i \(0.773975\pi\)
\(710\) 3.42799 0.128650
\(711\) −6.71908 + 11.6378i −0.251985 + 0.436451i
\(712\) −7.04593 + 12.2039i −0.264058 + 0.457361i
\(713\) 25.3168 + 43.8500i 0.948122 + 1.64220i
\(714\) −8.91255 + 15.4370i −0.333544 + 0.577715i
\(715\) −10.0478 + 17.4033i −0.375766 + 0.650847i
\(716\) 1.31142 + 2.27145i 0.0490101 + 0.0848879i
\(717\) −9.20014 + 15.9351i −0.343586 + 0.595108i
\(718\) 30.0913 1.12300
\(719\) −23.4704 + 40.6519i −0.875298 + 1.51606i −0.0188537 + 0.999822i \(0.506002\pi\)
−0.856445 + 0.516239i \(0.827332\pi\)
\(720\) 0.887260 1.53678i 0.0330662 0.0572724i
\(721\) 8.64556 0.321977
\(722\) 6.55218 + 11.3487i 0.243847 + 0.422355i
\(723\) 3.14939 0.117127
\(724\) 9.83095 17.0277i 0.365364 0.632829i
\(725\) 5.06734 0.188196
\(726\) 5.72196 + 9.91072i 0.212362 + 0.367821i
\(727\) −2.16168 3.74414i −0.0801722 0.138862i 0.823152 0.567822i \(-0.192214\pi\)
−0.903324 + 0.428959i \(0.858880\pi\)
\(728\) −8.95408 −0.331860
\(729\) 1.00000 0.0370370
\(730\) 14.5977 25.2840i 0.540287 0.935804i
\(731\) 14.9742 25.9362i 0.553843 0.959283i
\(732\) 2.78610 + 4.82566i 0.102977 + 0.178362i
\(733\) 43.6477 1.61216 0.806082 0.591804i \(-0.201584\pi\)
0.806082 + 0.591804i \(0.201584\pi\)
\(734\) 4.75430 + 8.23468i 0.175484 + 0.303948i
\(735\) 12.4773 0.460233
\(736\) −4.36080 + 7.55313i −0.160741 + 0.278412i
\(737\) −20.9070 −0.770118
\(738\) 0.316224 + 0.547716i 0.0116404 + 0.0201617i
\(739\) 6.36864 + 11.0308i 0.234274 + 0.405775i 0.959062 0.283198i \(-0.0913953\pi\)
−0.724787 + 0.688973i \(0.758062\pi\)
\(740\) −8.58683 + 14.8728i −0.315658 + 0.546736i
\(741\) −2.90206 5.02651i −0.106610 0.184654i
\(742\) 1.50582 + 2.60815i 0.0552802 + 0.0957482i
\(743\) 4.83008 + 8.36594i 0.177198 + 0.306916i 0.940920 0.338629i \(-0.109963\pi\)
−0.763722 + 0.645546i \(0.776630\pi\)
\(744\) −2.90277 5.02774i −0.106421 0.184326i
\(745\) −7.08491 + 12.2714i −0.259571 + 0.449590i
\(746\) −9.70475 16.8091i −0.355316 0.615426i
\(747\) −8.19331 + 14.1912i −0.299778 + 0.519230i
\(748\) 11.2720 + 19.5237i 0.412145 + 0.713856i
\(749\) −3.56795 6.17988i −0.130370 0.225808i
\(750\) 6.07869 10.5286i 0.221962 0.384450i
\(751\) 5.93306 0.216500 0.108250 0.994124i \(-0.465475\pi\)
0.108250 + 0.994124i \(0.465475\pi\)
\(752\) 5.30059 + 9.18089i 0.193293 + 0.334793i
\(753\) −8.73195 + 15.1242i −0.318210 + 0.551156i
\(754\) 3.27186 + 5.66703i 0.119154 + 0.206381i
\(755\) 10.5610 18.2921i 0.384353 0.665719i
\(756\) 3.74585 0.136235
\(757\) −2.17945 3.77492i −0.0792136 0.137202i 0.823697 0.567030i \(-0.191908\pi\)
