Properties

Label 1338.2.e.i.1075.7
Level $1338$
Weight $2$
Character 1338.1075
Analytic conductor $10.684$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1338,2,Mod(931,1338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1338.931"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,14,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.6839837904\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 25 x^{12} - 30 x^{11} + 502 x^{10} - 434 x^{9} + 3060 x^{8} - 1136 x^{7} + 13014 x^{6} + \cdots + 961 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1075.7
Root \(0.820326 + 1.42085i\) of defining polynomial
Character \(\chi\) \(=\) 1338.1075
Dual form 1338.2.e.i.931.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(0.500000 + 0.866025i) q^{3} +1.00000 q^{4} +(1.68125 - 2.91200i) q^{5} +(0.500000 + 0.866025i) q^{6} +3.43032 q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(1.68125 - 2.91200i) q^{10} +(1.32033 - 2.28687i) q^{11} +(0.500000 + 0.866025i) q^{12} -5.85224 q^{13} +3.43032 q^{14} +3.36249 q^{15} +1.00000 q^{16} +1.53062 q^{17} +(-0.500000 + 0.866025i) q^{18} +(3.92799 + 6.80347i) q^{19} +(1.68125 - 2.91200i) q^{20} +(1.71516 + 2.97075i) q^{21} +(1.32033 - 2.28687i) q^{22} +(-0.904391 - 1.56645i) q^{23} +(0.500000 + 0.866025i) q^{24} +(-3.15318 - 5.46146i) q^{25} -5.85224 q^{26} -1.00000 q^{27} +3.43032 q^{28} +(0.320326 - 0.554821i) q^{29} +3.36249 q^{30} +(-3.52202 - 6.10032i) q^{31} +1.00000 q^{32} +2.64065 q^{33} +1.53062 q^{34} +(5.76722 - 9.98912i) q^{35} +(-0.500000 + 0.866025i) q^{36} +(-3.18680 + 5.51970i) q^{37} +(3.92799 + 6.80347i) q^{38} +(-2.92612 - 5.06819i) q^{39} +(1.68125 - 2.91200i) q^{40} -5.60351 q^{41} +(1.71516 + 2.97075i) q^{42} +(-3.02359 - 5.23702i) q^{43} +(1.32033 - 2.28687i) q^{44} +(1.68125 + 2.91200i) q^{45} +(-0.904391 - 1.56645i) q^{46} +(-0.895792 + 1.55156i) q^{47} +(0.500000 + 0.866025i) q^{48} +4.76712 q^{49} +(-3.15318 - 5.46146i) q^{50} +(0.765311 + 1.32556i) q^{51} -5.85224 q^{52} +(1.90926 - 3.30693i) q^{53} -1.00000 q^{54} +(-4.43958 - 7.68959i) q^{55} +3.43032 q^{56} +(-3.92799 + 6.80347i) q^{57} +(0.320326 - 0.554821i) q^{58} +12.0662 q^{59} +3.36249 q^{60} +(6.69855 + 11.6022i) q^{61} +(-3.52202 - 6.10032i) q^{62} +(-1.71516 + 2.97075i) q^{63} +1.00000 q^{64} +(-9.83905 + 17.0417i) q^{65} +2.64065 q^{66} +(-4.73320 - 8.19815i) q^{67} +1.53062 q^{68} +(0.904391 - 1.56645i) q^{69} +(5.76722 - 9.98912i) q^{70} +(3.29893 + 5.71392i) q^{71} +(-0.500000 + 0.866025i) q^{72} +(-4.03786 + 6.99379i) q^{73} +(-3.18680 + 5.51970i) q^{74} +(3.15318 - 5.46146i) q^{75} +(3.92799 + 6.80347i) q^{76} +(4.52915 - 7.84471i) q^{77} +(-2.92612 - 5.06819i) q^{78} +(-5.82315 + 10.0860i) q^{79} +(1.68125 - 2.91200i) q^{80} +(-0.500000 - 0.866025i) q^{81} -5.60351 q^{82} +(-7.21722 + 12.5006i) q^{83} +(1.71516 + 2.97075i) q^{84} +(2.57335 - 4.45718i) q^{85} +(-3.02359 - 5.23702i) q^{86} +0.640652 q^{87} +(1.32033 - 2.28687i) q^{88} +(4.41021 + 7.63871i) q^{89} +(1.68125 + 2.91200i) q^{90} -20.0751 q^{91} +(-0.904391 - 1.56645i) q^{92} +(3.52202 - 6.10032i) q^{93} +(-0.895792 + 1.55156i) q^{94} +26.4156 q^{95} +(0.500000 + 0.866025i) q^{96} +(4.27730 - 7.40850i) q^{97} +4.76712 q^{98} +(1.32033 + 2.28687i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 14 q^{2} + 7 q^{3} + 14 q^{4} + 3 q^{5} + 7 q^{6} + 4 q^{7} + 14 q^{8} - 7 q^{9} + 3 q^{10} + 7 q^{11} + 7 q^{12} - 12 q^{13} + 4 q^{14} + 6 q^{15} + 14 q^{16} + 6 q^{17} - 7 q^{18} - 6 q^{19} + 3 q^{20}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1338\mathbb{Z}\right)^\times\).

\(n\) \(893\) \(895\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 1.00000 0.500000
\(5\) 1.68125 2.91200i 0.751876 1.30229i −0.195036 0.980796i \(-0.562483\pi\)
0.946912 0.321491i \(-0.104184\pi\)
\(6\) 0.500000 + 0.866025i 0.204124 + 0.353553i
\(7\) 3.43032 1.29654 0.648270 0.761410i \(-0.275493\pi\)
0.648270 + 0.761410i \(0.275493\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 1.68125 2.91200i 0.531657 0.920856i
\(11\) 1.32033 2.28687i 0.398093 0.689518i −0.595397 0.803431i \(-0.703005\pi\)
0.993491 + 0.113914i \(0.0363387\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) −5.85224 −1.62312 −0.811560 0.584270i \(-0.801381\pi\)
−0.811560 + 0.584270i \(0.801381\pi\)
\(14\) 3.43032 0.916793
\(15\) 3.36249 0.868192
\(16\) 1.00000 0.250000
\(17\) 1.53062 0.371230 0.185615 0.982623i \(-0.440572\pi\)
0.185615 + 0.982623i \(0.440572\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) 3.92799 + 6.80347i 0.901142 + 1.56082i 0.826014 + 0.563649i \(0.190603\pi\)
0.0751274 + 0.997174i \(0.476064\pi\)
\(20\) 1.68125 2.91200i 0.375938 0.651144i
\(21\) 1.71516 + 2.97075i 0.374279 + 0.648270i
\(22\) 1.32033 2.28687i 0.281494 0.487563i
\(23\) −0.904391 1.56645i −0.188579 0.326628i 0.756198 0.654343i \(-0.227055\pi\)
−0.944777 + 0.327715i \(0.893721\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) −3.15318 5.46146i −0.630635 1.09229i
\(26\) −5.85224 −1.14772
\(27\) −1.00000 −0.192450
\(28\) 3.43032 0.648270
\(29\) 0.320326 0.554821i 0.0594830 0.103028i −0.834750 0.550628i \(-0.814388\pi\)
0.894233 + 0.447601i \(0.147721\pi\)
\(30\) 3.36249 0.613904
\(31\) −3.52202 6.10032i −0.632574 1.09565i −0.987024 0.160575i \(-0.948665\pi\)
0.354450 0.935075i \(-0.384668\pi\)
\(32\) 1.00000 0.176777
\(33\) 2.64065 0.459678
\(34\) 1.53062 0.262500
\(35\) 5.76722 9.98912i 0.974838 1.68847i
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) −3.18680 + 5.51970i −0.523906 + 0.907432i 0.475706 + 0.879604i \(0.342192\pi\)
−0.999613 + 0.0278282i \(0.991141\pi\)
\(38\) 3.92799 + 6.80347i 0.637203 + 1.10367i
\(39\) −2.92612 5.06819i −0.468554 0.811560i
\(40\) 1.68125 2.91200i 0.265828 0.460428i
\(41\) −5.60351 −0.875121 −0.437561 0.899189i \(-0.644157\pi\)
−0.437561 + 0.899189i \(0.644157\pi\)
\(42\) 1.71516 + 2.97075i 0.264655 + 0.458396i
\(43\) −3.02359 5.23702i −0.461094 0.798638i 0.537922 0.842995i \(-0.319210\pi\)
−0.999016 + 0.0443567i \(0.985876\pi\)
\(44\) 1.32033 2.28687i 0.199047 0.344759i
\(45\) 1.68125 + 2.91200i 0.250625 + 0.434096i
\(46\) −0.904391 1.56645i −0.133345 0.230961i
\(47\) −0.895792 + 1.55156i −0.130665 + 0.226318i −0.923933 0.382554i \(-0.875044\pi\)
0.793268 + 0.608872i \(0.208378\pi\)
\(48\) 0.500000 + 0.866025i 0.0721688 + 0.125000i
\(49\) 4.76712 0.681018
\(50\) −3.15318 5.46146i −0.445926 0.772367i
\(51\) 0.765311 + 1.32556i 0.107165 + 0.185615i
\(52\) −5.85224 −0.811560
\(53\) 1.90926 3.30693i 0.262257 0.454242i −0.704585 0.709620i \(-0.748867\pi\)
0.966841 + 0.255378i \(0.0822000\pi\)
\(54\) −1.00000 −0.136083
\(55\) −4.43958 7.68959i −0.598634 1.03686i
\(56\) 3.43032 0.458396
\(57\) −3.92799 + 6.80347i −0.520274 + 0.901142i
\(58\) 0.320326 0.554821i 0.0420609 0.0728515i
\(59\) 12.0662 1.57088 0.785442 0.618935i \(-0.212436\pi\)
0.785442 + 0.618935i \(0.212436\pi\)
\(60\) 3.36249 0.434096
\(61\) 6.69855 + 11.6022i 0.857662 + 1.48551i 0.874153 + 0.485650i \(0.161417\pi\)
−0.0164914 + 0.999864i \(0.505250\pi\)
\(62\) −3.52202 6.10032i −0.447297 0.774742i
