Properties

Label 1338.2.e.h.931.7
Level $1338$
Weight $2$
Character 1338.931
Analytic conductor $10.684$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1338,2,Mod(931,1338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1338.931"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-14,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.6839837904\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 3 x^{13} + 21 x^{12} - 26 x^{11} + 217 x^{10} - 335 x^{9} + 1058 x^{8} - 1539 x^{7} + 3657 x^{6} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 931.7
Root \(0.802633 + 1.39020i\) of defining polynomial
Character \(\chi\) \(=\) 1338.931
Dual form 1338.2.e.h.1075.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(-0.500000 + 0.866025i) q^{3} +1.00000 q^{4} +(2.11078 + 3.65598i) q^{5} +(0.500000 - 0.866025i) q^{6} +2.59085 q^{7} -1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-2.11078 - 3.65598i) q^{10} +(-2.57542 - 4.46076i) q^{11} +(-0.500000 + 0.866025i) q^{12} -4.87229 q^{13} -2.59085 q^{14} -4.22156 q^{15} +1.00000 q^{16} +5.29711 q^{17} +(0.500000 + 0.866025i) q^{18} +(-3.15288 + 5.46095i) q^{19} +(2.11078 + 3.65598i) q^{20} +(-1.29542 + 2.24374i) q^{21} +(2.57542 + 4.46076i) q^{22} +(-2.33881 + 4.05093i) q^{23} +(0.500000 - 0.866025i) q^{24} +(-6.41078 + 11.1038i) q^{25} +4.87229 q^{26} +1.00000 q^{27} +2.59085 q^{28} +(-3.76859 - 6.52739i) q^{29} +4.22156 q^{30} +(-4.69341 + 8.12922i) q^{31} -1.00000 q^{32} +5.15084 q^{33} -5.29711 q^{34} +(5.46871 + 9.47208i) q^{35} +(-0.500000 - 0.866025i) q^{36} +(-1.08733 - 1.88331i) q^{37} +(3.15288 - 5.46095i) q^{38} +(2.43615 - 4.21953i) q^{39} +(-2.11078 - 3.65598i) q^{40} +4.24967 q^{41} +(1.29542 - 2.24374i) q^{42} +(-6.05006 + 10.4790i) q^{43} +(-2.57542 - 4.46076i) q^{44} +(2.11078 - 3.65598i) q^{45} +(2.33881 - 4.05093i) q^{46} +(0.796236 + 1.37912i) q^{47} +(-0.500000 + 0.866025i) q^{48} -0.287512 q^{49} +(6.41078 - 11.1038i) q^{50} +(-2.64855 + 4.58743i) q^{51} -4.87229 q^{52} +(-0.450783 - 0.780778i) q^{53} -1.00000 q^{54} +(10.8723 - 18.8313i) q^{55} -2.59085 q^{56} +(-3.15288 - 5.46095i) q^{57} +(3.76859 + 6.52739i) q^{58} +5.29542 q^{59} -4.22156 q^{60} +(6.65178 - 11.5212i) q^{61} +(4.69341 - 8.12922i) q^{62} +(-1.29542 - 2.24374i) q^{63} +1.00000 q^{64} +(-10.2843 - 17.8130i) q^{65} -5.15084 q^{66} +(-1.27918 + 2.21561i) q^{67} +5.29711 q^{68} +(-2.33881 - 4.05093i) q^{69} +(-5.46871 - 9.47208i) q^{70} +(-7.07517 + 12.2546i) q^{71} +(0.500000 + 0.866025i) q^{72} +(4.53900 + 7.86178i) q^{73} +(1.08733 + 1.88331i) q^{74} +(-6.41078 - 11.1038i) q^{75} +(-3.15288 + 5.46095i) q^{76} +(-6.67251 - 11.5571i) q^{77} +(-2.43615 + 4.21953i) q^{78} +(0.587771 + 1.01805i) q^{79} +(2.11078 + 3.65598i) q^{80} +(-0.500000 + 0.866025i) q^{81} -4.24967 q^{82} +(5.17514 + 8.96361i) q^{83} +(-1.29542 + 2.24374i) q^{84} +(11.1810 + 19.3661i) q^{85} +(6.05006 - 10.4790i) q^{86} +7.53718 q^{87} +(2.57542 + 4.46076i) q^{88} +(-1.26932 + 2.19852i) q^{89} +(-2.11078 + 3.65598i) q^{90} -12.6234 q^{91} +(-2.33881 + 4.05093i) q^{92} +(-4.69341 - 8.12922i) q^{93} +(-0.796236 - 1.37912i) q^{94} -26.6202 q^{95} +(0.500000 - 0.866025i) q^{96} +(1.65648 + 2.86911i) q^{97} +0.287512 q^{98} +(-2.57542 + 4.46076i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{2} - 7 q^{3} + 14 q^{4} - 4 q^{5} + 7 q^{6} + 12 q^{7} - 14 q^{8} - 7 q^{9} + 4 q^{10} - 10 q^{11} - 7 q^{12} - 4 q^{13} - 12 q^{14} + 8 q^{15} + 14 q^{16} + 8 q^{17} + 7 q^{18} - 8 q^{19}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1338\mathbb{Z}\right)^\times\).

\(n\) \(893\) \(895\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 1.00000 0.500000
\(5\) 2.11078 + 3.65598i 0.943969 + 1.63500i 0.757801 + 0.652485i \(0.226274\pi\)
0.186168 + 0.982518i \(0.440393\pi\)
\(6\) 0.500000 0.866025i 0.204124 0.353553i
\(7\) 2.59085 0.979248 0.489624 0.871934i \(-0.337134\pi\)
0.489624 + 0.871934i \(0.337134\pi\)
\(8\) −1.00000 −0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −2.11078 3.65598i −0.667487 1.15612i
\(11\) −2.57542 4.46076i −0.776518 1.34497i −0.933937 0.357436i \(-0.883651\pi\)
0.157420 0.987532i \(-0.449682\pi\)
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) −4.87229 −1.35133 −0.675666 0.737208i \(-0.736144\pi\)
−0.675666 + 0.737208i \(0.736144\pi\)
\(14\) −2.59085 −0.692433
\(15\) −4.22156 −1.09000
\(16\) 1.00000 0.250000
\(17\) 5.29711 1.28474 0.642369 0.766396i \(-0.277952\pi\)
0.642369 + 0.766396i \(0.277952\pi\)
\(18\) 0.500000 + 0.866025i 0.117851 + 0.204124i
\(19\) −3.15288 + 5.46095i −0.723321 + 1.25283i 0.236340 + 0.971670i \(0.424052\pi\)
−0.959661 + 0.281159i \(0.909281\pi\)
\(20\) 2.11078 + 3.65598i 0.471985 + 0.817502i
\(21\) −1.29542 + 2.24374i −0.282685 + 0.489624i
\(22\) 2.57542 + 4.46076i 0.549081 + 0.951036i
\(23\) −2.33881 + 4.05093i −0.487675 + 0.844678i −0.999900 0.0141737i \(-0.995488\pi\)
0.512225 + 0.858852i \(0.328822\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) −6.41078 + 11.1038i −1.28216 + 2.22076i
\(26\) 4.87229 0.955535
\(27\) 1.00000 0.192450
\(28\) 2.59085 0.489624
\(29\) −3.76859 6.52739i −0.699810 1.21211i −0.968532 0.248888i \(-0.919935\pi\)
0.268723 0.963218i \(-0.413399\pi\)
\(30\) 4.22156 0.770748
\(31\) −4.69341 + 8.12922i −0.842961 + 1.46005i 0.0444195 + 0.999013i \(0.485856\pi\)
−0.887380 + 0.461038i \(0.847477\pi\)
\(32\) −1.00000 −0.176777
\(33\) 5.15084 0.896646
\(34\) −5.29711 −0.908446
\(35\) 5.46871 + 9.47208i 0.924380 + 1.60107i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) −1.08733 1.88331i −0.178756 0.309614i 0.762699 0.646754i \(-0.223874\pi\)
−0.941455 + 0.337140i \(0.890541\pi\)
\(38\) 3.15288 5.46095i 0.511465 0.885884i
\(39\) 2.43615 4.21953i 0.390096 0.675666i
\(40\) −2.11078 3.65598i −0.333744 0.578061i