−0.902911 + 0.429828i \(0.858574\pi\)
\(758\) 0.939270 1.62686i 0.0341158 0.0590904i
\(759\) −20.6593 + 35.7830i −0.749886 + 1.29884i
\(760\) 4.30870 0.156293
\(761\) −0.582387 + 1.00872i −0.0211115 + 0.0365662i −0.876388 0.481605i \(-0.840054\pi\)
0.855277 + 0.518172i \(0.173387\pi\)
\(762\) 9.70566 + 16.8107i 0.351599 + 0.608988i
\(763\) −20.9017 36.2029i −0.756694 1.31063i
\(764\) −8.84394 −0.319963
\(765\) 4.22214 7.31296i 0.152652 0.264401i
\(766\) −2.17888 3.77392i −0.0787260 0.136357i
\(767\) −1.84771 −0.0667168
\(768\) 0.500000 0.866025i 0.0180422 0.0312500i
\(769\) 19.5163 33.8032i 0.703775 1.21897i −0.263357 0.964699i \(-0.584830\pi\)
0.967132 0.254276i \(-0.0818370\pi\)
\(770\) 15.7453 27.2716i 0.567420 0.982801i
\(771\) 0.597066 1.03415i 0.0215028 0.0372440i
\(772\) −10.4172 −0.374922
\(773\) 29.2240 1.05112 0.525558 0.850758i \(-0.323857\pi\)
0.525558 + 0.850758i \(0.323857\pi\)
\(774\) −6.29352 −0.226216
\(775\) −5.37326 9.30676i −0.193013 0.334309i
\(776\) −6.85370 11.8710i −0.246033 0.426142i
\(777\) −36.2520 −1.30053
\(778\) 12.8343 + 22.2297i 0.460132 + 0.796973i
\(779\) −0.767821 + 1.32990i −0.0275100 + 0.0476488i
\(780\) 4.24181 0.151881
\(781\) 9.15183 0.327478
\(782\) −20.7514 + 35.9425i −0.742070 + 1.28530i
\(783\) −1.36875 2.37075i −0.0489152 0.0847235i
\(784\) 7.03138 0.251121
\(785\) 3.22665 + 5.58873i 0.115164 + 0.199470i
\(786\) 0.740902 + 1.28328i 0.0264271 + 0.0457731i
\(787\) 15.1530 0.540147 0.270074 0.962840i \(-0.412952\pi\)
0.270074 + 0.962840i \(0.412952\pi\)
\(788\) 10.6771 0.380356
\(789\) −20.4267 −0.727210
\(790\) 11.9231 20.6515i 0.424206 0.734747i
\(791\) −0.104495 + 0.180990i −0.00371540 + 0.00643526i
\(792\) 2.36875 4.10280i 0.0841699 0.145787i
\(793\) −6.65990 + 11.5353i −0.236500 + 0.409630i
\(794\) 21.8495 0.775409
\(795\) −0.713350 1.23556i −0.0252999 0.0438207i
\(796\) 0.216180 0.374435i 0.00766231 0.0132715i
\(797\) −11.7684 −0.416857 −0.208429 0.978038i \(-0.566835\pi\)
−0.208429 + 0.978038i \(0.566835\pi\)
\(798\) 4.54763 + 7.87673i 0.160984 + 0.278833i
\(799\) 25.2235 + 43.6884i 0.892344 + 1.54559i
\(800\) 0.925541 1.60308i 0.0327228 0.0566776i
\(801\) 14.0919 0.497912
\(802\) 7.09149 12.2828i 0.250409 0.433722i
\(803\) 38.9722 67.5018i 1.37530 2.38209i
\(804\) 2.20654 + 3.82184i 0.0778186 + 0.134786i
\(805\) 57.9732 2.04329
\(806\) 6.93878 12.0183i 0.244408 0.423327i
\(807\) 2.79455 + 4.84030i 0.0983727 + 0.170387i
\(808\) 9.00074 15.5897i 0.316645 0.548445i
\(809\) 6.26129 + 10.8449i 0.220135 + 0.381285i 0.954849 0.297092i \(-0.0960168\pi\)