\(63\) −1.71516 + 2.97075i −0.216090 + 0.374279i
\(64\) 1.00000 0.125000
\(65\) −9.83905 + 17.0417i −1.22038 + 2.11377i
\(66\) 2.64065 0.325042
\(67\) −4.73320 8.19815i −0.578253 1.00156i −0.995680 0.0928531i \(-0.970401\pi\)
0.417427 0.908711i \(-0.362932\pi\)
\(68\) 1.53062 0.185615
\(69\) 0.904391 1.56645i 0.108876 0.188579i
\(70\) 5.76722 9.98912i 0.689314 1.19393i
\(71\) 3.29893 + 5.71392i 0.391511 + 0.678118i 0.992649 0.121028i \(-0.0386190\pi\)
−0.601138 + 0.799145i \(0.705286\pi\)
\(72\) −0.500000 + 0.866025i −0.0589256 + 0.102062i
\(73\) −4.03786 + 6.99379i −0.472596 + 0.818561i −0.999508 0.0313592i \(-0.990016\pi\)
0.526912 + 0.849920i \(0.323350\pi\)
\(74\) −3.18680 + 5.51970i −0.370458 + 0.641652i
\(75\) 3.15318 5.46146i 0.364097 0.630635i
\(76\) 3.92799 + 6.80347i 0.450571 + 0.780412i
\(77\) 4.52915 7.84471i 0.516144 0.893988i
\(78\) −2.92612 5.06819i −0.331318 0.573859i
\(79\) −5.82315 + 10.0860i −0.655155 + 1.13476i 0.326700 + 0.945128i \(0.394063\pi\)
−0.981855 + 0.189634i \(0.939270\pi\)
\(80\) 1.68125 2.91200i 0.187969 0.325572i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −5.60351 −0.618804
\(83\) −7.21722 + 12.5006i −0.792192 + 1.37212i 0.132414 + 0.991194i \(0.457727\pi\)
−0.924607 + 0.380923i \(0.875606\pi\)
\(84\) 1.71516 + 2.97075i 0.187140 + 0.324135i
\(85\) 2.57335 4.45718i 0.279119 0.483449i
\(86\) −3.02359 5.23702i −0.326043 0.564722i
\(87\) 0.640652 0.0686851
\(88\) 1.32033 2.28687i 0.140747 0.243781i
\(89\) 4.41021 + 7.63871i 0.467481 + 0.809701i 0.999310 0.0371509i \(-0.0118282\pi\)
−0.531828 + 0.846852i \(0.678495\pi\)
\(90\) 1.68125 + 2.91200i 0.177219 + 0.306952i
\(91\) −20.0751 −2.10444
\(92\) −0.904391 1.56645i −0.0942893 0.163314i
\(93\) 3.52202 6.10032i 0.365217 0.632574i
\(94\) −0.895792 + 1.55156i −0.0923939 + 0.160031i
\(95\) 26.4156 2.71019
\(96\) 0.500000 + 0.866025i 0.0510310 + 0.0883883i
\(97\) 4.27730 7.40850i 0.434294 0.752219i −0.562944 0.826495i \(-0.690331\pi\)
0.997238 + 0.0742759i \(0.0236645\pi\)
\(98\) 4.76712 0.481552
\(99\) 1.32033 + 2.28687i 0.132698 + 0.229839i
\(100\) −3.15318 5.46146i −0.315318 0.546146i
\(101\) −7.97016 13.8047i −0.793061 1.37362i −0.924063 0.382240i \(-0.875153\pi\)
0.131002 0.991382i \(-0.458181\pi\)
\(102\) 0.765311 + 1.32556i 0.0757771 + 0.131250i
\(103\) 13.5572 1.33583 0.667914 0.744239i \(-0.267188\pi\)
0.667914 + 0.744239i \(0.267188\pi\)
\(104\) −5.85224 −0.573859
\(105\) 11.5344 1.12565
\(106\) 1.90926 3.30693i 0.185443 0.321197i
\(107\) 0.876590 1.51830i 0.0847432 0.146780i −0.820539 0.571591i \(-0.806326\pi\)
0.905282 + 0.424812i \(0.139660\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 4.27095 7.39751i 0.409083 0.708553i −0.585704 0.810525i \(-0.699182\pi\)
0.994787 + 0.101972i \(0.0325153\pi\)
\(110\) −4.43958 7.68959i −0.423298 0.733173i
\(111\) −6.37359 −0.604955
\(112\) 3.43032 0.324135
\(113\) 1.57848 + 2.73400i 0.148491 + 0.257193i 0.930670 0.365860i \(-0.119225\pi\)
−0.782179 + 0.623054i \(0.785892\pi\)
\(114\) −3.92799 + 6.80347i −0.367890 + 0.637203i
\(115\) −6.08201 −0.567151
\(116\) 0.320326 0.554821i 0.0297415 0.0515138i
\(117\) 2.92612 5.06819i 0.270520 0.468554i
\(118\) 12.0662 1.11078
\(119\) 5.25053 0.481315
\(120\) 3.36249 0.306952
\(121\) 2.01348 + 3.48745i 0.183044 + 0.317041i
\(122\) 6.69855 + 11.6022i 0.606459 + 1.05042i
\(123\) −2.80175 4.85278i −0.252626 0.437561i
\(124\) −3.52202 6.10032i −0.316287 0.547825i
\(125\) −4.39259 −0.392885
\(126\) −1.71516 + 2.97075i −0.152799 + 0.264655i
\(127\) −4.64156 8.03942i −0.411872 0.713383i 0.583222 0.812313i \(-0.301792\pi\)
−0.995094 + 0.0989292i \(0.968458\pi\)
\(128\) 1.00000 0.0883883
\(129\) 3.02359 5.23702i 0.266213 0.461094i
\(130\) −9.83905 + 17.0417i −0.862942 + 1.49466i
\(131\) −0.217929 0.377465i −0.0190406 0.0329792i 0.856348 0.516399i \(-0.172728\pi\)
−0.875389 + 0.483420i \(0.839395\pi\)
\(132\) 2.64065 0.229839
\(133\) 13.4743 + 23.3381i 1.16837 + 2.02367i
\(134\) −4.73320 8.19815i −0.408887 0.708212i
\(135\) −1.68125 + 2.91200i −0.144699 + 0.250625i
\(136\) 1.53062 0.131250
\(137\) −4.70021 8.14100i −0.401566 0.695532i 0.592349 0.805681i \(-0.298201\pi\)
−0.993915 + 0.110149i \(0.964867\pi\)
\(138\) 0.904391 1.56645i 0.0769869 0.133345i
\(139\) 4.15049 + 7.18885i 0.352040 + 0.609751i 0.986607 0.163117i \(-0.0521549\pi\)
−0.634567 + 0.772868i \(0.718822\pi\)
\(140\) 5.76722 9.98912i 0.487419 0.844234i
\(141\) −1.79158 −0.150879
\(142\) 3.29893 + 5.71392i 0.276840 + 0.479501i
\(143\) −7.72686 + 13.3833i −0.646153 + 1.11917i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) −1.07709 1.86558i −0.0894477 0.154928i
\(146\) −4.03786 + 6.99379i −0.334176 + 0.578810i
\(147\) 2.38356 + 4.12845i 0.196593 + 0.340509i
\(148\) −3.18680 + 5.51970i −0.261953 + 0.453716i
\(149\) −4.47847 + 7.75694i −0.366891 + 0.635473i −0.989078 0.147396i \(-0.952911\pi\)
0.622187 + 0.782869i \(0.286244\pi\)
\(150\) 3.15318 5.46146i 0.257456 0.445926i
\(151\) −3.52522 + 6.10586i −0.286878 + 0.496888i −0.973063 0.230539i \(-0.925951\pi\)
0.686184 + 0.727428i \(0.259284\pi\)
\(152\) 3.92799 + 6.80347i 0.318602 + 0.551834i
\(153\) −0.765311 + 1.32556i −0.0618717 + 0.107165i
\(154\) 4.52915 7.84471i 0.364969 0.632145i
\(155\) −23.6855 −1.90247
\(156\) −2.92612 5.06819i −0.234277 0.405780i
\(157\) −19.4984 −1.55614 −0.778072 0.628175i \(-0.783802\pi\)
−0.778072 + 0.628175i \(0.783802\pi\)
\(158\) −5.82315 + 10.0860i −0.463265 + 0.802398i
\(159\) 3.81851 0.302828
\(160\) 1.68125 2.91200i 0.132914 0.230214i
\(161\) −3.10235 5.37344i −0.244500 0.423486i
\(162\) −0.500000 0.866025i −0.0392837 0.0680414i
\(163\) −17.1562 −1.34378 −0.671889 0.740652i \(-0.734517\pi\)
−0.671889 + 0.740652i \(0.734517\pi\)
\(164\) −5.60351 −0.437561
\(165\) 4.43958 7.68959i 0.345621 0.598634i
\(166\) −7.21722 + 12.5006i −0.560165 + 0.970234i
\(167\) 0.0473273 0.00366230 0.00183115 0.999998i \(-0.499417\pi\)
0.00183115 + 0.999998i \(0.499417\pi\)
\(168\) 1.71516 + 2.97075i 0.132328 + 0.229198i
\(169\) 21.2487 1.63452
\(170\) 2.57335 4.45718i 0.197367 0.341850i
\(171\) −7.85597 −0.600761
\(172\) −3.02359 5.23702i −0.230547 0.399319i
\(173\) 6.60870 + 11.4466i 0.502450 + 0.870269i 0.999996 + 0.00283140i \(0.000901264\pi\)
−0.497546 + 0.867438i \(0.665765\pi\)
\(174\) 0.640652 0.0485677
\(175\) −10.8164 18.7346i −0.817644 1.41620i
\(176\) 1.32033 2.28687i 0.0995233 0.172379i
\(177\) 6.03309 + 10.4496i 0.453475 + 0.785442i
\(178\) 4.41021 + 7.63871i 0.330559 + 0.572545i
\(179\) −7.64767 + 13.2461i −0.571613 + 0.990063i 0.424787 + 0.905293i \(0.360349\pi\)
−0.996401 + 0.0847701i \(0.972984\pi\)
\(180\) 1.68125 + 2.91200i 0.125313 + 0.217048i
\(181\) 0.550259 + 0.953076i 0.0409004 + 0.0708416i 0.885751 0.464161i \(-0.153644\pi\)
−0.844851 + 0.535002i \(0.820311\pi\)
\(182\) −20.0751 −1.48806
\(183\) −6.69855 + 11.6022i −0.495171 + 0.857662i
\(184\) −0.904391 1.56645i −0.0666726 0.115480i
\(185\) 10.7156 + 18.5599i 0.787825 + 1.36455i
\(186\) 3.52202 6.10032i 0.258247 0.447297i
\(187\) 2.02092 3.50034i 0.147784 0.255970i
\(188\) −0.895792 + 1.55156i −0.0653323 + 0.113159i