\(41\) 4.24967 0.663687 0.331843 0.943335i \(-0.392329\pi\)
0.331843 + 0.943335i \(0.392329\pi\)
\(42\) 1.29542 2.24374i 0.199888 0.346216i
\(43\) −6.05006 + 10.4790i −0.922625 + 1.59803i −0.127287 + 0.991866i \(0.540627\pi\)
−0.795337 + 0.606167i \(0.792706\pi\)
\(44\) −2.57542 4.46076i −0.388259 0.672484i
\(45\) 2.11078 3.65598i 0.314656 0.545001i
\(46\) 2.33881 4.05093i 0.344838 0.597277i
\(47\) 0.796236 + 1.37912i 0.116143 + 0.201165i 0.918236 0.396034i \(-0.129614\pi\)
−0.802093 + 0.597199i \(0.796280\pi\)
\(48\) −0.500000 + 0.866025i −0.0721688 + 0.125000i
\(49\) −0.287512 −0.0410732
\(50\) 6.41078 11.1038i 0.906622 1.57031i
\(51\) −2.64855 + 4.58743i −0.370872 + 0.642369i
\(52\) −4.87229 −0.675666
\(53\) −0.450783 0.780778i −0.0619197 0.107248i 0.833404 0.552665i \(-0.186389\pi\)
−0.895323 + 0.445416i \(0.853056\pi\)
\(54\) −1.00000 −0.136083
\(55\) 10.8723 18.8313i 1.46602 2.53922i
\(56\) −2.59085 −0.346216
\(57\) −3.15288 5.46095i −0.417610 0.723321i
\(58\) 3.76859 + 6.52739i 0.494840 + 0.857088i
\(59\) 5.29542 0.689404 0.344702 0.938712i \(-0.387980\pi\)
0.344702 + 0.938712i \(0.387980\pi\)
\(60\) −4.22156 −0.545001
\(61\) 6.65178 11.5212i 0.851673 1.47514i −0.0280250 0.999607i \(-0.508922\pi\)
0.879698 0.475533i \(-0.157745\pi\)
\(62\) 4.69341 8.12922i 0.596063 1.03241i
\(63\) −1.29542 2.24374i −0.163208 0.282685i
\(64\) 1.00000 0.125000
\(65\) −10.2843 17.8130i −1.27562 2.20943i
\(66\) −5.15084 −0.634024
\(67\) −1.27918 + 2.21561i −0.156277 + 0.270680i −0.933523 0.358517i \(-0.883283\pi\)
0.777246 + 0.629196i \(0.216616\pi\)
\(68\) 5.29711 0.642369
\(69\) −2.33881 4.05093i −0.281559 0.487675i
\(70\) −5.46871 9.47208i −0.653636 1.13213i
\(71\) −7.07517 + 12.2546i −0.839669 + 1.45435i 0.0505031 + 0.998724i \(0.483918\pi\)
−0.890172 + 0.455625i \(0.849416\pi\)
\(72\) 0.500000 + 0.866025i 0.0589256 + 0.102062i
\(73\) 4.53900 + 7.86178i 0.531250 + 0.920152i 0.999335 + 0.0364682i \(0.0116108\pi\)
−0.468085 + 0.883683i \(0.655056\pi\)
\(74\) 1.08733 + 1.88331i 0.126399 + 0.218930i
\(75\) −6.41078 11.1038i −0.740254 1.28216i
\(76\) −3.15288 + 5.46095i −0.361661 + 0.626414i
\(77\) −6.67251 11.5571i −0.760404 1.31706i
\(78\) −2.43615 + 4.21953i −0.275839 + 0.477768i
\(79\) 0.587771 + 1.01805i 0.0661295 + 0.114540i 0.897194 0.441636i \(-0.145602\pi\)
−0.831065 + 0.556175i \(0.812268\pi\)
\(80\) 2.11078 + 3.65598i 0.235992 + 0.408751i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −4.24967 −0.469297
\(83\) 5.17514 + 8.96361i 0.568046 + 0.983884i 0.996759 + 0.0804436i \(0.0256337\pi\)
−0.428713 + 0.903441i \(0.641033\pi\)
\(84\) −1.29542 + 2.24374i −0.141342 + 0.244812i
\(85\) 11.1810 + 19.3661i 1.21275 + 2.10055i
\(86\) 6.05006 10.4790i 0.652394 1.12998i
\(87\) 7.53718 0.808071
\(88\) 2.57542 + 4.46076i 0.274540 + 0.475518i
\(89\) −1.26932 + 2.19852i −0.134547 + 0.233043i −0.925425 0.378932i \(-0.876291\pi\)
0.790877 + 0.611975i \(0.209625\pi\)
\(90\) −2.11078 + 3.65598i −0.222496 + 0.385374i
\(91\) −12.6234 −1.32329
\(92\) −2.33881 + 4.05093i −0.243837 + 0.422339i
\(93\) −4.69341 8.12922i −0.486684 0.842961i
\(94\) −0.796236 1.37912i −0.0821255 0.142245i
\(95\) −26.6202 −2.73117
\(96\) 0.500000 0.866025i 0.0510310 0.0883883i
\(97\) 1.65648 + 2.86911i 0.168190 + 0.291314i 0.937784 0.347220i \(-0.112874\pi\)
−0.769593 + 0.638534i \(0.779541\pi\)
\(98\) 0.287512 0.0290431
\(99\) −2.57542 + 4.46076i −0.258839 + 0.448323i
\(100\) −6.41078 + 11.1038i −0.641078 + 1.11038i
\(101\) −1.08941 + 1.88692i −0.108401 + 0.187755i −0.915123 0.403176i \(-0.867906\pi\)
0.806722 + 0.590931i \(0.201240\pi\)
\(102\) 2.64855 4.58743i 0.262246 0.454223i
\(103\) −0.308966 −0.0304434 −0.0152217 0.999884i \(-0.504845\pi\)
−0.0152217 + 0.999884i \(0.504845\pi\)
\(104\) 4.87229 0.477768
\(105\) −10.9374 −1.06738
\(106\) 0.450783 + 0.780778i 0.0437839 + 0.0758359i
\(107\) −1.46442 2.53645i −0.141571 0.245208i 0.786517 0.617568i \(-0.211882\pi\)
−0.928088 + 0.372360i \(0.878549\pi\)
\(108\) 1.00000 0.0962250
\(109\) 2.15271 + 3.72861i 0.206192 + 0.357136i 0.950512 0.310688i \(-0.100559\pi\)
−0.744320 + 0.667824i \(0.767226\pi\)
\(110\) −10.8723 + 18.8313i −1.03663 + 1.79550i
\(111\) 2.17466 0.206409
\(112\) 2.59085 0.244812
\(113\) −2.20178 + 3.81359i −0.207126 + 0.358752i −0.950808 0.309781i \(-0.899744\pi\)
0.743682 + 0.668533i \(0.233078\pi\)
\(114\) 3.15288 + 5.46095i 0.295295 + 0.511465i
\(115\) −19.7468 −1.84140
\(116\) −3.76859 6.52739i −0.349905 0.606053i
\(117\) 2.43615 + 4.21953i 0.225222 + 0.390096i
\(118\) −5.29542 −0.487482
\(119\) 13.7240 1.25808
\(120\) 4.22156 0.385374
\(121\) −7.76556 + 13.4503i −0.705960 + 1.22276i
\(122\) −6.65178 + 11.5212i −0.602224 + 1.04308i
\(123\) −2.12483 + 3.68032i −0.191590 + 0.331843i
\(124\) −4.69341 + 8.12922i −0.421480 + 0.730026i
\(125\) −33.0192 −2.95333
\(126\) 1.29542 + 2.24374i 0.115405 + 0.199888i
\(127\) 4.98991 8.64278i 0.442783 0.766923i −0.555112 0.831776i \(-0.687325\pi\)
0.997895 + 0.0648530i \(0.0206578\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −6.05006 10.4790i −0.532678 0.922625i
\(130\) 10.2843 + 17.8130i 0.901996 + 1.56230i
\(131\) 8.41391 14.5733i 0.735127 1.27328i −0.219541 0.975603i \(-0.570456\pi\)
0.954668 0.297674i \(-0.0962108\pi\)
\(132\) 5.15084 0.448323
\(133\) −8.16864 + 14.1485i −0.708311 + 1.22683i
\(134\) 1.27918 2.21561i 0.110505 0.191399i
\(135\) 2.11078 + 3.65598i 0.181667 + 0.314656i
\(136\) −5.29711 −0.454223
\(137\) 11.0998 19.2255i 0.948323 1.64254i 0.199367 0.979925i \(-0.436111\pi\)
0.748956 0.662620i \(-0.230555\pi\)
\(138\) 2.33881 + 4.05093i 0.199092 + 0.344838i
\(139\) −2.11269 + 3.65929i −0.179196 + 0.310377i −0.941605 0.336718i \(-0.890683\pi\)
0.762409 + 0.647095i \(0.224016\pi\)
\(140\) 5.46871 + 9.47208i 0.462190 + 0.800537i
\(141\) −1.59247 −0.134110
\(142\) 7.07517 12.2546i 0.593735 1.02838i