−0.734714 + 0.678377i \(0.762683\pi\)
\(810\) −1.77452 −0.0623503
\(811\) −0.447852 + 0.775703i −0.0157262 + 0.0272386i −0.873781 0.486319i \(-0.838339\pi\)
0.858055 + 0.513557i \(0.171673\pi\)
\(812\) −5.12713 8.88045i −0.179927 0.311643i
\(813\) −11.4081 19.7594i −0.400099 0.692992i
\(814\) −22.9246 + 39.7065i −0.803506 + 1.39171i
\(815\) 6.17277 + 10.6915i 0.216223 + 0.374509i
\(816\) 2.37931 4.12109i 0.0832926 0.144267i
\(817\) −7.64062 13.2339i −0.267311 0.462997i
\(818\) −18.2433 31.5984i −0.637863 1.10481i
\(819\) 4.47704 + 7.75446i 0.156440 + 0.270963i
\(820\) −0.561145 0.971932i −0.0195960 0.0339413i
\(821\) −12.6526 + 21.9149i −0.441578 + 0.764836i −0.997807 0.0661936i \(-0.978915\pi\)
0.556229 + 0.831029i \(0.312248\pi\)
\(822\) −7.78257 13.4798i −0.271448 0.470162i
\(823\) 8.14345 + 14.1049i 0.283863 + 0.491665i 0.972333 0.233600i \(-0.0750506\pi\)
−0.688470 + 0.725265i \(0.741717\pi\)
\(824\) −2.30804 −0.0804043
\(825\) 4.38475 7.59461i 0.152657 0.264410i
\(826\) 2.89542 0.100745
\(827\) −2.87638 4.98203i −0.100021 0.173242i 0.811672 0.584114i \(-0.198558\pi\)
−0.911693 + 0.410871i \(0.865224\pi\)
\(828\) 8.72161 0.303097
\(829\) 25.8829 + 44.8304i 0.898949 + 1.55703i 0.828840 + 0.559486i \(0.189002\pi\)
0.0701095 + 0.997539i \(0.477665\pi\)
\(830\) 14.5392 25.1826i 0.504663 0.874101i
\(831\) −7.20031 + 12.4713i −0.249776 + 0.432624i
\(832\) 2.39040 0.0828723
\(833\) 33.4597 1.15931
\(834\) 4.96109 + 8.59286i 0.171788 + 0.297546i
\(835\) −16.7250 28.9686i −0.578794 1.00250i
\(836\) 11.5031 0.397843
\(837\) −2.90277 + 5.02774i −0.100334 + 0.173784i
\(838\) 3.27422 0.113106
\(839\) 3.02749 + 5.24377i 0.104521 + 0.181035i 0.913542 0.406744i \(-0.133336\pi\)
−0.809022 + 0.587779i \(0.800003\pi\)
\(840\) −6.64708 −0.229346
\(841\) 10.7530 18.6248i 0.370795 0.642235i
\(842\) 7.43351 12.8752i 0.256176 0.443709i
\(843\) −31.5652 −1.08716
\(844\) 2.78934 4.83127i 0.0960129 0.166299i
\(845\) −6.46455 11.1969i −0.222387 0.385186i
\(846\) 5.30059 9.18089i 0.182238 0.315646i
\(847\) 21.4336 37.1241i 0.736467 1.27560i
\(848\) −0.401996 0.696278i −0.0138046 0.0239103i
\(849\) 6.90026 11.9516i 0.236816 0.410178i
\(850\) 4.40430 7.62848i 0.151066 0.261655i
\(851\) −84.4071 −2.89344
\(852\) −0.965893 1.67297i −0.0330909 0.0573152i
\(853\) −8.17654 + 14.1622i −0.279959 + 0.484904i −0.971374 0.237554i \(-0.923654\pi\)
0.691415 + 0.722458i \(0.256988\pi\)
\(854\) 10.4363 18.0762i 0.357123 0.618555i
\(855\) −2.15435 3.73144i −0.0736772 0.127613i