\(189\) −3.43032 −0.249519
\(190\) 26.4156 1.91639
\(191\) −2.68742 −0.194455 −0.0972274 0.995262i \(-0.530997\pi\)
−0.0972274 + 0.995262i \(0.530997\pi\)
\(192\) 0.500000 + 0.866025i 0.0360844 + 0.0625000i
\(193\) 15.2039 1.09440 0.547199 0.837002i \(-0.315694\pi\)
0.547199 + 0.837002i \(0.315694\pi\)
\(194\) 4.27730 7.40850i 0.307092 0.531899i
\(195\) −19.6781 −1.40918
\(196\) 4.76712 0.340509
\(197\) −13.0540 −0.930058 −0.465029 0.885296i \(-0.653956\pi\)
−0.465029 + 0.885296i \(0.653956\pi\)
\(198\) 1.32033 + 2.28687i 0.0938315 + 0.162521i
\(199\) −9.36374 16.2185i −0.663778 1.14970i −0.979615 0.200883i \(-0.935619\pi\)
0.315837 0.948813i \(-0.397715\pi\)
\(200\) −3.15318 5.46146i −0.222963 0.386184i
\(201\) 4.73320 8.19815i 0.333855 0.578253i
\(202\) −7.97016 13.8047i −0.560779 0.971297i
\(203\) 1.09882 1.90322i 0.0771222 0.133580i
\(204\) 0.765311 + 1.32556i 0.0535825 + 0.0928076i
\(205\) −9.42088 + 16.3174i −0.657983 + 1.13966i
\(206\) 13.5572 0.944573
\(207\) 1.80878 0.125719
\(208\) −5.85224 −0.405780
\(209\) 20.7449 1.43495
\(210\) 11.5344 0.795952
\(211\) 6.98152 + 12.0923i 0.480627 + 0.832471i 0.999753 0.0222269i \(-0.00707563\pi\)
−0.519126 + 0.854698i \(0.673742\pi\)
\(212\) 1.90926 3.30693i 0.131128 0.227121i
\(213\) −3.29893 + 5.71392i −0.226039 + 0.391511i
\(214\) 0.876590 1.51830i 0.0599225 0.103789i
\(215\) −20.3336 −1.38674
\(216\) −1.00000 −0.0680414
\(217\) −12.0817 20.9261i −0.820158 1.42056i
\(218\) 4.27095 7.39751i 0.289265 0.501023i
\(219\) −8.07573 −0.545707
\(220\) −4.43958 7.68959i −0.299317 0.518432i
\(221\) −8.95757 −0.602551
\(222\) −6.37359 −0.427768
\(223\) −1.06649 14.8951i −0.0714172 0.997447i
\(224\) 3.43032 0.229198
\(225\) 6.30635 0.420423
\(226\) 1.57848 + 2.73400i 0.104999 + 0.181863i
\(227\) 9.82781 0.652294 0.326147 0.945319i \(-0.394249\pi\)
0.326147 + 0.945319i \(0.394249\pi\)
\(228\) −3.92799 + 6.80347i −0.260137 + 0.450571i
\(229\) −8.75138 15.1578i −0.578307 1.00166i −0.995674 0.0929193i \(-0.970380\pi\)
0.417366 0.908738i \(-0.362953\pi\)
\(230\) −6.08201 −0.401036
\(231\) 9.05829 0.595992
\(232\) 0.320326 0.554821i 0.0210304 0.0364258i
\(233\) −9.67829 + 16.7633i −0.634046 + 1.09820i 0.352671 + 0.935747i \(0.385274\pi\)
−0.986716 + 0.162452i \(0.948060\pi\)
\(234\) 2.92612 5.06819i 0.191286 0.331318i
\(235\) 3.01209 + 5.21710i 0.196487 + 0.340326i
\(236\) 12.0662 0.785442
\(237\) −11.6463 −0.756508
\(238\) 5.25053 0.340341
\(239\) −24.8377 −1.60662 −0.803308 0.595563i \(-0.796929\pi\)
−0.803308 + 0.595563i \(0.796929\pi\)
\(240\) 3.36249 0.217048
\(241\) 1.92602 3.33597i 0.124066 0.214889i −0.797301 0.603581i \(-0.793740\pi\)
0.921367 + 0.388693i \(0.127073\pi\)
\(242\) 2.01348 + 3.48745i 0.129431 + 0.224182i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 6.69855 + 11.6022i 0.428831 + 0.742757i
\(245\) 8.01471 13.8819i 0.512041 0.886881i
\(246\) −2.80175 4.85278i −0.178633 0.309402i
\(247\) −22.9875 39.8155i −1.46266 2.53340i
\(248\) −3.52202 6.10032i −0.223649 0.387371i
\(249\) −14.4344 −0.914745
\(250\) −4.39259 −0.277812
\(251\) 23.8654 1.50637 0.753184 0.657810i \(-0.228517\pi\)
0.753184 + 0.657810i \(0.228517\pi\)
\(252\) −1.71516 + 2.97075i −0.108045 + 0.187140i
\(253\) −4.77636 −0.300287
\(254\) −4.64156 8.03942i −0.291238 0.504438i
\(255\) 5.14670 0.322299
\(256\) 1.00000 0.0625000
\(257\) 21.5636 1.34510 0.672549 0.740053i \(-0.265199\pi\)
0.672549 + 0.740053i \(0.265199\pi\)
\(258\) 3.02359 5.23702i 0.188241 0.326043i
\(259\) −10.9317 + 18.9343i −0.679266 + 1.17652i
\(260\) −9.83905 + 17.0417i −0.610192 + 1.05688i
\(261\) 0.320326 + 0.554821i 0.0198277 + 0.0343425i
\(262\) −0.217929 0.377465i −0.0134637 0.0233198i
\(263\) −11.4232 + 19.7855i −0.704383 + 1.22003i 0.262531 + 0.964924i \(0.415443\pi\)
−0.966914 + 0.255104i \(0.917890\pi\)
\(264\) 2.64065 0.162521
\(265\) −6.41986 11.1195i −0.394369 0.683067i
\(266\) 13.4743 + 23.3381i 0.826160 + 1.43095i
\(267\) −4.41021 + 7.63871i −0.269900 + 0.467481i
\(268\) −4.73320 8.19815i −0.289127 0.500782i
\(269\) 3.04919 + 5.28136i 0.185913 + 0.322010i 0.943884 0.330278i \(-0.107143\pi\)
−0.757971 + 0.652288i \(0.773809\pi\)
\(270\) −1.68125 + 2.91200i −0.102317 + 0.177219i
\(271\) −10.6875 18.5113i −0.649218 1.12448i −0.983310 0.181938i \(-0.941763\pi\)
0.334092 0.942541i \(-0.391570\pi\)
\(272\) 1.53062 0.0928076
\(273\) −10.0375 17.3855i −0.607499 1.05222i
\(274\) −4.70021 8.14100i −0.283950 0.491816i
\(275\) −16.6529 −1.00421
\(276\) 0.904391 1.56645i 0.0544379 0.0942893i
\(277\) −13.3182 −0.800211 −0.400106 0.916469i \(-0.631027\pi\)
−0.400106 + 0.916469i \(0.631027\pi\)
\(278\) 4.15049 + 7.18885i 0.248930 + 0.431159i
\(279\) 7.04405 0.421716
\(280\) 5.76722 9.98912i 0.344657 0.596964i
\(281\) 3.84808 6.66507i 0.229557 0.397605i −0.728120 0.685450i \(-0.759606\pi\)
0.957677 + 0.287845i \(0.0929389\pi\)
\(282\) −1.79158 −0.106687
\(283\) −26.0594 −1.54907 −0.774536 0.632530i \(-0.782016\pi\)
−0.774536 + 0.632530i \(0.782016\pi\)
\(284\) 3.29893 + 5.71392i 0.195756 + 0.339059i
\(285\) 13.2078 + 22.8766i 0.782364 + 1.35509i
\(286\) −7.72686 + 13.3833i −0.456899 + 0.791372i
\(287\) −19.2219 −1.13463
\(288\) −0.500000 + 0.866025i −0.0294628 + 0.0510310i
\(289\) −14.6572 −0.862188
\(290\) −1.07709 1.86558i −0.0632491 0.109551i
\(291\) 8.55460 0.501480
\(292\) −4.03786 + 6.99379i −0.236298 + 0.409280i
\(293\) 13.8929 24.0632i 0.811631 1.40579i −0.100090 0.994978i \(-0.531913\pi\)
0.911722 0.410808i \(-0.134753\pi\)
\(294\) 2.38356 + 4.12845i 0.139012 + 0.240776i
\(295\) 20.2862 35.1368i 1.18111 2.04574i
\(296\) −3.18680 + 5.51970i −0.185229 + 0.320826i
\(297\) −1.32033 + 2.28687i −0.0766131 + 0.132698i
\(298\) −4.47847 + 7.75694i −0.259431 + 0.449347i
\(299\) 5.29271 + 9.16725i 0.306085 + 0.530156i
\(300\) 3.15318 5.46146i 0.182049 0.315318i
\(301\) −10.3719 17.9647i −0.597827 1.03547i
\(302\) −3.52522 + 6.10586i −0.202854 + 0.351353i
\(303\) 7.97016 13.8047i 0.457874 0.793061i
\(304\) 3.92799 + 6.80347i 0.225285 + 0.390206i
\(305\) 45.0477 2.57942
\(306\) −0.765311 + 1.32556i −0.0437499 + 0.0757771i
\(307\) 4.98307 + 8.63093i 0.284399 + 0.492593i 0.972463 0.233056i \(-0.0748727\pi\)
−0.688064 + 0.725650i \(0.741539\pi\)
\(308\) 4.52915 7.84471i 0.258072 0.446994i
\(309\) 6.77858 + 11.7409i 0.385620 + 0.667914i
\(310\) −23.6855 −1.34525
\(311\) 12.9852 22.4910i 0.736321 1.27535i −0.217820 0.975989i \(-0.569894\pi\)
0.954141 0.299357i \(-0.0967722\pi\)
\(312\) −2.92612 5.06819i −0.165659 0.286930i
\(313\) −2.12041 3.67266i −0.119853 0.207591i 0.799856 0.600191i \(-0.204909\pi\)
−0.919709 + 0.392600i \(0.871576\pi\)
\(314\) −19.4984 −1.10036
\(315\) 5.76722 + 9.98912i 0.324946 + 0.562823i
\(316\) −5.82315 + 10.0860i −0.327578 + 0.567381i
\(317\) 8.43404 14.6082i 0.473703 0.820478i −0.525844 0.850581i \(-0.676250\pi\)
0.999547 + 0.0301034i \(0.00958366\pi\)
\(318\) 3.81851 0.214132
\(319\) −0.845869 1.46509i −0.0473596 0.0820292i
\(320\) 1.68125 2.91200i 0.0939845 0.162786i
\(321\) 1.75318 0.0978530
\(322\) −3.10235 5.37344i −0.172887 0.299450i