\(143\) 12.5482 + 21.7341i 1.04933 + 1.81750i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) 15.9093 27.5558i 1.32120 2.28838i
\(146\) −4.53900 7.86178i −0.375650 0.650645i
\(147\) 0.143756 0.248993i 0.0118568 0.0205366i
\(148\) −1.08733 1.88331i −0.0893779 0.154807i
\(149\) 5.48508 + 9.50043i 0.449355 + 0.778306i 0.998344 0.0575237i \(-0.0183205\pi\)
−0.548989 + 0.835830i \(0.684987\pi\)
\(150\) 6.41078 + 11.1038i 0.523438 + 0.906622i
\(151\) −8.67586 15.0270i −0.706031 1.22288i −0.966318 0.257351i \(-0.917150\pi\)
0.260287 0.965531i \(-0.416183\pi\)
\(152\) 3.15288 5.46095i 0.255733 0.442942i
\(153\) −2.64855 4.58743i −0.214123 0.370872i
\(154\) 6.67251 + 11.5571i 0.537687 + 0.931300i
\(155\) −39.6270 −3.18292
\(156\) 2.43615 4.21953i 0.195048 0.337833i
\(157\) 17.6832 1.41127 0.705635 0.708575i \(-0.250662\pi\)
0.705635 + 0.708575i \(0.250662\pi\)
\(158\) −0.587771 1.01805i −0.0467606 0.0809917i
\(159\) 0.901565 0.0714988
\(160\) −2.11078 3.65598i −0.166872 0.289030i
\(161\) −6.05949 + 10.4953i −0.477555 + 0.827149i
\(162\) 0.500000 0.866025i 0.0392837 0.0680414i
\(163\) 2.71995 0.213043 0.106521 0.994310i \(-0.466029\pi\)
0.106521 + 0.994310i \(0.466029\pi\)
\(164\) 4.24967 0.331843
\(165\) 10.8723 + 18.8313i 0.846406 + 1.46602i
\(166\) −5.17514 8.96361i −0.401669 0.695711i
\(167\) 5.92085 0.458169 0.229085 0.973407i \(-0.426427\pi\)
0.229085 + 0.973407i \(0.426427\pi\)
\(168\) 1.29542 2.24374i 0.0999441 0.173108i
\(169\) 10.7392 0.826095
\(170\) −11.1810 19.3661i −0.857546 1.48531i
\(171\) 6.30577 0.482214
\(172\) −6.05006 + 10.4790i −0.461312 + 0.799016i
\(173\) 7.32250 12.6829i 0.556719 0.964266i −0.441048 0.897483i \(-0.645393\pi\)
0.997768 0.0667829i \(-0.0212735\pi\)
\(174\) −7.53718 −0.571392
\(175\) −16.6094 + 28.7683i −1.25555 + 2.17468i
\(176\) −2.57542 4.46076i −0.194129 0.336242i
\(177\) −2.64771 + 4.58596i −0.199014 + 0.344702i
\(178\) 1.26932 2.19852i 0.0951394 0.164786i
\(179\) −1.78315 3.08850i −0.133279 0.230845i 0.791660 0.610962i \(-0.209217\pi\)
−0.924939 + 0.380117i \(0.875884\pi\)
\(180\) 2.11078 3.65598i 0.157328 0.272501i
\(181\) −4.44526 + 7.69941i −0.330413 + 0.572293i −0.982593 0.185772i \(-0.940521\pi\)
0.652180 + 0.758065i \(0.273855\pi\)
\(182\) 12.6234 0.935706
\(183\) 6.65178 + 11.5212i 0.491713 + 0.851673i
\(184\) 2.33881 4.05093i 0.172419 0.298639i
\(185\) 4.59023 7.95050i 0.337480 0.584533i
\(186\) 4.69341 + 8.12922i 0.344137 + 0.596063i
\(187\) −13.6423 23.6291i −0.997621 1.72793i
\(188\) 0.796236 + 1.37912i 0.0580715 + 0.100583i
\(189\) 2.59085 0.188456
\(190\) 26.6202 1.93123
\(191\) 11.5887 0.838531 0.419266 0.907864i \(-0.362288\pi\)
0.419266 + 0.907864i \(0.362288\pi\)
\(192\) −0.500000 + 0.866025i −0.0360844 + 0.0625000i
\(193\) −3.59732 −0.258940 −0.129470 0.991583i \(-0.541328\pi\)
−0.129470 + 0.991583i \(0.541328\pi\)
\(194\) −1.65648 2.86911i −0.118928 0.205990i
\(195\) 20.5687 1.47295
\(196\) −0.287512 −0.0205366
\(197\) 5.13007 0.365503 0.182751 0.983159i \(-0.441500\pi\)
0.182751 + 0.983159i \(0.441500\pi\)
\(198\) 2.57542 4.46076i 0.183027 0.317012i
\(199\) −4.18390 + 7.24672i −0.296589 + 0.513706i −0.975353 0.220649i \(-0.929182\pi\)
0.678765 + 0.734356i \(0.262516\pi\)
\(200\) 6.41078 11.1038i 0.453311 0.785157i
\(201\) −1.27918 2.21561i −0.0902266 0.156277i
\(202\) 1.08941 1.88692i 0.0766509 0.132763i
\(203\) −9.76384 16.9115i −0.685287 1.18695i
\(204\) −2.64855 + 4.58743i −0.185436 + 0.321184i
\(205\) 8.97011 + 15.5367i 0.626500 + 1.08513i
\(206\) 0.308966 0.0215267
\(207\) 4.67761 0.325117
\(208\) −4.87229 −0.337833
\(209\) 32.4800 2.24669
\(210\) 10.9374 0.754753
\(211\) −4.11681 + 7.13052i −0.283413 + 0.490885i −0.972223 0.234057i \(-0.924800\pi\)
0.688810 + 0.724942i \(0.258133\pi\)
\(212\) −0.450783 0.780778i −0.0309599 0.0536241i
\(213\) −7.07517 12.2546i −0.484783 0.839669i
\(214\) 1.46442 + 2.53645i 0.100106 + 0.173388i
\(215\) −51.0813 −3.48372
\(216\) −1.00000 −0.0680414
\(217\) −12.1599 + 21.0616i −0.825468 + 1.42975i
\(218\) −2.15271 3.72861i −0.145800 0.252533i
\(219\) −9.07800 −0.613434
\(220\) 10.8723 18.8313i 0.733009 1.26961i
\(221\) −25.8091 −1.73611
\(222\) −2.17466 −0.145954
\(223\) 10.7116 10.4049i 0.717301 0.696763i
\(224\) −2.59085 −0.173108
\(225\) 12.8216 0.854771
\(226\) 2.20178 3.81359i 0.146460 0.253676i
\(227\) −11.4774 −0.761785 −0.380892 0.924619i \(-0.624383\pi\)
−0.380892 + 0.924619i \(0.624383\pi\)
\(228\) −3.15288 5.46095i −0.208805 0.361661i
\(229\) −4.09598 + 7.09444i −0.270670 + 0.468814i −0.969033 0.246929i \(-0.920578\pi\)
0.698364 + 0.715743i \(0.253912\pi\)
\(230\) 19.7468 1.30207
\(231\) 13.3450 0.878038
\(232\) 3.76859 + 6.52739i 0.247420 + 0.428544i
\(233\) −11.3704 19.6941i −0.744898 1.29020i −0.950242 0.311512i \(-0.899165\pi\)
0.205344 0.978690i \(-0.434169\pi\)
\(234\) −2.43615 4.21953i −0.159256 0.275839i
\(235\) −3.36136 + 5.82204i −0.219271 + 0.379788i
\(236\) 5.29542 0.344702
\(237\) −1.17554 −0.0763597
\(238\) −13.7240 −0.889594
\(239\) 13.6010 0.879773 0.439886 0.898053i \(-0.355019\pi\)
0.439886 + 0.898053i \(0.355019\pi\)
\(240\) −4.22156 −0.272501
\(241\) 1.96708 + 3.40707i 0.126710 + 0.219469i 0.922400 0.386235i \(-0.126225\pi\)
−0.795690 + 0.605704i \(0.792891\pi\)
\(242\) 7.76556 13.4503i 0.499189 0.864621i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 6.65178 11.5212i 0.425836 0.737570i
\(245\) −0.606875 1.05114i −0.0387719 0.0671548i
\(246\) 2.12483 3.68032i 0.135474 0.234649i
\(247\) 15.3618 26.6074i 0.977446 1.69299i
\(248\) 4.69341 8.12922i 0.298032 0.516206i
\(249\) −10.3503 −0.655923
\(250\) 33.0192 2.08832
\(251\) −0.403689 −0.0254806 −0.0127403 0.999919i \(-0.504055\pi\)
−0.0127403 + 0.999919i \(0.504055\pi\)
\(252\) −1.29542 2.24374i −0.0816040 0.141342i
\(253\) 24.0936 1.51475