\(856\) 0.952509 + 1.64979i 0.0325561 + 0.0563888i
\(857\) 1.65485 + 2.86628i 0.0565284 + 0.0979101i 0.892905 0.450245i \(-0.148664\pi\)
−0.836376 + 0.548156i \(0.815330\pi\)
\(858\) 11.3245 0.386613
\(859\) −14.7019 −0.501624 −0.250812 0.968036i \(-0.580698\pi\)
−0.250812 + 0.968036i \(0.580698\pi\)
\(860\) 11.1680 0.380824
\(861\) 1.18453 2.05166i 0.0403685 0.0699204i
\(862\) 18.7446 0.638445
\(863\) 3.75274 + 6.49994i 0.127745 + 0.221261i 0.922803 0.385273i \(-0.125893\pi\)
−0.795058 + 0.606534i \(0.792559\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 32.4277 1.10257
\(866\) −36.0021 −1.22340
\(867\) 2.82226 4.88831i 0.0958491 0.166016i
\(868\) −10.8733 + 18.8332i −0.369065 + 0.639239i
\(869\) 31.8317 55.1340i 1.07981 1.87029i
\(870\) 2.42887 + 4.20693i 0.0823465 + 0.142628i
\(871\) −5.27452 + 9.13573i −0.178720 + 0.309552i
\(872\) 5.57998 + 9.66480i 0.188962 + 0.327291i
\(873\) −6.85370 + 11.8710i −0.231963 + 0.401771i
\(874\) 10.5884 + 18.3397i 0.358159 + 0.620350i
\(875\) −45.5397 −1.53952
\(876\) −16.4526 −0.555883
\(877\) −11.9881 −0.404811 −0.202406 0.979302i \(-0.564876\pi\)
−0.202406 + 0.979302i \(0.564876\pi\)
\(878\) 1.35629 0.0457726
\(879\) 19.1980 0.647533
\(880\) −4.20339 + 7.28049i −0.141696 + 0.245425i
\(881\) 18.9921 + 32.8952i 0.639858 + 1.10827i 0.985464 + 0.169887i \(0.0543404\pi\)
−0.345605 + 0.938380i \(0.612326\pi\)
\(882\) −3.51569 6.08935i −0.118379 0.205039i
\(883\) −5.53499 9.58688i −0.186267 0.322624i 0.757736 0.652562i \(-0.226306\pi\)
−0.944003 + 0.329937i \(0.892972\pi\)
\(884\) 11.3750 0.382584
\(885\) −1.37165 −0.0461074
\(886\) −13.9058 + 24.0855i −0.467174 + 0.809169i
\(887\) 17.4174 + 30.1678i 0.584819 + 1.01294i 0.994898 + 0.100887i \(0.0321680\pi\)
−0.410078 + 0.912050i \(0.634499\pi\)
\(888\) 9.67792 0.324770
\(889\) 36.3559 62.9703i 1.21934 2.11196i
\(890\) −25.0063 −0.838213
\(891\) −4.73750 −0.158712
\(892\) 0.344793 + 14.9292i 0.0115445 + 0.499867i
\(893\) 25.7407 0.861378
\(894\) 7.98516 0.267064
\(895\) −2.32714 + 4.03073i −0.0777877 + 0.134732i
\(896\) −3.74585 −0.125140
\(897\) 10.4241 + 18.0550i 0.348050 + 0.602840i
\(898\) 1.51834 2.62983i 0.0506675 0.0877587i
\(899\) 15.8927 0.530050
\(900\) −1.85108 −0.0617027
\(901\) −1.91295 3.31333i −0.0637296 0.110383i
\(902\) −1.49811 2.59480i −0.0498816 0.0863975i
\(903\) 11.7873 + 20.4162i 0.392256 + 0.679407i
\(904\) 0.0278961 0.0483175i 0.000927811 0.00160702i
\(905\) 34.8904 1.15980
\(906\) −11.9029 −0.395448
\(907\) −29.2846 −0.972380 −0.486190 0.873853i \(-0.661614\pi\)