\(323\) 6.01226 + 10.4135i 0.334531 + 0.579425i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 18.4531 + 31.9618i 1.02360 + 1.77292i
\(326\) −17.1562 −0.950194
\(327\) 8.54191 0.472369
\(328\) −5.60351 −0.309402
\(329\) −3.07286 + 5.32234i −0.169412 + 0.293430i
\(330\) 4.43958 7.68959i 0.244391 0.423298i
\(331\) 4.13258 0.227147 0.113574 0.993530i \(-0.463770\pi\)
0.113574 + 0.993530i \(0.463770\pi\)
\(332\) −7.21722 + 12.5006i −0.396096 + 0.686059i
\(333\) −3.18680 5.51970i −0.174635 0.302477i
\(334\) 0.0473273 0.00258963
\(335\) −31.8307 −1.73910
\(336\) 1.71516 + 2.97075i 0.0935698 + 0.162068i
\(337\) −1.03630 + 1.79492i −0.0564507 + 0.0977755i −0.892870 0.450315i \(-0.851312\pi\)
0.836419 + 0.548090i \(0.184645\pi\)
\(338\) 21.2487 1.15578
\(339\) −1.57848 + 2.73400i −0.0857311 + 0.148491i
\(340\) 2.57335 4.45718i 0.139560 0.241724i
\(341\) −18.6009 −1.00729
\(342\) −7.85597 −0.424802
\(343\) −7.65949 −0.413573
\(344\) −3.02359 5.23702i −0.163021 0.282361i
\(345\) −3.04101 5.26718i −0.163722 0.283575i
\(346\) 6.60870 + 11.4466i 0.355286 + 0.615373i
\(347\) −10.6601 18.4638i −0.572262 0.991187i −0.996333 0.0855583i \(-0.972733\pi\)
0.424071 0.905629i \(-0.360601\pi\)
\(348\) 0.640652 0.0343425
\(349\) −12.9119 + 22.3641i −0.691160 + 1.19712i 0.280298 + 0.959913i \(0.409567\pi\)
−0.971458 + 0.237211i \(0.923767\pi\)
\(350\) −10.8164 18.7346i −0.578162 1.00141i
\(351\) 5.85224 0.312369
\(352\) 1.32033 2.28687i 0.0703736 0.121891i
\(353\) 15.1245 26.1964i 0.804997 1.39429i −0.111297 0.993787i \(-0.535500\pi\)
0.916293 0.400508i \(-0.131166\pi\)
\(354\) 6.03309 + 10.4496i 0.320655 + 0.555391i
\(355\) 22.1853 1.17747
\(356\) 4.41021 + 7.63871i 0.233741 + 0.404851i
\(357\) 2.62526 + 4.54709i 0.138944 + 0.240658i
\(358\) −7.64767 + 13.2461i −0.404192 + 0.700081i
\(359\) −5.74869 −0.303404 −0.151702 0.988426i \(-0.548475\pi\)
−0.151702 + 0.988426i \(0.548475\pi\)
\(360\) 1.68125 + 2.91200i 0.0886094 + 0.153476i
\(361\) −21.3581 + 36.9934i −1.12411 + 1.94702i
\(362\) 0.550259 + 0.953076i 0.0289210 + 0.0500926i
\(363\) −2.01348 + 3.48745i −0.105680 + 0.183044i
\(364\) −20.0751 −1.05222
\(365\) 13.5773 + 23.5165i 0.710668 + 1.23091i
\(366\) −6.69855 + 11.6022i −0.350139 + 0.606459i
\(367\) −5.93840 + 10.2856i −0.309982 + 0.536905i −0.978358 0.206919i \(-0.933656\pi\)
0.668376 + 0.743824i \(0.266990\pi\)
\(368\) −0.904391 1.56645i −0.0471446 0.0816569i
\(369\) 2.80175 4.85278i 0.145854 0.252626i
\(370\) 10.7156 + 18.5599i 0.557076 + 0.964885i
\(371\) 6.54937 11.3438i 0.340026 0.588943i
\(372\) 3.52202 6.10032i 0.182608 0.316287i
\(373\) 9.56648 16.5696i 0.495333 0.857943i −0.504652 0.863323i \(-0.668379\pi\)
0.999986 + 0.00538012i \(0.00171255\pi\)
\(374\) 2.02092 3.50034i 0.104499 0.180998i
\(375\) −2.19630 3.80410i −0.113416 0.196443i
\(376\) −0.895792 + 1.55156i −0.0461969 + 0.0800154i
\(377\) −1.87462 + 3.24694i −0.0965480 + 0.167226i
\(378\) −3.43032 −0.176437
\(379\) −12.8802 22.3092i −0.661611 1.14594i −0.980192 0.198049i \(-0.936540\pi\)
0.318581 0.947896i \(-0.396794\pi\)
\(380\) 26.4156 1.35509
\(381\) 4.64156 8.03942i 0.237794 0.411872i
\(382\) −2.68742 −0.137500
\(383\) 0.801373 1.38802i 0.0409482 0.0709244i −0.844825 0.535043i \(-0.820295\pi\)
0.885773 + 0.464118i \(0.153629\pi\)
\(384\) 0.500000 + 0.866025i 0.0255155 + 0.0441942i
\(385\) −15.2292 26.3778i −0.776153 1.34434i
\(386\) 15.2039 0.773856
\(387\) 6.04719 0.307396
\(388\) 4.27730 7.40850i 0.217147 0.376110i
\(389\) −7.72986 + 13.3885i −0.391920 + 0.678825i −0.992703 0.120587i \(-0.961522\pi\)
0.600783 + 0.799412i \(0.294856\pi\)
\(390\) −19.6781 −0.996440
\(391\) −1.38428 2.39764i −0.0700061 0.121254i
\(392\) 4.76712 0.240776
\(393\) 0.217929 0.377465i 0.0109931 0.0190406i
\(394\) −13.0540 −0.657650
\(395\) 19.5803 + 33.9140i 0.985191 + 1.70640i
\(396\) 1.32033 + 2.28687i 0.0663489 + 0.114920i
\(397\) 9.92942 0.498343 0.249172 0.968459i \(-0.419842\pi\)
0.249172 + 0.968459i \(0.419842\pi\)
\(398\) −9.36374 16.2185i −0.469362 0.812958i
\(399\) −13.4743 + 23.3381i −0.674557 + 1.16837i
\(400\) −3.15318 5.46146i −0.157659 0.273073i
\(401\) 2.85507 + 4.94513i 0.142576 + 0.246948i 0.928466 0.371418i \(-0.121128\pi\)
−0.785890 + 0.618366i \(0.787795\pi\)
\(402\) 4.73320 8.19815i 0.236071 0.408887i
\(403\) 20.6117 + 35.7005i 1.02674 + 1.77837i
\(404\) −7.97016 13.8047i −0.396531 0.686811i
\(405\) −3.36249 −0.167084
\(406\) 1.09882 1.90322i 0.0545336 0.0944550i
\(407\) 8.41522 + 14.5756i 0.417127 + 0.722485i
\(408\) 0.765311 + 1.32556i 0.0378885 + 0.0656249i
\(409\) −0.228104 + 0.395087i −0.0112790 + 0.0195358i −0.871610 0.490200i \(-0.836924\pi\)
0.860331 + 0.509736i \(0.170257\pi\)
\(410\) −9.42088 + 16.3174i −0.465264 + 0.805861i
\(411\) 4.70021 8.14100i 0.231844 0.401566i
\(412\) 13.5572 0.667914
\(413\) 41.3909 2.03671
\(414\) 1.80878 0.0888968
\(415\) 24.2678 + 42.0331i 1.19126 + 2.06332i
\(416\) −5.85224 −0.286930
\(417\) −4.15049 + 7.18885i −0.203250 + 0.352040i
\(418\) 20.7449 1.01467
\(419\) −32.0750 −1.56697 −0.783484 0.621412i \(-0.786559\pi\)
−0.783484 + 0.621412i \(0.786559\pi\)
\(420\) 11.5344 0.562823
\(421\) −2.43218 4.21267i −0.118537 0.205313i 0.800651 0.599131i \(-0.204487\pi\)
−0.919188 + 0.393818i \(0.871154\pi\)
\(422\) 6.98152 + 12.0923i 0.339855 + 0.588646i
\(423\) −0.895792 1.55156i −0.0435549 0.0754393i
\(424\) 1.90926 3.30693i 0.0927217 0.160599i
\(425\) −4.82632 8.35943i −0.234111 0.405492i
\(426\) −3.29893 + 5.71392i −0.159834 + 0.276840i
\(427\) 22.9782 + 39.7994i 1.11199 + 1.92603i
\(428\) 0.876590 1.51830i 0.0423716 0.0733898i
\(429\) −15.4537 −0.746113
\(430\) −20.3336 −0.980574
\(431\) 14.1890 0.683459 0.341730 0.939798i \(-0.388987\pi\)
0.341730 + 0.939798i \(0.388987\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 2.03787 0.0979336 0.0489668 0.998800i \(-0.484407\pi\)
0.0489668 + 0.998800i \(0.484407\pi\)
\(434\) −12.0817 20.9261i −0.579939 1.00448i
\(435\) 1.07709 1.86558i 0.0516427 0.0894477i
\(436\) 4.27095 7.39751i 0.204542 0.354276i
\(437\) 7.10487 12.3060i 0.339872 0.588676i
\(438\) −8.07573 −0.385873
\(439\) 1.35115 0.0644869 0.0322434 0.999480i \(-0.489735\pi\)
0.0322434 + 0.999480i \(0.489735\pi\)
\(440\) −4.43958 7.68959i −0.211649 0.366587i
\(441\) −2.38356 + 4.12845i −0.113503 + 0.196593i
\(442\) −8.95757 −0.426068
\(443\) 14.0780 + 24.3839i 0.668868 + 1.15851i 0.978221 + 0.207566i \(0.0665542\pi\)
−0.309353 + 0.950947i \(0.600113\pi\)
\(444\) −6.37359 −0.302477
\(445\) 29.6586 1.40595
\(446\) −1.06649 14.8951i −0.0504996 0.705301i
\(447\) −8.95694 −0.423649
\(448\) 3.43032 0.162068
\(449\) 20.8849 + 36.1738i 0.985622 + 1.70715i 0.639141 + 0.769089i \(0.279290\pi\)
0.346480 + 0.938057i \(0.387377\pi\)
\(450\) 6.30635 0.297284
\(451\) −7.39846 + 12.8145i −0.348380 + 0.603411i
\(452\) 1.57848 + 2.73400i 0.0742453 + 0.128597i
\(453\) −7.05044 −0.331259
\(454\) 9.82781 0.461242
\(455\) −33.7511 + 58.4587i −1.58228 + 2.74059i
\(456\) −3.92799 + 6.80347i −0.183945 + 0.318602i
\(457\) 5.50347 9.53228i 0.257441 0.445901i −0.708114 0.706098i \(-0.750454\pi\)