\(254\) −4.98991 + 8.64278i −0.313095 + 0.542296i
\(255\) −22.3621 −1.40037
\(256\) 1.00000 0.0625000
\(257\) −7.62435 −0.475594 −0.237797 0.971315i \(-0.576425\pi\)
−0.237797 + 0.971315i \(0.576425\pi\)
\(258\) 6.05006 + 10.4790i 0.376660 + 0.652394i
\(259\) −2.81710 4.87937i −0.175046 0.303189i
\(260\) −10.2843 17.8130i −0.637808 1.10472i
\(261\) −3.76859 + 6.52739i −0.233270 + 0.404035i
\(262\) −8.41391 + 14.5733i −0.519813 + 0.900343i
\(263\) 5.53440 + 9.58586i 0.341266 + 0.591089i 0.984668 0.174439i \(-0.0558111\pi\)
−0.643402 + 0.765528i \(0.722478\pi\)
\(264\) −5.15084 −0.317012
\(265\) 1.90301 3.29610i 0.116901 0.202478i
\(266\) 8.16864 14.1485i 0.500851 0.867500i
\(267\) −1.26932 2.19852i −0.0776810 0.134547i
\(268\) −1.27918 + 2.21561i −0.0781385 + 0.135340i
\(269\) −2.72049 + 4.71203i −0.165871 + 0.287297i −0.936964 0.349425i \(-0.886377\pi\)
0.771093 + 0.636722i \(0.219710\pi\)
\(270\) −2.11078 3.65598i −0.128458 0.222496i
\(271\) −9.23501 + 15.9955i −0.560987 + 0.971658i 0.436424 + 0.899741i \(0.356245\pi\)
−0.997411 + 0.0719166i \(0.977088\pi\)
\(272\) 5.29711 0.321184
\(273\) 6.31168 10.9322i 0.382000 0.661644i
\(274\) −11.0998 + 19.2255i −0.670566 + 1.16145i
\(275\) 66.0418 3.98247
\(276\) −2.33881 4.05093i −0.140780 0.243837i
\(277\) 18.6872 1.12280 0.561402 0.827544i \(-0.310262\pi\)
0.561402 + 0.827544i \(0.310262\pi\)
\(278\) 2.11269 3.65929i 0.126711 0.219470i
\(279\) 9.38682 0.561974
\(280\) −5.46871 9.47208i −0.326818 0.566065i
\(281\) 6.86290 + 11.8869i 0.409406 + 0.709112i 0.994823 0.101620i \(-0.0324026\pi\)
−0.585417 + 0.810732i \(0.699069\pi\)
\(282\) 1.59247 0.0948303
\(283\) −9.93309 −0.590461 −0.295230 0.955426i \(-0.595396\pi\)
−0.295230 + 0.955426i \(0.595396\pi\)
\(284\) −7.07517 + 12.2546i −0.419834 + 0.727174i
\(285\) 13.3101 23.0537i 0.788422 1.36559i
\(286\) −12.5482 21.7341i −0.741990 1.28516i
\(287\) 11.0102 0.649914
\(288\) 0.500000 + 0.866025i 0.0294628 + 0.0510310i
\(289\) 11.0593 0.650550
\(290\) −15.9093 + 27.5558i −0.934228 + 1.61813i
\(291\) −3.31296 −0.194209
\(292\) 4.53900 + 7.86178i 0.265625 + 0.460076i
\(293\) 5.07181 + 8.78464i 0.296298 + 0.513204i 0.975286 0.220946i \(-0.0709144\pi\)
−0.678988 + 0.734150i \(0.737581\pi\)
\(294\) −0.143756 + 0.248993i −0.00838403 + 0.0145216i
\(295\) 11.1775 + 19.3599i 0.650777 + 1.12718i
\(296\) 1.08733 + 1.88331i 0.0631997 + 0.109465i
\(297\) −2.57542 4.46076i −0.149441 0.258839i
\(298\) −5.48508 9.50043i −0.317742 0.550345i
\(299\) 11.3954 19.7373i 0.659010 1.14144i
\(300\) −6.41078 11.1038i −0.370127 0.641078i
\(301\) −15.6748 + 27.1495i −0.903479 + 1.56487i
\(302\) 8.67586 + 15.0270i 0.499239 + 0.864708i
\(303\) −1.08941 1.88692i −0.0625852 0.108401i
\(304\) −3.15288 + 5.46095i −0.180830 + 0.313207i
\(305\) 56.1617 3.21581
\(306\) 2.64855 + 4.58743i 0.151408 + 0.262246i
\(307\) 11.2890 19.5532i 0.644299 1.11596i −0.340164 0.940366i \(-0.610483\pi\)
0.984463 0.175592i \(-0.0561840\pi\)
\(308\) −6.67251 11.5571i −0.380202 0.658529i
\(309\) 0.154483 0.267573i 0.00878824 0.0152217i
\(310\) 39.6270 2.25066
\(311\) 5.64643 + 9.77990i 0.320179 + 0.554567i 0.980525 0.196395i \(-0.0629235\pi\)
−0.660345 + 0.750962i \(0.729590\pi\)
\(312\) −2.43615 + 4.21953i −0.137920 + 0.238884i
\(313\) 12.7927 22.1576i 0.723086 1.25242i −0.236670 0.971590i \(-0.576056\pi\)
0.959757 0.280832i \(-0.0906105\pi\)
\(314\) −17.6832 −0.997919
\(315\) 5.46871 9.47208i 0.308127 0.533691i
\(316\) 0.587771 + 1.01805i 0.0330647 + 0.0572698i
\(317\) −5.50493 9.53482i −0.309188 0.535529i 0.668997 0.743265i \(-0.266724\pi\)
−0.978185 + 0.207736i \(0.933391\pi\)
\(318\) −0.901565 −0.0505573
\(319\) −19.4114 + 33.6215i −1.08683 + 1.88244i
\(320\) 2.11078 + 3.65598i 0.117996 + 0.204375i
\(321\) 2.92884 0.163472
\(322\) 6.05949 10.4953i 0.337682 0.584883i
\(323\) −16.7012 + 28.9273i −0.929278 + 1.60956i
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) 31.2352 54.1010i 1.73262 3.00098i
\(326\) −2.71995 −0.150644
\(327\) −4.30542 −0.238090
\(328\) −4.24967 −0.234649
\(329\) 2.06293 + 3.57309i 0.113733 + 0.196991i
\(330\) −10.8723 18.8313i −0.598499 1.03663i
\(331\) −10.1688 −0.558930 −0.279465 0.960156i \(-0.590157\pi\)
−0.279465 + 0.960156i \(0.590157\pi\)
\(332\) 5.17514 + 8.96361i 0.284023 + 0.491942i
\(333\) −1.08733 + 1.88331i −0.0595853 + 0.103205i
\(334\) −5.92085 −0.323974
\(335\) −10.8003 −0.590083
\(336\) −1.29542 + 2.24374i −0.0706711 + 0.122406i
\(337\) 15.4463 + 26.7537i 0.841411 + 1.45737i 0.888702 + 0.458486i \(0.151608\pi\)
−0.0472907 + 0.998881i \(0.515059\pi\)
\(338\) −10.7392 −0.584138
\(339\) −2.20178 3.81359i −0.119584 0.207126i
\(340\) 11.1810 + 19.3661i 0.606376 + 1.05027i
\(341\) 48.3499 2.61830
\(342\) −6.30577 −0.340977
\(343\) −18.8808 −1.01947
\(344\) 6.05006 10.4790i 0.326197 0.564990i
\(345\) 9.87341 17.1013i 0.531567 0.920701i
\(346\) −7.32250 + 12.6829i −0.393660 + 0.681839i
\(347\) 8.30040 14.3767i 0.445589 0.771783i −0.552504 0.833510i \(-0.686328\pi\)
0.998093 + 0.0617276i \(0.0196610\pi\)
\(348\) 7.53718 0.404035
\(349\) −1.41114 2.44417i −0.0755368 0.130834i 0.825783 0.563988i \(-0.190734\pi\)
−0.901320 + 0.433155i \(0.857400\pi\)
\(350\) 16.6094 28.7683i 0.887808 1.53773i
\(351\) −4.87229 −0.260064
\(352\) 2.57542 + 4.46076i 0.137270 + 0.237759i
\(353\) −6.39503 11.0765i −0.340373 0.589543i 0.644129 0.764917i \(-0.277220\pi\)
−0.984502 + 0.175374i \(0.943887\pi\)
\(354\) 2.64771 4.58596i 0.140724 0.243741i
\(355\) −59.7365 −3.17049
\(356\) −1.26932 + 2.19852i −0.0672737 + 0.116522i
\(357\) −6.86200 + 11.8853i −0.363175 + 0.629038i
\(358\) 1.78315 + 3.08850i 0.0942423 + 0.163232i
\(359\) 1.28965 0.0680651 0.0340326 0.999421i \(-0.489165\pi\)
0.0340326 + 0.999421i \(0.489165\pi\)
\(360\) −2.11078 + 3.65598i −0.111248 + 0.192687i
\(361\) −10.3814 17.9810i −0.546387 0.946370i