−0.486190 + 0.873853i \(0.661614\pi\)
\(908\) −6.99895 −0.232268
\(909\) −18.0015 −0.597071
\(910\) −7.94460 13.7604i −0.263361 0.456154i
\(911\) 14.8163 25.6626i 0.490887 0.850241i −0.509058 0.860732i \(-0.670006\pi\)
0.999945 + 0.0104913i \(0.00333954\pi\)
\(912\) −1.21405 2.10279i −0.0402011 0.0696303i
\(913\) 38.8158 67.2310i 1.28462 2.22502i
\(914\) 6.67371 + 11.5592i 0.220747 + 0.382344i
\(915\) −4.94399 + 8.56323i −0.163443 + 0.283092i
\(916\) 10.9526 18.9705i 0.361885 0.626803i
\(917\) 2.77531 4.80697i 0.0916487 0.158740i
\(918\) −4.75863 −0.157058
\(919\) −34.8554 −1.14977 −0.574887 0.818233i \(-0.694954\pi\)
−0.574887 + 0.818233i \(0.694954\pi\)
\(920\) −15.4767 −0.510250
\(921\) 1.57486 + 2.72774i 0.0518935 + 0.0898822i
\(922\) 29.6966 0.978006
\(923\) 2.30887 3.99908i 0.0759974 0.131631i
\(924\) −17.7460 −0.583799
\(925\) 17.9146 0.589029
\(926\) −2.66639 −0.0876232
\(927\) 1.15402 + 1.99882i 0.0379029 + 0.0656498i
\(928\) 1.36875 + 2.37075i 0.0449314 + 0.0778235i
\(929\) −13.2761 22.9949i −0.435575 0.754437i 0.561768 0.827295i \(-0.310121\pi\)
−0.997342 + 0.0728577i \(0.976788\pi\)
\(930\) 5.15102 8.92182i 0.168909 0.292558i
\(931\) 8.53642 14.7855i 0.279770 0.484575i
\(932\) 8.65849 + 14.9970i 0.283618 + 0.491241i
\(933\) −13.8792 −0.454385
\(934\) 18.0945 31.3406i 0.592071 1.02550i
\(935\) −20.0024 + 34.6451i −0.654148 + 1.13302i
\(936\) −1.19520 2.07015i −0.0390664 0.0676649i
\(937\) −11.1051 + 19.2345i −0.362787 + 0.628365i −0.988418 0.151754i \(-0.951508\pi\)
0.625632 + 0.780119i \(0.284841\pi\)
\(938\) 8.26536 14.3160i 0.269874 0.467435i
\(939\) 15.3020 + 26.5038i 0.499362 + 0.864920i
\(940\) −9.40600 + 16.2917i −0.306790 + 0.531376i
\(941\) 37.5964 1.22561 0.612804 0.790235i \(-0.290041\pi\)
0.612804 + 0.790235i \(0.290041\pi\)
\(942\) 1.81832 3.14943i 0.0592442 0.102614i
\(943\) 2.75798 4.77696i 0.0898122 0.155559i
\(944\) −0.772969 −0.0251580
\(945\) 3.32354 + 5.75654i 0.108115 + 0.187260i
\(946\) 29.8155 0.969387
\(947\) −12.9061 + 22.3540i −0.419391 + 0.726407i −0.995878 0.0906996i \(-0.971090\pi\)
0.576487 + 0.817106i \(0.304423\pi\)
\(948\) −13.4382 −0.436451
\(949\) −19.6642 34.0594i −0.638327 1.10561i
\(950\) −2.24730 3.89244i −0.0729120 0.126287i
\(951\) −7.55192 −0.244888
\(952\) −17.8251 −0.577715
\(953\) 16.1766 28.0187i 0.524011 0.907613i −0.475599 0.879662i \(-0.657768\pi\)
0.999609 0.0279508i \(-0.00889818\pi\)
\(954\) −0.401996 + 0.696278i −0.0130151 + 0.0225428i
\(955\) −7.84687 13.5912i −0.253919 0.439800i