0.965556 + 0.260196i \(0.0837873\pi\)
\(458\) −8.75138 15.1578i −0.408925 0.708279i
\(459\) −1.53062 −0.0714433
\(460\) −6.08201 −0.283575
\(461\) −34.8496 −1.62311 −0.811554 0.584278i \(-0.801378\pi\)
−0.811554 + 0.584278i \(0.801378\pi\)
\(462\) 9.05829 0.421430
\(463\) 28.7050 1.33403 0.667017 0.745042i \(-0.267571\pi\)
0.667017 + 0.745042i \(0.267571\pi\)
\(464\) 0.320326 0.554821i 0.0148708 0.0257569i
\(465\) −11.8428 20.5123i −0.549195 0.951234i
\(466\) −9.67829 + 16.7633i −0.448338 + 0.776544i
\(467\) 10.2597 + 17.7704i 0.474764 + 0.822315i 0.999582 0.0288991i \(-0.00920016\pi\)
−0.524819 + 0.851214i \(0.675867\pi\)
\(468\) 2.92612 5.06819i 0.135260 0.234277i
\(469\) −16.2364 28.1223i −0.749729 1.29857i
\(470\) 3.01209 + 5.21710i 0.138937 + 0.240647i
\(471\) −9.74921 16.8861i −0.449220 0.778072i
\(472\) 12.0662 0.555391
\(473\) −15.9685 −0.734233
\(474\) −11.6463 −0.534932
\(475\) 24.7713 42.9051i 1.13658 1.96862i
\(476\) 5.25053 0.240658
\(477\) 1.90926 + 3.30693i 0.0874189 + 0.151414i
\(478\) −24.8377 −1.13605
\(479\) 21.0954 0.963875 0.481938 0.876206i \(-0.339933\pi\)
0.481938 + 0.876206i \(0.339933\pi\)
\(480\) 3.36249 0.153476
\(481\) 18.6499 32.3026i 0.850362 1.47287i
\(482\) 1.92602 3.33597i 0.0877279 0.151949i
\(483\) 3.10235 5.37344i 0.141162 0.244500i
\(484\) 2.01348 + 3.48745i 0.0915218 + 0.158520i
\(485\) −14.3824 24.9110i −0.653071 1.13115i
\(486\) 0.500000 0.866025i 0.0226805 0.0392837i
\(487\) 20.6286 0.934770 0.467385 0.884054i \(-0.345196\pi\)
0.467385 + 0.884054i \(0.345196\pi\)
\(488\) 6.69855 + 11.6022i 0.303229 + 0.525209i
\(489\) −8.57810 14.8577i −0.387915 0.671889i
\(490\) 8.01471 13.8819i 0.362068 0.627120i
\(491\) −0.701973 1.21585i −0.0316796 0.0548707i 0.849751 0.527184i \(-0.176752\pi\)
−0.881431 + 0.472314i \(0.843419\pi\)
\(492\) −2.80175 4.85278i −0.126313 0.218780i
\(493\) 0.490298 0.849221i 0.0220819 0.0382470i
\(494\) −22.9875 39.8155i −1.03426 1.79139i
\(495\) 8.87917 0.399089
\(496\) −3.52202 6.10032i −0.158143 0.273913i
\(497\) 11.3164 + 19.6006i 0.507610 + 0.879207i
\(498\) −14.4344 −0.646822
\(499\) −9.59184 + 16.6136i −0.429390 + 0.743725i −0.996819 0.0796971i \(-0.974605\pi\)
0.567429 + 0.823422i \(0.307938\pi\)
\(500\) −4.39259 −0.196443
\(501\) 0.0236637 + 0.0409866i 0.00105721 + 0.00183115i
\(502\) 23.8654 1.06516
\(503\) 17.5554 30.4069i 0.782758 1.35578i −0.147571 0.989052i \(-0.547145\pi\)
0.930329 0.366726i \(-0.119521\pi\)
\(504\) −1.71516 + 2.97075i −0.0763994 + 0.132328i
\(505\) −53.5992 −2.38513
\(506\) −4.77636 −0.212335
\(507\) 10.6244 + 18.4019i 0.471844 + 0.817258i
\(508\) −4.64156 8.03942i −0.205936 0.356692i
\(509\) 8.13621 14.0923i 0.360631 0.624631i −0.627434 0.778670i \(-0.715895\pi\)
0.988065 + 0.154039i \(0.0492280\pi\)
\(510\) 5.14670 0.227900
\(511\) −13.8512 + 23.9910i −0.612740 + 1.06130i
\(512\) 1.00000 0.0441942
\(513\) −3.92799 6.80347i −0.173425 0.300381i
\(514\) 21.5636 0.951128
\(515\) 22.7929 39.4785i 1.00438 1.73963i
\(516\) 3.02359 5.23702i 0.133106 0.230547i
\(517\) 2.36547 + 4.09712i 0.104033 + 0.180191i
\(518\) −10.9317 + 18.9343i −0.480313 + 0.831927i
\(519\) −6.60870 + 11.4466i −0.290090 + 0.502450i
\(520\) −9.83905 + 17.0417i −0.431471 + 0.747330i
\(521\) 5.39513 9.34464i 0.236365 0.409396i −0.723304 0.690530i \(-0.757377\pi\)
0.959668 + 0.281134i \(0.0907106\pi\)
\(522\) 0.320326 + 0.554821i 0.0140203 + 0.0242838i
\(523\) 3.72399 6.45013i 0.162839 0.282045i −0.773047 0.634349i \(-0.781268\pi\)
0.935886 + 0.352304i \(0.114602\pi\)
\(524\) −0.217929 0.377465i −0.00952029 0.0164896i
\(525\) 10.8164 18.7346i 0.472067 0.817644i
\(526\) −11.4232 + 19.7855i −0.498074 + 0.862690i
\(527\) −5.39089 9.33729i −0.234831 0.406739i
\(528\) 2.64065 0.114920
\(529\) 9.86415 17.0852i 0.428876 0.742835i
\(530\) −6.41986 11.1195i −0.278861 0.483001i
\(531\) −6.03309 + 10.4496i −0.261814 + 0.453475i
\(532\) 13.4743 + 23.3381i 0.584183 + 1.01184i
\(533\) 32.7931 1.42043
\(534\) −4.41021 + 7.63871i −0.190848 + 0.330559i
\(535\) −2.94753 5.10527i −0.127433 0.220720i
\(536\) −4.73320 8.19815i −0.204443 0.354106i
\(537\) −15.2953 −0.660042
\(538\) 3.04919 + 5.28136i 0.131460 + 0.227695i
\(539\) 6.29416 10.9018i 0.271109 0.469574i
\(540\) −1.68125 + 2.91200i −0.0723493 + 0.125313i
\(541\) −19.0345 −0.818357 −0.409178 0.912454i \(-0.634185\pi\)
−0.409178 + 0.912454i \(0.634185\pi\)
\(542\) −10.6875 18.5113i −0.459067 0.795127i
\(543\) −0.550259 + 0.953076i −0.0236139 + 0.0409004i
\(544\) 1.53062 0.0656249
\(545\) −14.3610 24.8741i −0.615160 1.06549i
\(546\) −10.0375 17.3855i −0.429567 0.744032i
\(547\) −13.1057 22.6998i −0.560360 0.970572i −0.997465 0.0711616i \(-0.977329\pi\)
0.437105 0.899411i \(-0.356004\pi\)
\(548\) −4.70021 8.14100i −0.200783 0.347766i
\(549\) −13.3971 −0.571775
\(550\) −16.6529 −0.710081
\(551\) 5.03294 0.214411
\(552\) 0.904391 1.56645i 0.0384934 0.0666726i
\(553\) −19.9753 + 34.5982i −0.849435 + 1.47127i
\(554\) −13.3182 −0.565835
\(555\) −10.7156 + 18.5599i −0.454851 + 0.787825i
\(556\) 4.15049 + 7.18885i 0.176020 + 0.304875i
\(557\) 43.9128 1.86065 0.930323 0.366741i \(-0.119527\pi\)
0.930323 + 0.366741i \(0.119527\pi\)
\(558\) 7.04405 0.298198
\(559\) 17.6948 + 30.6483i 0.748410 + 1.29628i
\(560\) 5.76722 9.98912i 0.243709 0.422117i
\(561\) 4.04184 0.170647
\(562\) 3.84808 6.66507i 0.162321 0.281149i
\(563\) −8.06897 + 13.9759i −0.340067 + 0.589013i −0.984445 0.175694i \(-0.943783\pi\)
0.644378 + 0.764707i \(0.277116\pi\)
\(564\) −1.79158 −0.0754393
\(565\) 10.6152 0.446586
\(566\) −26.0594 −1.09536
\(567\) −1.71516 2.97075i −0.0720300 0.124760i
\(568\) 3.29893 + 5.71392i 0.138420 + 0.239751i
\(569\) 4.06657 + 7.04350i 0.170479 + 0.295279i 0.938588 0.345041i \(-0.112135\pi\)
−0.768108 + 0.640320i \(0.778802\pi\)
\(570\) 13.2078 + 22.8766i 0.553215 + 0.958196i
\(571\) −23.1445 −0.968566 −0.484283 0.874911i \(-0.660920\pi\)
−0.484283 + 0.874911i \(0.660920\pi\)
\(572\) −7.72686 + 13.3833i −0.323076 + 0.559585i
\(573\) −1.34371 2.32737i −0.0561343 0.0972274i
\(574\) −19.2219 −0.802305
\(575\) −5.70341 + 9.87859i −0.237849 + 0.411966i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 17.6409 + 30.5549i 0.734400 + 1.27202i 0.954986 + 0.296650i \(0.0958696\pi\)
−0.220586 + 0.975367i \(0.570797\pi\)
\(578\) −14.6572 −0.609659
\(579\) 7.60193 + 13.1669i 0.315926 + 0.547199i
\(580\) −1.07709 1.86558i −0.0447239 0.0774640i
\(581\) −24.7574 + 42.8811i −1.02711 + 1.77901i
\(582\) 8.55460 0.354600
\(583\) −5.04168 8.73245i −0.208805 0.361661i
\(584\) −4.03786 + 6.99379i −0.167088 + 0.289405i
\(585\) −9.83905 17.0417i −0.406795 0.704589i
\(586\) 13.8929 24.0632i 0.573910 0.994041i
\(587\) −2.47082 −0.101982 −0.0509909 0.998699i \(-0.516238\pi\)
−0.0509909 + 0.998699i \(0.516238\pi\)
\(588\) 2.38356 + 4.12845i 0.0982965 + 0.170254i
\(589\) 27.6689 47.9240i 1.14008 1.97467i
\(590\) 20.2862 35.1368i 0.835171 1.44656i
\(591\) −6.52699 11.3051i −0.268485 0.465029i
\(592\) −3.18680 + 5.51970i −0.130977 + 0.226858i
\(593\) −7.92679 13.7296i −0.325514 0.563807i 0.656102 0.754672i \(-0.272204\pi\)