\(362\) 4.44526 7.69941i 0.233638 0.404672i
\(363\) −7.76556 13.4503i −0.407586 0.705960i
\(364\) −12.6234 −0.661644
\(365\) −19.1617 + 33.1890i −1.00297 + 1.73719i
\(366\) −6.65178 11.5212i −0.347694 0.602224i
\(367\) −0.843112 1.46031i −0.0440101 0.0762277i 0.843181 0.537629i \(-0.180680\pi\)
−0.887191 + 0.461402i \(0.847347\pi\)
\(368\) −2.33881 + 4.05093i −0.121919 + 0.211169i
\(369\) −2.12483 3.68032i −0.110614 0.191590i
\(370\) −4.59023 + 7.95050i −0.238634 + 0.413327i
\(371\) −1.16791 2.02288i −0.0606348 0.105023i
\(372\) −4.69341 8.12922i −0.243342 0.421480i
\(373\) −14.0108 24.2674i −0.725451 1.25652i −0.958788 0.284123i \(-0.908298\pi\)
0.233337 0.972396i \(-0.425036\pi\)
\(374\) 13.6423 + 23.6291i 0.705425 + 1.22183i
\(375\) 16.5096 28.5955i 0.852552 1.47666i
\(376\) −0.796236 1.37912i −0.0410627 0.0711227i
\(377\) 18.3617 + 31.8034i 0.945674 + 1.63796i
\(378\) −2.59085 −0.133259
\(379\) 11.1190 19.2586i 0.571143 0.989248i −0.425306 0.905049i \(-0.639834\pi\)
0.996449 0.0841987i \(-0.0268331\pi\)
\(380\) −26.6202 −1.36559
\(381\) 4.98991 + 8.64278i 0.255641 + 0.442783i
\(382\) −11.5887 −0.592931
\(383\) 11.0899 + 19.2083i 0.566669 + 0.981500i 0.996892 + 0.0787775i \(0.0251017\pi\)
−0.430223 + 0.902723i \(0.641565\pi\)
\(384\) 0.500000 0.866025i 0.0255155 0.0441942i
\(385\) 28.1684 48.7891i 1.43560 2.48652i
\(386\) 3.59732 0.183099
\(387\) 12.1001 0.615083
\(388\) 1.65648 + 2.86911i 0.0840950 + 0.145657i
\(389\) −1.25351 2.17114i −0.0635555 0.110081i 0.832497 0.554030i \(-0.186911\pi\)
−0.896052 + 0.443948i \(0.853577\pi\)
\(390\) −20.5687 −1.04154
\(391\) −12.3889 + 21.4582i −0.626534 + 1.08519i
\(392\) 0.287512 0.0145216
\(393\) 8.41391 + 14.5733i 0.424426 + 0.735127i
\(394\) −5.13007 −0.258449
\(395\) −2.48131 + 4.29776i −0.124848 + 0.216244i
\(396\) −2.57542 + 4.46076i −0.129420 + 0.224161i
\(397\) 10.0293 0.503358 0.251679 0.967811i \(-0.419017\pi\)
0.251679 + 0.967811i \(0.419017\pi\)
\(398\) 4.18390 7.24672i 0.209720 0.363245i
\(399\) −8.16864 14.1485i −0.408943 0.708311i
\(400\) −6.41078 + 11.1038i −0.320539 + 0.555190i
\(401\) 11.2259 19.4438i 0.560595 0.970978i −0.436850 0.899534i \(-0.643906\pi\)
0.997445 0.0714440i \(-0.0227607\pi\)
\(402\) 1.27918 + 2.21561i 0.0637998 + 0.110505i
\(403\) 22.8677 39.6079i 1.13912 1.97301i
\(404\) −1.08941 + 1.88692i −0.0542003 + 0.0938777i
\(405\) −4.22156 −0.209771
\(406\) 9.76384 + 16.9115i 0.484571 + 0.839302i
\(407\) −5.60066 + 9.70062i −0.277614 + 0.480842i
\(408\) 2.64855 4.58743i 0.131123 0.227112i
\(409\) 11.9931 + 20.7726i 0.593020 + 1.02714i 0.993823 + 0.110977i \(0.0353980\pi\)
−0.400803 + 0.916164i \(0.631269\pi\)
\(410\) −8.97011 15.5367i −0.443002 0.767303i
\(411\) 11.0998 + 19.2255i 0.547515 + 0.948323i
\(412\) −0.308966 −0.0152217
\(413\) 13.7196 0.675098
\(414\) −4.67761 −0.229892
\(415\) −21.8472 + 37.8404i −1.07244 + 1.85751i
\(416\) 4.87229 0.238884
\(417\) −2.11269 3.65929i −0.103459 0.179196i
\(418\) −32.4800 −1.58865
\(419\) −31.2268 −1.52553 −0.762763 0.646678i \(-0.776158\pi\)
−0.762763 + 0.646678i \(0.776158\pi\)
\(420\) −10.9374 −0.533691
\(421\) −14.4217 + 24.9791i −0.702871 + 1.21741i 0.264583 + 0.964363i \(0.414766\pi\)
−0.967454 + 0.253046i \(0.918568\pi\)
\(422\) 4.11681 7.13052i 0.200403 0.347108i
\(423\) 0.796236 1.37912i 0.0387143 0.0670552i
\(424\) 0.450783 + 0.780778i 0.0218919 + 0.0379179i
\(425\) −33.9586 + 58.8180i −1.64723 + 2.85309i
\(426\) 7.07517 + 12.2546i 0.342793 + 0.593735i
\(427\) 17.2337 29.8497i 0.833999 1.44453i
\(428\) −1.46442 2.53645i −0.0707855 0.122604i
\(429\) −25.0964 −1.21166
\(430\) 51.0813 2.46336
\(431\) 35.4989 1.70992 0.854961 0.518692i \(-0.173581\pi\)
0.854961 + 0.518692i \(0.173581\pi\)
\(432\) 1.00000 0.0481125
\(433\) 32.4135 1.55769 0.778846 0.627215i \(-0.215805\pi\)
0.778846 + 0.627215i \(0.215805\pi\)
\(434\) 12.1599 21.0616i 0.583694 1.01099i
\(435\) 15.9093 + 27.5558i 0.762794 + 1.32120i
\(436\) 2.15271 + 3.72861i 0.103096 + 0.178568i
\(437\) −14.7480 25.5442i −0.705491 1.22195i
\(438\) 9.07800 0.433764
\(439\) 21.5280 1.02747 0.513737 0.857948i \(-0.328261\pi\)
0.513737 + 0.857948i \(0.328261\pi\)
\(440\) −10.8723 + 18.8313i −0.518316 + 0.897749i
\(441\) 0.143756 + 0.248993i 0.00684553 + 0.0118568i
\(442\) 25.8091 1.22761
\(443\) −3.75378 + 6.50174i −0.178347 + 0.308907i −0.941315 0.337530i \(-0.890408\pi\)
0.762967 + 0.646437i \(0.223742\pi\)
\(444\) 2.17466 0.103205
\(445\) −10.7170 −0.508035
\(446\) −10.7116 + 10.4049i −0.507209 + 0.492686i
\(447\) −10.9702 −0.518871
\(448\) 2.59085 0.122406
\(449\) −12.6958 + 21.9897i −0.599150 + 1.03776i 0.393797 + 0.919198i \(0.371161\pi\)
−0.992947 + 0.118561i \(0.962172\pi\)
\(450\) −12.8216 −0.604414
\(451\) −10.9447 18.9567i −0.515365 0.892638i
\(452\) −2.20178 + 3.81359i −0.103563 + 0.179376i
\(453\) 17.3517 0.815255
\(454\) 11.4774 0.538663
\(455\) −26.6451 46.1507i −1.24914 2.16358i
\(456\) 3.15288 + 5.46095i 0.147647 + 0.255733i
\(457\) −11.4188 19.7780i −0.534150 0.925174i −0.999204 0.0398923i \(-0.987299\pi\)
0.465054 0.885282i \(-0.346035\pi\)
\(458\) 4.09598 7.09444i 0.191392 0.331501i
\(459\) 5.29711 0.247248
\(460\) −19.7468 −0.920701
\(461\) 2.25619 0.105081 0.0525406 0.998619i \(-0.483268\pi\)
0.0525406 + 0.998619i \(0.483268\pi\)
\(462\) −13.3450 −0.620867
\(463\) 33.3883 1.55169 0.775843 0.630926i \(-0.217325\pi\)
0.775843 + 0.630926i \(0.217325\pi\)
\(464\) −3.76859 6.52739i −0.174952 0.303026i
\(465\) 19.8135 34.3180i 0.918829 1.59146i
\(466\) 11.3704 + 19.6941i 0.526723 + 0.912310i
\(467\) 12.6313 21.8781i 0.584509 1.01240i −0.410428 0.911893i \(-0.634621\pi\)
0.994936 0.100506i \(-0.0320461\pi\)
\(468\) 2.43615 + 4.21953i 0.112611 + 0.195048i
\(469\) −3.31417 + 5.74030i −0.153034 + 0.265063i
\(470\) 3.36136 5.82204i 0.155048 0.268551i