\(956\) −18.4003 −0.595108
\(957\) 6.48446 + 11.2314i 0.209613 + 0.363060i
\(958\) 1.35910 0.0439104
\(959\) −29.1523 + 50.4933i −0.941378 + 1.63051i
\(960\) 1.77452 0.0572724
\(961\) −1.35212 2.34195i −0.0436169 0.0755467i
\(962\) 11.5671 + 20.0347i 0.372937 + 0.645946i
\(963\) 0.952509 1.64979i 0.0306942 0.0531638i
\(964\) 1.57469 + 2.72745i 0.0507175 + 0.0878453i
\(965\) −9.24273 16.0089i −0.297534 0.515344i
\(966\) −16.3349 28.2929i −0.525567 0.910309i
\(967\) −1.15026 1.99232i −0.0369900 0.0640685i 0.846938 0.531692i \(-0.178444\pi\)
−0.883928 + 0.467624i \(0.845110\pi\)
\(968\) −5.72196 + 9.91072i −0.183911 + 0.318543i
\(969\) −5.77719 10.0064i −0.185590 0.321452i
\(970\) 12.1620 21.0652i 0.390499 0.676364i
\(971\) 24.8744 + 43.0837i 0.798256 + 1.38262i 0.920751 + 0.390151i \(0.127577\pi\)
−0.122494 + 0.992469i \(0.539089\pi\)
\(972\) 0.500000 + 0.866025i 0.0160375 + 0.0277778i
\(973\) 18.5835 32.1875i 0.595759 1.03189i
\(974\) −35.1048 −1.12483
\(975\) −2.21241 3.83201i −0.0708540 0.122723i
\(976\) −2.78610 + 4.82566i −0.0891808 + 0.154466i
\(977\) −16.2977 28.2285i −0.521410 0.903109i −0.999690 0.0249012i \(-0.992073\pi\)
0.478280 0.878207i \(-0.341260\pi\)
\(978\) 3.47856 6.02504i 0.111232 0.192660i
\(979\) −66.7602 −2.13367
\(980\) 6.23866 + 10.8057i 0.199287 + 0.345174i
\(981\) 5.57998 9.66480i 0.178155 0.308573i
\(982\) 17.5638 30.4214i 0.560483 0.970785i
\(983\) −33.3075 −1.06234 −0.531172 0.847264i \(-0.678248\pi\)
−0.531172 + 0.847264i \(0.678248\pi\)
\(984\) −0.316224 + 0.547716i −0.0100808 + 0.0174605i
\(985\) 9.47337 + 16.4084i 0.301847 + 0.522814i
\(986\) 6.51337 + 11.2815i 0.207428 + 0.359276i
\(987\) −39.7104 −1.26400
\(988\) 2.90206 5.02651i 0.0923268 0.159915i
\(989\) 27.4448 + 47.5358i 0.872694 + 1.51155i
\(990\) 8.40679 0.267185
\(991\) 8.35781 14.4762i 0.265495 0.459850i −0.702198 0.711981i \(-0.747798\pi\)
0.967693 + 0.252131i \(0.0811314\pi\)
\(992\) 2.90277 5.02774i 0.0921630 0.159631i
\(993\) 3.31710 5.74538i 0.105265 0.182324i
\(994\) −3.61809 + 6.26671i −0.114759 + 0.198768i
\(995\) 0.767232 0.0243229
\(996\) −16.3866 −0.519230
\(997\) −47.2364 −1.49599 −0.747995 0.663704i \(-0.768983\pi\)
−0.747995 + 0.663704i \(0.768983\pi\)
\(998\) −18.0271 31.2239i −0.570639 0.988376i
\(999\) −4.83896 8.38133i −0.153098 0.265173i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.e.i.931.5 14
223.183 even 3 inner 1338.2.e.i.1075.5 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.e.i.931.5 14 1.1 even 1 trivial
1338.2.e.i.1075.5 yes 14 223.183 even 3 inner