−0.981616 + 0.190865i \(0.938871\pi\)
\(594\) −1.32033 + 2.28687i −0.0541736 + 0.0938315i
\(595\) 8.82743 15.2896i 0.361889 0.626811i
\(596\) −4.47847 + 7.75694i −0.183445 + 0.317737i
\(597\) 9.36374 16.2185i 0.383232 0.663778i
\(598\) 5.29271 + 9.16725i 0.216435 + 0.374877i
\(599\) 14.5732 25.2415i 0.595444 1.03134i −0.398040 0.917368i \(-0.630310\pi\)
0.993484 0.113971i \(-0.0363571\pi\)
\(600\) 3.15318 5.46146i 0.128728 0.222963i
\(601\) 16.5336 0.674419 0.337209 0.941430i \(-0.390517\pi\)
0.337209 + 0.941430i \(0.390517\pi\)
\(602\) −10.3719 17.9647i −0.422727 0.732185i
\(603\) 9.46641 0.385502
\(604\) −3.52522 + 6.10586i −0.143439 + 0.248444i
\(605\) 13.5406 0.550504
\(606\) 7.97016 13.8047i 0.323766 0.560779i
\(607\) −6.61248 11.4531i −0.268392 0.464869i 0.700055 0.714089i \(-0.253159\pi\)
−0.968447 + 0.249220i \(0.919826\pi\)
\(608\) 3.92799 + 6.80347i 0.159301 + 0.275917i
\(609\) 2.19764 0.0890530
\(610\) 45.0477 1.82393
\(611\) 5.24239 9.08008i 0.212084 0.367341i
\(612\) −0.765311 + 1.32556i −0.0309359 + 0.0535825i
\(613\) 15.2525 0.616043 0.308021 0.951379i \(-0.400333\pi\)
0.308021 + 0.951379i \(0.400333\pi\)
\(614\) 4.98307 + 8.63093i 0.201100 + 0.348316i
\(615\) −18.8418 −0.759773
\(616\) 4.52915 7.84471i 0.182484 0.316072i
\(617\) 31.0947 1.25182 0.625912 0.779894i \(-0.284727\pi\)
0.625912 + 0.779894i \(0.284727\pi\)
\(618\) 6.77858 + 11.7409i 0.272675 + 0.472286i
\(619\) 2.00126 + 3.46629i 0.0804376 + 0.139322i 0.903438 0.428719i \(-0.141035\pi\)
−0.823000 + 0.568041i \(0.807702\pi\)
\(620\) −23.6855 −0.951234
\(621\) 0.904391 + 1.56645i 0.0362920 + 0.0628595i
\(622\) 12.9852 22.4910i 0.520658 0.901806i
\(623\) 15.1284 + 26.2032i 0.606108 + 1.04981i
\(624\) −2.92612 5.06819i −0.117139 0.202890i
\(625\) 8.38085 14.5161i 0.335234 0.580642i
\(626\) −2.12041 3.67266i −0.0847488 0.146789i
\(627\) 10.3724 + 17.9656i 0.414235 + 0.717477i
\(628\) −19.4984 −0.778072
\(629\) −4.87778 + 8.44857i −0.194490 + 0.336866i
\(630\) 5.76722 + 9.98912i 0.229771 + 0.397976i
\(631\) 7.27173 + 12.5950i 0.289483 + 0.501399i 0.973686 0.227892i \(-0.0731833\pi\)
−0.684203 + 0.729291i \(0.739850\pi\)
\(632\) −5.82315 + 10.0860i −0.231632 + 0.401199i
\(633\) −6.98152 + 12.0923i −0.277490 + 0.480627i
\(634\) 8.43404 14.6082i 0.334959 0.580165i
\(635\) −31.2144 −1.23871
\(636\) 3.81851 0.151414
\(637\) −27.8984 −1.10537
\(638\) −0.845869 1.46509i −0.0334883 0.0580034i
\(639\) −6.59787 −0.261008
\(640\) 1.68125 2.91200i 0.0664571 0.115107i
\(641\) 32.6511 1.28964 0.644821 0.764334i \(-0.276932\pi\)
0.644821 + 0.764334i \(0.276932\pi\)
\(642\) 1.75318 0.0691925
\(643\) −41.1687 −1.62353 −0.811767 0.583982i \(-0.801494\pi\)
−0.811767 + 0.583982i \(0.801494\pi\)
\(644\) −3.10235 5.37344i −0.122250 0.211743i
\(645\) −10.1668 17.6094i −0.400318 0.693371i
\(646\) 6.01226 + 10.4135i 0.236549 + 0.409715i
\(647\) 20.8314 36.0811i 0.818969 1.41850i −0.0874741 0.996167i \(-0.527880\pi\)
0.906443 0.422329i \(-0.138787\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) 15.9313 27.5938i 0.625358 1.08315i
\(650\) 18.4531 + 31.9618i 0.723792 + 1.25364i
\(651\) 12.0817 20.9261i 0.473518 0.820158i
\(652\) −17.1562 −0.671889
\(653\) 39.9335 1.56272 0.781359 0.624082i \(-0.214527\pi\)
0.781359 + 0.624082i \(0.214527\pi\)
\(654\) 8.54191 0.334015
\(655\) −1.46557 −0.0572646
\(656\) −5.60351 −0.218780
\(657\) −4.03786 6.99379i −0.157532 0.272854i
\(658\) −3.07286 + 5.32234i −0.119792 + 0.207487i
\(659\) −17.7208 + 30.6934i −0.690306 + 1.19564i 0.281432 + 0.959581i \(0.409191\pi\)
−0.971738 + 0.236063i \(0.924143\pi\)
\(660\) 4.43958 7.68959i 0.172811 0.299317i
\(661\) 19.8097 0.770509 0.385255 0.922810i \(-0.374114\pi\)
0.385255 + 0.922810i \(0.374114\pi\)
\(662\) 4.13258 0.160617
\(663\) −4.47878 7.75748i −0.173942 0.301276i
\(664\) −7.21722 + 12.5006i −0.280082 + 0.485117i
\(665\) 90.6142 3.51387
\(666\) −3.18680 5.51970i −0.123486 0.213884i
\(667\) −1.15880 −0.0448689
\(668\) 0.0473273 0.00183115
\(669\) 12.3663 8.37113i 0.478107 0.323647i
\(670\) −31.8307 −1.22973
\(671\) 35.3771 1.36572
\(672\) 1.71516 + 2.97075i 0.0661638 + 0.114599i
\(673\) 32.8376 1.26580 0.632899 0.774235i \(-0.281865\pi\)
0.632899 + 0.774235i \(0.281865\pi\)
\(674\) −1.03630 + 1.79492i −0.0399167 + 0.0691377i
\(675\) 3.15318 + 5.46146i 0.121366 + 0.210212i
\(676\) 21.2487 0.817258
\(677\) −42.6068 −1.63751 −0.818755 0.574143i \(-0.805335\pi\)
−0.818755 + 0.574143i \(0.805335\pi\)
\(678\) −1.57848 + 2.73400i −0.0606210 + 0.104999i
\(679\) 14.6725 25.4136i 0.563080 0.975283i
\(680\) 2.57335 4.45718i 0.0986835 0.170925i
\(681\) 4.91390 + 8.51113i 0.188301 + 0.326147i
\(682\) −18.6009 −0.712264
\(683\) −44.9142 −1.71859 −0.859297 0.511478i \(-0.829098\pi\)
−0.859297 + 0.511478i \(0.829098\pi\)
\(684\) −7.85597 −0.300381
\(685\) −31.6088 −1.20771
\(686\) −7.65949 −0.292441
\(687\) 8.75138 15.1578i 0.333886 0.578307i
\(688\) −3.02359 5.23702i −0.115273 0.199659i
\(689\) −11.1734 + 19.3529i −0.425674 + 0.737289i
\(690\) −3.04101 5.26718i −0.115769 0.200518i
\(691\) 3.37232 5.84103i 0.128289 0.222203i −0.794725 0.606970i \(-0.792385\pi\)
0.923014 + 0.384767i \(0.125718\pi\)
\(692\) 6.60870 + 11.4466i 0.251225 + 0.435135i
\(693\) 4.52915 + 7.84471i 0.172048 + 0.297996i
\(694\) −10.6601 18.4638i −0.404651 0.700875i
\(695\) 27.9120 1.05876
\(696\) 0.640652 0.0242838
\(697\) −8.57685 −0.324872
\(698\) −12.9119 + 22.3641i −0.488724 + 0.846495i
\(699\) −19.3566 −0.732133
\(700\) −10.8164 18.7346i −0.408822 0.708101i
\(701\) −4.52008 −0.170721 −0.0853605 0.996350i \(-0.527204\pi\)
−0.0853605 + 0.996350i \(0.527204\pi\)
\(702\) 5.85224 0.220879
\(703\) −50.0708 −1.88846
\(704\) 1.32033 2.28687i 0.0497617 0.0861897i
\(705\) −3.01209 + 5.21710i −0.113442 + 0.196487i
\(706\) 15.1245 26.1964i 0.569219 0.985915i
\(707\) −27.3402 47.3547i −1.02824 1.78096i
\(708\) 6.03309 + 10.4496i 0.226738 + 0.392721i
\(709\) −13.8752 + 24.0326i −0.521096 + 0.902564i 0.478603 + 0.878031i \(0.341143\pi\)
−0.999699 + 0.0245331i \(0.992190\pi\)
\(710\) 22.1853 0.832598
\(711\) −5.82315 10.0860i −0.218385 0.378254i
\(712\) 4.41021 + 7.63871i 0.165280 + 0.286273i
\(713\) −6.37057 + 11.0342i −0.238580 + 0.413232i
\(714\) 2.62526 + 4.54709i 0.0982481 + 0.170171i
\(715\) 25.9815 + 45.0013i 0.971653 + 1.68295i
\(716\) −7.64767 + 13.2461i −0.285807 + 0.495032i
\(717\) −12.4188 21.5101i −0.463790 0.803308i
\(718\) −5.74869 −0.214539
\(719\) 4.74456 + 8.21783i 0.176942 + 0.306473i 0.940832 0.338874i \(-0.110046\pi\)
−0.763889 + 0.645347i \(0.776713\pi\)
\(720\) 1.68125 + 2.91200i 0.0626563 + 0.108524i
\(721\) 46.5055 1.73195
\(722\) −21.3581 + 36.9934i −0.794868 + 1.37675i
\(723\) 3.85204 0.143259
\(724\) 0.550259 + 0.953076i 0.0204502 + 0.0354208i
\(725\) −4.04018 −0.150048
\(726\) −2.01348 + 3.48745i −0.0747272 + 0.129431i
\(727\) 26.1186 45.2388i 0.968687 1.67781i 0.269321 0.963050i \(-0.413201\pi\)
0.699365 0.714764i \(-0.253466\pi\)
\(728\) −20.0751 −0.744032
\(729\) 1.00000 0.0370370
\(730\) 13.5773 + 23.5165i 0.502518 + 0.870386i
\(731\) −4.62798 8.01590i −0.171172 0.296479i