\(471\) −8.84158 + 15.3141i −0.407399 + 0.705635i
\(472\) −5.29542 −0.243741
\(473\) 62.3257 2.86574
\(474\) 1.17554 0.0539945
\(475\) −40.4249 70.0180i −1.85482 3.21265i
\(476\) 13.7240 0.629038
\(477\) −0.450783 + 0.780778i −0.0206399 + 0.0357494i
\(478\) −13.6010 −0.622093
\(479\) 30.1457 1.37739 0.688696 0.725050i \(-0.258184\pi\)
0.688696 + 0.725050i \(0.258184\pi\)
\(480\) 4.22156 0.192687
\(481\) 5.29779 + 9.17604i 0.241558 + 0.418391i
\(482\) −1.96708 3.40707i −0.0895978 0.155188i
\(483\) −6.05949 10.4953i −0.275716 0.477555i
\(484\) −7.76556 + 13.4503i −0.352980 + 0.611379i
\(485\) −6.99293 + 12.1121i −0.317533 + 0.549982i
\(486\) 0.500000 + 0.866025i 0.0226805 + 0.0392837i
\(487\) −28.1640 −1.27623 −0.638116 0.769940i \(-0.720286\pi\)
−0.638116 + 0.769940i \(0.720286\pi\)
\(488\) −6.65178 + 11.5212i −0.301112 + 0.521541i
\(489\) −1.35997 + 2.35555i −0.0615002 + 0.106521i
\(490\) 0.606875 + 1.05114i 0.0274158 + 0.0474856i
\(491\) −6.70442 + 11.6124i −0.302566 + 0.524060i −0.976716 0.214534i \(-0.931177\pi\)
0.674150 + 0.738594i \(0.264510\pi\)
\(492\) −2.12483 + 3.68032i −0.0957949 + 0.165922i
\(493\) −19.9626 34.5763i −0.899072 1.55724i
\(494\) −15.3618 + 26.6074i −0.691159 + 1.19712i
\(495\) −21.7446 −0.977345
\(496\) −4.69341 + 8.12922i −0.210740 + 0.365013i
\(497\) −18.3307 + 31.7497i −0.822244 + 1.42417i
\(498\) 10.3503 0.463807
\(499\) 7.92225 + 13.7217i 0.354649 + 0.614270i 0.987058 0.160365i \(-0.0512671\pi\)
−0.632409 + 0.774635i \(0.717934\pi\)
\(500\) −33.0192 −1.47666
\(501\) −2.96042 + 5.12761i −0.132262 + 0.229085i
\(502\) 0.403689 0.0180175
\(503\) 10.2999 + 17.8399i 0.459249 + 0.795443i 0.998921 0.0464320i \(-0.0147851\pi\)
−0.539672 + 0.841875i \(0.681452\pi\)
\(504\) 1.29542 + 2.24374i 0.0577027 + 0.0999441i
\(505\) −9.19805 −0.409308
\(506\) −24.0936 −1.07109
\(507\) −5.36962 + 9.30046i −0.238473 + 0.413048i
\(508\) 4.98991 8.64278i 0.221392 0.383461i
\(509\) −7.28795 12.6231i −0.323033 0.559509i 0.658079 0.752949i \(-0.271369\pi\)
−0.981112 + 0.193439i \(0.938036\pi\)
\(510\) 22.3621 0.990208
\(511\) 11.7599 + 20.3687i 0.520225 + 0.901057i
\(512\) −1.00000 −0.0441942
\(513\) −3.15288 + 5.46095i −0.139203 + 0.241107i
\(514\) 7.62435 0.336296
\(515\) −0.652160 1.12957i −0.0287376 0.0497750i
\(516\) −6.05006 10.4790i −0.266339 0.461312i
\(517\) 4.10128 7.10363i 0.180374 0.312417i
\(518\) 2.81710 + 4.87937i 0.123776 + 0.214387i
\(519\) 7.32250 + 12.6829i 0.321422 + 0.556719i
\(520\) 10.2843 + 17.8130i 0.450998 + 0.781152i
\(521\) 22.2064 + 38.4626i 0.972880 + 1.68508i 0.686760 + 0.726884i \(0.259032\pi\)
0.286121 + 0.958194i \(0.407634\pi\)
\(522\) 3.76859 6.52739i 0.164947 0.285696i
\(523\) 1.54579 + 2.67738i 0.0675926 + 0.117074i 0.897841 0.440320i \(-0.145135\pi\)
−0.830249 + 0.557393i \(0.811802\pi\)
\(524\) 8.41391 14.5733i 0.367563 0.636639i
\(525\) −16.6094 28.7683i −0.724892 1.25555i
\(526\) −5.53440 9.58586i −0.241311 0.417963i
\(527\) −24.8615 + 43.0614i −1.08298 + 1.87578i
\(528\) 5.15084 0.224161
\(529\) 0.559963 + 0.969884i 0.0243462 + 0.0421689i
\(530\) −1.90301 + 3.29610i −0.0826613 + 0.143174i
\(531\) −2.64771 4.58596i −0.114901 0.199014i
\(532\) −8.16864 + 14.1485i −0.354155 + 0.613415i
\(533\) −20.7056 −0.896860
\(534\) 1.26932 + 2.19852i 0.0549288 + 0.0951394i
\(535\) 6.18214 10.7078i 0.267277 0.462938i
\(536\) 1.27918 2.21561i 0.0552523 0.0956997i
\(537\) 3.56630 0.153897
\(538\) 2.72049 4.71203i 0.117289 0.203150i
\(539\) 0.740465 + 1.28252i 0.0318941 + 0.0552422i
\(540\) 2.11078 + 3.65598i 0.0908335 + 0.157328i
\(541\) 13.1630 0.565922 0.282961 0.959131i \(-0.408683\pi\)
0.282961 + 0.959131i \(0.408683\pi\)
\(542\) 9.23501 15.9955i 0.396678 0.687066i
\(543\) −4.44526 7.69941i −0.190764 0.330413i
\(544\) −5.29711 −0.227112
\(545\) −9.08780 + 15.7405i −0.389279 + 0.674250i
\(546\) −6.31168 + 10.9322i −0.270115 + 0.467853i
\(547\) −21.3020 + 36.8961i −0.910807 + 1.57756i −0.0978795 + 0.995198i \(0.531206\pi\)
−0.812927 + 0.582365i \(0.802127\pi\)
\(548\) 11.0998 19.2255i 0.474162 0.821272i
\(549\) −13.3036 −0.567782
\(550\) −66.0418 −2.81603
\(551\) 47.5277 2.02475
\(552\) 2.33881 + 4.05093i 0.0995462 + 0.172419i
\(553\) 1.52283 + 2.63761i 0.0647571 + 0.112163i
\(554\) −18.6872 −0.793942
\(555\) 4.59023 + 7.95050i 0.194844 + 0.337480i
\(556\) −2.11269 + 3.65929i −0.0895981 + 0.155188i
\(557\) 32.0571 1.35831 0.679153 0.733997i \(-0.262347\pi\)
0.679153 + 0.733997i \(0.262347\pi\)
\(558\) −9.38682 −0.397376
\(559\) 29.4776 51.0568i 1.24677 2.15947i
\(560\) 5.46871 + 9.47208i 0.231095 + 0.400268i
\(561\) 27.2845 1.15195
\(562\) −6.86290 11.8869i −0.289494 0.501418i
\(563\) −11.5178 19.9494i −0.485418 0.840769i 0.514442 0.857525i \(-0.327999\pi\)
−0.999860 + 0.0167567i \(0.994666\pi\)
\(564\) −1.59247 −0.0670552
\(565\) −18.5899 −0.782081
\(566\) 9.93309 0.417519
\(567\) −1.29542 + 2.24374i −0.0544027 + 0.0942282i
\(568\) 7.07517 12.2546i 0.296868 0.514190i
\(569\) −1.97889 + 3.42754i −0.0829593 + 0.143690i −0.904520 0.426432i \(-0.859770\pi\)
0.821560 + 0.570121i \(0.193104\pi\)
\(570\) −13.3101 + 23.0537i −0.557498 + 0.965615i
\(571\) 6.04172 0.252838 0.126419 0.991977i \(-0.459652\pi\)
0.126419 + 0.991977i \(0.459652\pi\)
\(572\) 12.5482 + 21.7341i 0.524666 + 0.908749i
\(573\) −5.79437 + 10.0361i −0.242063 + 0.419266i
\(574\) −11.0102 −0.459559
\(575\) −29.9872 51.9393i −1.25055 2.16602i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) −5.55669 + 9.62447i −0.231328 + 0.400672i −0.958199 0.286102i \(-0.907640\pi\)
0.726871 + 0.686774i \(0.240974\pi\)
\(578\) −11.0593 −0.460008
\(579\) 1.79866 3.11537i 0.0747497 0.129470i
\(580\) 15.9093 27.5558i 0.660599 1.14419i
\(581\) 13.4080 + 23.2233i 0.556258 + 0.963467i
\(582\) 3.31296 0.137327
\(583\) −2.32191 + 4.02166i −0.0961636 + 0.166560i
\(584\) −4.53900 7.86178i −0.187825 0.325323i
\(585\) −10.2843 + 17.8130i −0.425205 + 0.736477i
\(586\) −5.07181 8.78464i −0.209515 0.362890i
\(587\) 11.0971 0.458028 0.229014 0.973423i \(-0.426450\pi\)
0.229014 + 0.973423i \(0.426450\pi\)
\(588\) 0.143756 0.248993i 0.00592841 0.0102683i
\(589\) −29.5955 51.2610i −1.21946 2.11217i
\(590\) −11.1775 19.3599i −0.460169 0.797035i
\(591\) −2.56504 + 4.44277i −0.105511 + 0.182751i
\(592\) −1.08733 1.88331i −0.0446890 0.0774035i
\(593\) −10.0555 + 17.4167i −0.412930 + 0.715216i −0.995209 0.0977731i \(-0.968828\pi\)
0.582278 + 0.812990i \(0.302161\pi\)
\(594\) 2.57542 + 4.46076i 0.105671 + 0.183027i
\(595\) 28.9683 + 50.1746i 1.18759 + 2.05696i
\(596\) 5.48508 + 9.50043i 0.224678 + 0.389153i
\(597\) −4.18390 7.24672i −0.171235 0.296589i
\(598\) −11.3954 + 19.7373i −0.465991 + 0.807120i
\(599\) −8.58974 14.8779i −0.350967 0.607893i 0.635452 0.772140i \(-0.280814\pi\)
−0.986419 + 0.164247i \(0.947480\pi\)
\(600\) 6.41078 + 11.1038i 0.261719 + 0.453311i
\(601\) −32.3849 −1.32101 −0.660505 0.750822i \(-0.729658\pi\)
−0.660505 + 0.750822i \(0.729658\pi\)
\(602\) 15.6748 27.1495i 0.638856 1.10653i
\(603\) 2.55836 0.104185
\(604\) −8.67586 15.0270i −0.353016 0.611441i
\(605\) −65.5655 −2.66562
\(606\) 1.08941 + 1.88692i 0.0442544 + 0.0766509i
\(607\) −8.21034 + 14.2207i −0.333247 + 0.577201i −0.983147 0.182819i \(-0.941478\pi\)
0.649899 + 0.760020i \(0.274811\pi\)
\(608\) 3.15288 5.46095i 0.127866 0.221471i
\(609\) 19.5277 0.791302
\(610\) −56.1617 −2.27392
\(611\) −3.87949 6.71948i −0.156948 0.271841i
\(612\) −2.64855 4.58743i −0.107061 0.185436i
\(613\) −8.02686 −0.324202 −0.162101 0.986774i \(-0.551827\pi\)
−0.162101 + 0.986774i \(0.551827\pi\)
\(614\) −11.2890 + 19.5532i −0.455588 + 0.789102i
\(615\) −17.9402 −0.723420
\(616\) 6.67251 + 11.5571i 0.268843 + 0.465650i
\(617\) −31.3545 −1.26228 −0.631142 0.775667i \(-0.717414\pi\)
−0.631142 + 0.775667i \(0.717414\pi\)
\(618\) −0.154483 + 0.267573i −0.00621423 + 0.0107634i
\(619\) 0.710174 1.23006i 0.0285443 0.0494402i −0.851400 0.524516i \(-0.824246\pi\)
0.879945 + 0.475076i \(0.157579\pi\)
\(620\) −39.6270 −1.59146
\(621\) −2.33881 + 4.05093i −0.0938531 + 0.162558i
\(622\) −5.64643 9.77990i −0.226401 0.392138i
\(623\) −3.28861 + 5.69604i −0.131755 + 0.228207i
\(624\) 2.43615 4.21953i 0.0975239 0.168916i
\(625\) −37.6424 65.1985i −1.50570 2.60794i
\(626\) −12.7927 + 22.1576i −0.511299 + 0.885596i
\(627\) −16.2400 + 28.1285i −0.648563 + 1.12334i
\(628\) 17.6832 0.705635
\(629\) −5.75970 9.97609i −0.229654 0.397773i
\(630\) −5.46871 + 9.47208i −0.217879 + 0.377377i
\(631\) 6.13214 10.6212i 0.244117 0.422823i −0.717766 0.696284i \(-0.754835\pi\)
0.961883 + 0.273462i \(0.0881686\pi\)
\(632\) −0.587771 1.01805i −0.0233803 0.0404959i
\(633\) −4.11681 7.13052i −0.163628 0.283413i
\(634\) 5.50493 + 9.53482i 0.218629 + 0.378676i
\(635\) 42.1304 1.67189
\(636\) 0.901565 0.0357494
\(637\) 1.40084 0.0555035
\(638\) 19.4114 33.6215i 0.768504 1.33109i
\(639\) 14.1503 0.559779
\(640\) −2.11078 3.65598i −0.0834359 0.144515i
\(641\) 43.8623 1.73246 0.866229 0.499648i \(-0.166537\pi\)
0.866229 + 0.499648i \(0.166537\pi\)
\(642\) −2.92884 −0.115592
\(643\) 39.2525 1.54797 0.773983 0.633206i \(-0.218262\pi\)
0.773983 + 0.633206i \(0.218262\pi\)
\(644\) −6.05949 + 10.4953i −0.238777 + 0.413575i
\(645\) 25.5407 44.2377i 1.00566 1.74186i
\(646\) 16.7012 28.9273i 0.657098 1.13813i
\(647\) 1.38754 + 2.40329i 0.0545498 + 0.0944831i 0.892011 0.452014i \(-0.149294\pi\)
−0.837461 + 0.546497i \(0.815961\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) −13.6379 23.6216i −0.535335 0.927227i
\(650\) −31.2352 + 54.1010i −1.22515 + 2.12202i
\(651\) −12.1599 21.0616i −0.476584 0.825468i
\(652\) 2.71995 0.106521
\(653\) −27.0817 −1.05979 −0.529895 0.848063i \(-0.677769\pi\)
−0.529895 + 0.848063i \(0.677769\pi\)
\(654\) 4.30542 0.168355
\(655\) 71.0397 2.77575
\(656\) 4.24967 0.165922
\(657\) 4.53900 7.86178i 0.177083 0.306717i
\(658\) −2.06293 3.57309i −0.0804212 0.139294i
\(659\) −12.7753 22.1275i −0.497656 0.861966i 0.502340 0.864670i \(-0.332473\pi\)
−0.999996 + 0.00270398i \(0.999139\pi\)
\(660\) 10.8723 + 18.8313i 0.423203 + 0.733009i
\(661\) −45.3761 −1.76492 −0.882462 0.470383i \(-0.844116\pi\)
−0.882462 + 0.470383i \(0.844116\pi\)
\(662\) 10.1688 0.395224
\(663\) 12.9045 22.3513i 0.501170 0.868053i
\(664\) −5.17514 8.96361i −0.200835 0.347856i
\(665\) −68.9688 −2.67450
\(666\) 1.08733 1.88331i 0.0421332 0.0729768i
\(667\) 35.2560 1.36512
\(668\) 5.92085 0.229085
\(669\) 3.65510 + 14.4790i 0.141314 + 0.559789i
\(670\) 10.8003 0.417252
\(671\) −68.5244 −2.64536
\(672\) 1.29542 2.24374i 0.0499720 0.0865541i
\(673\) −29.1342 −1.12304 −0.561520 0.827463i \(-0.689783\pi\)
−0.561520 + 0.827463i \(0.689783\pi\)
\(674\) −15.4463 26.7537i −0.594968 1.03051i
\(675\) −6.41078 + 11.1038i −0.246751 + 0.427386i
\(676\) 10.7392 0.413048
\(677\) 1.50868 0.0579834 0.0289917 0.999580i \(-0.490770\pi\)
0.0289917 + 0.999580i \(0.490770\pi\)
\(678\) 2.20178 + 3.81359i 0.0845587 + 0.146460i
\(679\) 4.29169 + 7.43342i 0.164700 + 0.285268i
\(680\) −11.1810 19.3661i −0.428773 0.742656i
\(681\) 5.73872 9.93976i 0.219908 0.380892i
\(682\) −48.3499 −1.85142
\(683\) −33.0642 −1.26517 −0.632583 0.774493i \(-0.718005\pi\)
−0.632583 + 0.774493i \(0.718005\pi\)
\(684\) 6.30577 0.241107
\(685\) 93.7173 3.58075
\(686\) 18.8808 0.720873
\(687\) −4.09598 7.09444i −0.156271 0.270670i
\(688\) −6.05006 + 10.4790i −0.230656 + 0.399508i
\(689\) 2.19634 + 3.80418i 0.0836741 + 0.144928i
\(690\) −9.87341 + 17.1013i −0.375874 + 0.651034i
\(691\) 7.12164 + 12.3350i 0.270920 + 0.469247i 0.969098 0.246677i \(-0.0793388\pi\)
−0.698178 + 0.715925i \(0.746005\pi\)
\(692\) 7.32250 12.6829i 0.278360 0.482133i
\(693\) −6.67251 + 11.5571i −0.253468 + 0.439019i