\(732\) −6.69855 + 11.6022i −0.247586 + 0.428831i
\(733\) 3.43847 0.127003 0.0635013 0.997982i \(-0.479773\pi\)
0.0635013 + 0.997982i \(0.479773\pi\)
\(734\) −5.93840 + 10.2856i −0.219190 + 0.379649i
\(735\) 16.0294 0.591254
\(736\) −0.904391 1.56645i −0.0333363 0.0577402i
\(737\) −24.9975 −0.920794
\(738\) 2.80175 4.85278i 0.103134 0.178633i
\(739\) −4.44567 + 7.70013i −0.163537 + 0.283254i −0.936135 0.351642i \(-0.885624\pi\)
0.772598 + 0.634895i \(0.218957\pi\)
\(740\) 10.7156 + 18.5599i 0.393913 + 0.682277i
\(741\) 22.9875 39.8155i 0.844467 1.46266i
\(742\) 6.54937 11.3438i 0.240435 0.416446i
\(743\) −1.67093 + 2.89413i −0.0613004 + 0.106175i −0.895047 0.445972i \(-0.852858\pi\)
0.833747 + 0.552147i \(0.186191\pi\)
\(744\) 3.52202 6.10032i 0.129124 0.223649i
\(745\) 15.0588 + 26.0826i 0.551712 + 0.955594i
\(746\) 9.56648 16.5696i 0.350254 0.606657i
\(747\) −7.21722 12.5006i −0.264064 0.457373i
\(748\) 2.02092 3.50034i 0.0738921 0.127985i
\(749\) 3.00699 5.20826i 0.109873 0.190306i
\(750\) −2.19630 3.80410i −0.0801974 0.138906i
\(751\) −18.5868 −0.678243 −0.339121 0.940743i \(-0.610130\pi\)
−0.339121 + 0.940743i \(0.610130\pi\)
\(752\) −0.895792 + 1.55156i −0.0326662 + 0.0565795i
\(753\) 11.9327 + 20.6680i 0.434851 + 0.753184i
\(754\) −1.87462 + 3.24694i −0.0682698 + 0.118247i
\(755\) 11.8535 + 20.5309i 0.431394 + 0.747197i
\(756\) −3.43032 −0.124760
\(757\) −23.2265 + 40.2294i −0.844180 + 1.46216i 0.0421508 + 0.999111i \(0.486579\pi\)
−0.886331 + 0.463052i \(0.846754\pi\)
\(758\) −12.8802 22.3092i −0.467830 0.810305i
\(759\) −2.38818 4.13645i −0.0866855 0.150144i
\(760\) 26.4156 0.958196
\(761\) −11.4447 19.8228i −0.414870 0.718575i 0.580545 0.814228i \(-0.302839\pi\)
−0.995415 + 0.0956529i \(0.969506\pi\)
\(762\) 4.64156 8.03942i 0.168146 0.291238i
\(763\) 14.6508 25.3759i 0.530393 0.918668i
\(764\) −2.68742 −0.0972274
\(765\) 2.57335 + 4.45718i 0.0930397 + 0.161150i
\(766\) 0.801373 1.38802i 0.0289548 0.0501511i
\(767\) −70.6142 −2.54973
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) −10.3408 17.9108i −0.372898 0.645879i 0.617112 0.786876i \(-0.288303\pi\)
−0.990010 + 0.140997i \(0.954969\pi\)
\(770\) −15.2292 26.3778i −0.548823 0.950589i
\(771\) 10.7818 + 18.6746i 0.388296 + 0.672549i
\(772\) 15.2039 0.547199
\(773\) −20.5992 −0.740903 −0.370452 0.928852i \(-0.620797\pi\)
−0.370452 + 0.928852i \(0.620797\pi\)
\(774\) 6.04719 0.217362
\(775\) −22.2111 + 38.4708i −0.797847 + 1.38191i
\(776\) 4.27730 7.40850i 0.153546 0.265950i
\(777\) −21.8635 −0.784349
\(778\) −7.72986 + 13.3885i −0.277129 + 0.480002i
\(779\) −22.0105 38.1233i −0.788608 1.36591i
\(780\) −19.6781 −0.704589
\(781\) 17.4227 0.623432
\(782\) −1.38428 2.39764i −0.0495018 0.0857396i
\(783\) −0.320326 + 0.554821i −0.0114475 + 0.0198277i
\(784\) 4.76712 0.170254
\(785\) −32.7816 + 56.7795i −1.17003 + 2.02655i
\(786\) 0.217929 0.377465i 0.00777328 0.0134637i
\(787\) 48.3319 1.72285 0.861423 0.507888i \(-0.169574\pi\)
0.861423 + 0.507888i \(0.169574\pi\)
\(788\) −13.0540 −0.465029
\(789\) −22.8463 −0.813351
\(790\) 19.5803 + 33.9140i 0.696635 + 1.20661i
\(791\) 5.41469 + 9.37851i 0.192524 + 0.333462i
\(792\) 1.32033 + 2.28687i 0.0469157 + 0.0812604i
\(793\) −39.2015 67.8991i −1.39209 2.41117i
\(794\) 9.92942 0.352382
\(795\) 6.41986 11.1195i 0.227689 0.394369i
\(796\) −9.36374 16.2185i −0.331889 0.574848i
\(797\) 2.45990 0.0871342 0.0435671 0.999051i \(-0.486128\pi\)
0.0435671 + 0.999051i \(0.486128\pi\)
\(798\) −13.4743 + 23.3381i −0.476984 + 0.826160i
\(799\) −1.37112 + 2.37485i −0.0485067 + 0.0840160i
\(800\) −3.15318 5.46146i −0.111482 0.193092i
\(801\) −8.82042 −0.311654
\(802\) 2.85507 + 4.94513i 0.100816 + 0.174619i
\(803\) 10.6626 + 18.4682i 0.376275 + 0.651727i
\(804\) 4.73320 8.19815i 0.166927 0.289127i
\(805\) −20.8633 −0.735334
\(806\) 20.6117 + 35.7005i 0.726017 + 1.25750i
\(807\) −3.04919 + 5.28136i −0.107337 + 0.185913i
\(808\) −7.97016 13.8047i −0.280389 0.485649i
\(809\) −3.99653 + 6.92220i −0.140511 + 0.243371i −0.927689 0.373354i \(-0.878208\pi\)
0.787178 + 0.616725i \(0.211541\pi\)
\(810\) −3.36249 −0.118146
\(811\) 22.1783 + 38.4140i 0.778786 + 1.34890i 0.932642 + 0.360804i \(0.117498\pi\)
−0.153855 + 0.988093i \(0.549169\pi\)
\(812\) 1.09882 1.90322i 0.0385611 0.0667898i
\(813\) 10.6875 18.5113i 0.374826 0.649218i
\(814\) 8.41522 + 14.5756i 0.294953 + 0.510874i
\(815\) −28.8438 + 49.9589i −1.01035 + 1.74998i
\(816\) 0.765311 + 1.32556i 0.0267912 + 0.0464038i
\(817\) 23.7533 41.1419i 0.831022 1.43937i
\(818\) −0.228104 + 0.395087i −0.00797546 + 0.0138139i
\(819\) 10.0375 17.3855i 0.350740 0.607499i
\(820\) −9.42088 + 16.3174i −0.328991 + 0.569830i
\(821\) −15.7628 27.3020i −0.550127 0.952847i −0.998265 0.0588829i \(-0.981246\pi\)
0.448138 0.893964i \(-0.352087\pi\)
\(822\) 4.70021 8.14100i 0.163939 0.283950i
\(823\) 7.67960 13.3015i 0.267694 0.463659i −0.700572 0.713582i \(-0.747072\pi\)
0.968266 + 0.249922i \(0.0804051\pi\)
\(824\) 13.5572 0.472286
\(825\) −8.32644 14.4218i −0.289889 0.502103i
\(826\) 41.3909 1.44017
\(827\) 11.9359 20.6737i 0.415053 0.718893i −0.580381 0.814345i \(-0.697096\pi\)
0.995434 + 0.0954519i \(0.0304296\pi\)
\(828\) 1.80878 0.0628595
\(829\) −0.539039 + 0.933643i −0.0187216 + 0.0324268i −0.875234 0.483699i \(-0.839293\pi\)
0.856513 + 0.516126i \(0.172626\pi\)
\(830\) 24.2678 + 42.0331i 0.842349 + 1.45899i
\(831\) −6.65909 11.5339i −0.231001 0.400106i
\(832\) −5.85224 −0.202890
\(833\) 7.29667 0.252814
\(834\) −4.15049 + 7.18885i −0.143720 + 0.248930i
\(835\) 0.0795688 0.137817i 0.00275359 0.00476936i
\(836\) 20.7449 0.717477
\(837\) 3.52202 + 6.10032i 0.121739 + 0.210858i
\(838\) −32.0750 −1.10801
\(839\) 18.9686 32.8545i 0.654867 1.13426i −0.327060 0.945004i \(-0.606058\pi\)
0.981927 0.189260i \(-0.0606088\pi\)
\(840\) 11.5344 0.397976
\(841\) 14.2948 + 24.7593i 0.492924 + 0.853769i
\(842\) −2.43218 4.21267i −0.0838186 0.145178i
\(843\) 7.69616 0.265070
\(844\) 6.98152 + 12.0923i 0.240314 + 0.416236i
\(845\) 35.7243 61.8763i 1.22895 2.12861i
\(846\) −0.895792 1.55156i −0.0307980 0.0533436i
\(847\) 6.90689 + 11.9631i 0.237323 + 0.411056i
\(848\) 1.90926 3.30693i 0.0655642 0.113560i
\(849\) −13.0297 22.5681i −0.447178 0.774536i
\(850\) −4.82632 8.35943i −0.165541 0.286726i
\(851\) 11.5284 0.395190
\(852\) −3.29893 + 5.71392i −0.113020 + 0.195756i
\(853\) 17.4900 + 30.2937i 0.598848 + 1.03723i 0.992991 + 0.118186i \(0.0377079\pi\)
−0.394144 + 0.919049i \(0.628959\pi\)
\(854\) 22.9782 + 39.7994i 0.786298 + 1.36191i
\(855\) −13.2078 + 22.8766i −0.451698 + 0.782364i
\(856\) 0.876590 1.51830i 0.0299612 0.0518944i
\(857\) −17.4502 + 30.2247i −0.596088 + 1.03245i 0.397305 + 0.917687i \(0.369946\pi\)
−0.993392 + 0.114768i \(0.963388\pi\)
\(858\) −15.4537 −0.527582
\(859\) 13.5060 0.460817 0.230409 0.973094i \(-0.425994\pi\)
0.230409 + 0.973094i \(0.425994\pi\)
\(860\) −20.3336 −0.693371
\(861\) −9.61093 16.6466i −0.327540 0.567315i
\(862\) 14.1890 0.483279
\(863\) 15.0514 26.0698i 0.512356 0.887426i −0.487542 0.873100i \(-0.662106\pi\)
0.999897 0.0143262i \(-0.00456034\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 44.4434 1.51112
\(866\) 2.03787 0.0692495
\(867\) −7.32860 12.6935i −0.248892 0.431094i
\(868\) −12.0817 20.9261i −0.410079 0.710278i
\(869\) 15.3769 + 26.6336i 0.521626 + 0.903482i
\(870\) 1.07709 1.86558i 0.0365169 0.0632491i
\(871\) 27.6998 + 47.9775i 0.938574 + 1.62566i
\(872\) 4.27095 7.39751i 0.144633 0.250511i
\(873\) 4.27730 + 7.40850i 0.144765 + 0.250740i
\(874\) 7.10487 12.3060i 0.240326 0.416256i
\(875\) −15.0680 −0.509392
\(876\) −8.07573 −0.272854
\(877\) 37.8631 1.27855 0.639273 0.768980i \(-0.279235\pi\)
0.639273 + 0.768980i \(0.279235\pi\)
\(878\) 1.35115 0.0455991
\(879\) 27.7858 0.937191
\(880\) −4.43958 7.68959i −0.149658 0.259216i
\(881\) 9.01079 15.6071i 0.303581 0.525818i −0.673363 0.739312i \(-0.735151\pi\)
0.976944 + 0.213494i \(0.0684843\pi\)
\(882\) −2.38356 + 4.12845i −0.0802587 + 0.139012i
\(883\) 20.5397 35.5757i 0.691215 1.19722i −0.280225 0.959934i \(-0.590409\pi\)
0.971440 0.237285i \(-0.0762575\pi\)
\(884\) −8.95757 −0.301276
\(885\) 40.5725 1.36383
\(886\) 14.0780 + 24.3839i 0.472961 + 0.819193i
\(887\) −5.29745 + 9.17545i −0.177871 + 0.308082i −0.941151 0.337986i \(-0.890254\pi\)
0.763280 + 0.646068i \(0.223588\pi\)
\(888\) −6.37359 −0.213884
\(889\) −15.9221 27.5778i −0.534009 0.924931i
\(890\) 29.6586 0.994158
\(891\) −2.64065 −0.0884652
\(892\) −1.06649 14.8951i −0.0357086 0.498723i
\(893\) −14.0746 −0.470989
\(894\) −8.95694 −0.299565
\(895\) 25.7152 + 44.5401i 0.859565 + 1.48881i
\(896\) 3.43032 0.114599
\(897\) −5.29271 + 9.16725i −0.176719 + 0.306085i
\(898\) 20.8849 + 36.1738i 0.696940 + 1.20713i
\(899\) −4.51278 −0.150510
\(900\) 6.30635 0.210212
\(901\) 2.92235 5.06166i 0.0973576 0.168628i
\(902\) −7.39846 + 12.8145i −0.246342 + 0.426676i
\(903\) 10.3719 17.9647i 0.345156 0.597827i
\(904\) 1.57848 + 2.73400i 0.0524993 + 0.0909315i
\(905\) 3.70048 0.123008
\(906\) −7.05044 −0.234235
\(907\) −32.2076 −1.06944 −0.534718 0.845030i \(-0.679582\pi\)
−0.534718 + 0.845030i \(0.679582\pi\)
\(908\) 9.82781 0.326147
\(909\) 15.9403 0.528707
\(910\) −33.7511 + 58.4587i −1.11884 + 1.93789i
\(911\) −15.0932 26.1422i −0.500060 0.866129i −1.00000 6.88529e-5i \(-0.999978\pi\)
0.499940 0.866060i \(-0.333355\pi\)
\(912\) −3.92799 + 6.80347i −0.130069 + 0.225285i
\(913\) 19.0582 + 33.0097i 0.630733 + 1.09246i
\(914\) 5.50347 9.53228i 0.182038 0.315300i
\(915\) 22.5238 + 39.0124i 0.744615 + 1.28971i
\(916\) −8.75138 15.1578i −0.289154 0.500829i
\(917\) −0.747568 1.29483i −0.0246869 0.0427589i
\(918\) −1.53062 −0.0505181
\(919\) 18.6651 0.615703 0.307852 0.951434i \(-0.400390\pi\)
0.307852 + 0.951434i \(0.400390\pi\)
\(920\) −6.08201 −0.200518
\(921\) −4.98307 + 8.63093i −0.164198 + 0.284399i
\(922\) −34.8496 −1.14771
\(923\) −19.3061 33.4392i −0.635470 1.10067i
\(924\) 9.05829 0.297996
\(925\) 40.1941 1.32157
\(926\) 28.7050 0.943305
\(927\) −6.77858 + 11.7409i −0.222638 + 0.385620i
\(928\) 0.320326 0.554821i 0.0105152 0.0182129i
\(929\) −8.39620 + 14.5427i −0.275470 + 0.477129i −0.970254 0.242090i \(-0.922167\pi\)
0.694783 + 0.719219i \(0.255500\pi\)
\(930\) −11.8428 20.5123i −0.388340 0.672624i
\(931\) 18.7252 + 32.4330i 0.613694 + 1.06295i
\(932\) −9.67829 + 16.7633i −0.317023 + 0.549100i
\(933\) 25.9703 0.850231
\(934\) 10.2597 + 17.7704i 0.335709 + 0.581465i
\(935\) −6.79533 11.7699i −0.222231 0.384915i
\(936\) 2.92612 5.06819i 0.0956432 0.165659i
\(937\) −13.8837 24.0473i −0.453562 0.785592i 0.545042 0.838408i \(-0.316514\pi\)
−0.998604 + 0.0528164i \(0.983180\pi\)
\(938\) −16.2364 28.1223i −0.530138 0.918226i
\(939\) 2.12041 3.67266i 0.0691971 0.119853i
\(940\) 3.01209 + 5.21710i 0.0982436 + 0.170163i
\(941\) 32.5006 1.05949 0.529745 0.848157i \(-0.322287\pi\)
0.529745 + 0.848157i \(0.322287\pi\)
\(942\) −9.74921 16.8861i −0.317646 0.550180i
\(943\) 5.06776 + 8.77762i 0.165029 + 0.285839i
\(944\) 12.0662 0.392721
\(945\) −5.76722 + 9.98912i −0.187608 + 0.324946i
\(946\) −15.9685 −0.519181
\(947\) −19.9617 34.5747i −0.648668 1.12353i −0.983441 0.181228i \(-0.941993\pi\)
0.334773 0.942299i \(-0.391340\pi\)
\(948\) −11.6463 −0.378254
\(949\) 23.6305 40.9293i 0.767080 1.32862i
\(950\) 24.7713 42.9051i 0.803686 1.39202i
\(951\) 16.8681 0.546985
\(952\) 5.25053 0.170171
\(953\) −8.12502 14.0729i −0.263195 0.455867i 0.703894 0.710305i \(-0.251443\pi\)
−0.967089 + 0.254438i \(0.918110\pi\)
\(954\) 1.90926 + 3.30693i 0.0618145 + 0.107066i
\(955\) −4.51821 + 7.82577i −0.146206 + 0.253236i
\(956\) −24.8377 −0.803308
\(957\) 0.845869 1.46509i 0.0273431 0.0473596i
\(958\) 21.0954 0.681563
\(959\) −16.1232 27.9263i −0.520646 0.901786i
\(960\) 3.36249 0.108524
\(961\) −9.30929 + 16.1242i −0.300300 + 0.520134i
\(962\) 18.6499 32.3026i 0.601297 1.04148i
\(963\) 0.876590 + 1.51830i 0.0282477 + 0.0489265i
\(964\) 1.92602 3.33597i 0.0620330 0.107444i
\(965\) 25.5614 44.2737i 0.822852 1.42522i
\(966\) 3.10235 5.37344i 0.0998166 0.172887i
\(967\) −16.6011 + 28.7540i −0.533856 + 0.924666i 0.465362 + 0.885121i \(0.345924\pi\)
−0.999218 + 0.0395454i \(0.987409\pi\)
\(968\) 2.01348 + 3.48745i 0.0647157 + 0.112091i
\(969\) −6.01226 + 10.4135i −0.193142 + 0.334531i
\(970\) −14.3824 24.9110i −0.461791 0.799845i
\(971\) 15.8313 27.4207i 0.508052 0.879972i −0.491905 0.870649i \(-0.663699\pi\)
0.999957 0.00932250i \(-0.00296749\pi\)
\(972\) 0.500000 0.866025i 0.0160375 0.0277778i
\(973\) 14.2375 + 24.6601i 0.456434 + 0.790567i
\(974\) 20.6286 0.660982
\(975\) −18.4531 + 31.9618i −0.590973 + 1.02360i
\(976\) 6.69855 + 11.6022i 0.214415 + 0.371379i
\(977\) −1.79436 + 3.10793i −0.0574067 + 0.0994313i −0.893301 0.449460i \(-0.851617\pi\)
0.835894 + 0.548891i \(0.184950\pi\)
\(978\) −8.57810 14.8577i −0.274297 0.475097i
\(979\) 23.2917 0.744404
\(980\) 8.01471 13.8819i 0.256020 0.443440i
\(981\) 4.27095 + 7.39751i 0.136361 + 0.236184i
\(982\) −0.701973 1.21585i −0.0224009 0.0387994i
\(983\) −26.2023 −0.835725 −0.417862 0.908510i \(-0.637221\pi\)
−0.417862 + 0.908510i \(0.637221\pi\)
\(984\) −2.80175 4.85278i −0.0893167 0.154701i
\(985\) −21.9470 + 38.0132i −0.699288 + 1.21120i
\(986\) 0.490298 0.849221i 0.0156143 0.0270447i
\(987\) −6.14571 −0.195620
\(988\) −22.9875 39.8155i −0.731330 1.26670i
\(989\) −5.46902 + 9.47263i −0.173905 + 0.301212i
\(990\) 8.87917 0.282199
\(991\) 15.3451 + 26.5785i 0.487452 + 0.844292i 0.999896 0.0144285i \(-0.00459290\pi\)
−0.512443 + 0.858721i \(0.671260\pi\)
\(992\) −3.52202 6.10032i −0.111824 0.193685i
\(993\) 2.06629 + 3.57892i 0.0655718 + 0.113574i
\(994\) 11.3164 + 19.6006i 0.358935 + 0.621693i
\(995\) −62.9710 −1.99631
\(996\) −14.4344 −0.457373
\(997\) 39.2107 1.24182 0.620908 0.783883i \(-0.286764\pi\)
0.620908 + 0.783883i \(0.286764\pi\)
\(998\) −9.59184 + 16.6136i −0.303624 + 0.525893i
\(999\) 3.18680 5.51970i 0.100826 0.174635i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.e.i.1075.7 yes 14
223.39 even 3 inner 1338.2.e.i.931.7 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.e.i.931.7 14 223.39 even 3 inner
1338.2.e.i.1075.7 yes 14 1.1 even 1 trivial