\(694\) −8.30040 + 14.3767i −0.315079 + 0.545733i
\(695\) −17.8377 −0.676623
\(696\) −7.53718 −0.285696
\(697\) 22.5109 0.852663
\(698\) 1.41114 + 2.44417i 0.0534126 + 0.0925133i
\(699\) 22.7408 0.860134
\(700\) −16.6094 + 28.7683i −0.627775 + 1.08734i
\(701\) 28.5988 1.08016 0.540080 0.841614i \(-0.318394\pi\)
0.540080 + 0.841614i \(0.318394\pi\)
\(702\) 4.87229 0.183893
\(703\) 13.7129 0.517191
\(704\) −2.57542 4.46076i −0.0970647 0.168121i
\(705\) −3.36136 5.82204i −0.126596 0.219271i
\(706\) 6.39503 + 11.0765i 0.240680 + 0.416870i
\(707\) −2.82250 + 4.88872i −0.106151 + 0.183859i
\(708\) −2.64771 + 4.58596i −0.0995069 + 0.172351i
\(709\) 10.8532 + 18.7982i 0.407599 + 0.705982i 0.994620 0.103590i \(-0.0330329\pi\)
−0.587021 + 0.809571i \(0.699700\pi\)
\(710\) 59.7365 2.24187
\(711\) 0.587771 1.01805i 0.0220432 0.0381799i
\(712\) 1.26932 2.19852i 0.0475697 0.0823932i
\(713\) −21.9539 38.0254i −0.822182 1.42406i
\(714\) 6.86200 11.8853i 0.256804 0.444797i
\(715\) −52.9729 + 91.7518i −1.98108 + 3.43132i
\(716\) −1.78315 3.08850i −0.0666394 0.115423i
\(717\) −6.80048 + 11.7788i −0.253969 + 0.439886i
\(718\) −1.28965 −0.0481293
\(719\) −21.6430 + 37.4867i −0.807147 + 1.39802i 0.107685 + 0.994185i \(0.465656\pi\)
−0.914832 + 0.403834i \(0.867677\pi\)
\(720\) 2.11078 3.65598i 0.0786641 0.136250i
\(721\) −0.800485 −0.0298116
\(722\) 10.3814 + 17.9810i 0.386354 + 0.669185i
\(723\) −3.93415 −0.146313
\(724\) −4.44526 + 7.69941i −0.165207 + 0.286146i
\(725\) 96.6385 3.58906
\(726\) 7.76556 + 13.4503i 0.288207 + 0.499189i
\(727\) 14.4099 + 24.9587i 0.534433 + 0.925665i 0.999191 + 0.0402274i \(0.0128082\pi\)
−0.464757 + 0.885438i \(0.653858\pi\)
\(728\) 12.6234 0.467853
\(729\) 1.00000 0.0370370
\(730\) 19.1617 33.1890i 0.709205 1.22838i
\(731\) −32.0478 + 55.5084i −1.18533 + 2.05305i
\(732\) 6.65178 + 11.5212i 0.245857 + 0.425836i
\(733\) −1.10859 −0.0409466 −0.0204733 0.999790i \(-0.506517\pi\)
−0.0204733 + 0.999790i \(0.506517\pi\)
\(734\) 0.843112 + 1.46031i 0.0311198 + 0.0539011i
\(735\) 1.21375 0.0447699
\(736\) 2.33881 4.05093i 0.0862096 0.149319i
\(737\) 13.1777 0.485407
\(738\) 2.12483 + 3.68032i 0.0782162 + 0.135474i
\(739\) 6.52367 + 11.2993i 0.239977 + 0.415652i 0.960707 0.277563i \(-0.0895268\pi\)
−0.720730 + 0.693215i \(0.756193\pi\)
\(740\) 4.59023 7.95050i 0.168740 0.292266i
\(741\) 15.3618 + 26.6074i 0.564329 + 0.977446i
\(742\) 1.16791 + 2.02288i 0.0428753 + 0.0742621i
\(743\) −9.71823 16.8325i −0.356527 0.617523i 0.630851 0.775904i \(-0.282706\pi\)
−0.987378 + 0.158381i \(0.949373\pi\)
\(744\) 4.69341 + 8.12922i 0.172069 + 0.298032i
\(745\) −23.1556 + 40.1067i −0.848355 + 1.46939i
\(746\) 14.0108 + 24.2674i 0.512972 + 0.888493i
\(747\) 5.17514 8.96361i 0.189349 0.327961i
\(748\) −13.6423 23.6291i −0.498811 0.863965i
\(749\) −3.79409 6.57156i −0.138633 0.240120i
\(750\) −16.5096 + 28.5955i −0.602846 + 1.04416i
\(751\) 13.7586 0.502060 0.251030 0.967979i \(-0.419231\pi\)
0.251030 + 0.967979i \(0.419231\pi\)
\(752\) 0.796236 + 1.37912i 0.0290357 + 0.0502914i
\(753\) 0.201845 0.349605i 0.00735563 0.0127403i
\(754\) −18.3617 31.8034i −0.668693 1.15821i
\(755\) 36.6256 63.4375i 1.33294 2.30873i
\(756\) 2.59085 0.0942282
\(757\) 16.5995 + 28.7512i 0.603319 + 1.04498i 0.992315 + 0.123739i \(0.0394887\pi\)
−0.388996 + 0.921239i \(0.627178\pi\)
\(758\) −11.1190 + 19.2586i −0.403859 + 0.699504i
\(759\) −12.0468 + 20.8657i −0.437272 + 0.757377i
\(760\) 26.6202 0.965615
\(761\) −12.3120 + 21.3249i −0.446308 + 0.773029i −0.998142 0.0609252i \(-0.980595\pi\)
0.551834 + 0.833954i \(0.313928\pi\)
\(762\) −4.98991 8.64278i −0.180765 0.313095i
\(763\) 5.57735 + 9.66025i 0.201914 + 0.349724i
\(764\) 11.5887 0.419266
\(765\) 11.1810 19.3661i 0.404251 0.700183i
\(766\) −11.0899 19.2083i −0.400696 0.694025i
\(767\) −25.8008 −0.931613
\(768\) −0.500000 + 0.866025i −0.0180422 + 0.0312500i
\(769\) 15.0163 26.0091i 0.541503 0.937910i −0.457315 0.889305i \(-0.651189\pi\)
0.998818 0.0486057i \(-0.0154778\pi\)
\(770\) −28.1684 + 48.7891i −1.01512 + 1.75824i
\(771\) 3.81218 6.60288i 0.137292 0.237797i
\(772\) −3.59732 −0.129470
\(773\) −35.4735 −1.27589 −0.637946 0.770081i \(-0.720216\pi\)
−0.637946 + 0.770081i \(0.720216\pi\)
\(774\) −12.1001 −0.434929
\(775\) −60.1768 104.229i −2.16162 3.74403i
\(776\) −1.65648 2.86911i −0.0594642 0.102995i
\(777\) 5.63421 0.202126
\(778\) 1.25351 + 2.17114i 0.0449405 + 0.0778393i
\(779\) −13.3987 + 23.2072i −0.480059 + 0.831486i
\(780\) 20.5687 0.736477
\(781\) 72.8861 2.60807
\(782\) 12.3889 21.4582i 0.443027 0.767345i
\(783\) −3.76859 6.52739i −0.134678 0.233270i
\(784\) −0.287512 −0.0102683
\(785\) 37.3253 + 64.6493i 1.33220 + 2.30743i
\(786\) −8.41391 14.5733i −0.300114 0.519813i
\(787\) 4.00884 0.142900 0.0714499 0.997444i \(-0.477237\pi\)
0.0714499 + 0.997444i \(0.477237\pi\)
\(788\) 5.13007 0.182751
\(789\) −11.0688 −0.394059
\(790\) 2.48131 4.29776i 0.0882811 0.152907i
\(791\) −5.70446 + 9.88042i −0.202827 + 0.351307i
\(792\) 2.57542 4.46076i 0.0915135 0.158506i
\(793\) −32.4094 + 56.1347i −1.15089 + 1.99340i
\(794\) −10.0293 −0.355928
\(795\) 1.90301 + 3.29610i 0.0674926 + 0.116901i
\(796\) −4.18390 + 7.24672i −0.148294 + 0.256853i
\(797\) −12.2880 −0.435264 −0.217632 0.976031i \(-0.569833\pi\)
−0.217632 + 0.976031i \(0.569833\pi\)
\(798\) 8.16864 + 14.1485i 0.289167 + 0.500851i
\(799\) 4.21775 + 7.30535i 0.149213 + 0.258445i
\(800\) 6.41078 11.1038i 0.226655 0.392579i
\(801\) 2.53864 0.0896983
\(802\) −11.2259 + 19.4438i −0.396400 + 0.686585i
\(803\) 23.3796 40.4947i 0.825050 1.42903i
\(804\) −1.27918 2.21561i −0.0451133 0.0781385i
\(805\) −51.1610 −1.80319
\(806\) −22.8677 + 39.6079i −0.805479 + 1.39513i
\(807\) −2.72049 4.71203i −0.0957658 0.165871i
\(808\) 1.08941 1.88692i 0.0383254 0.0663816i
\(809\) 8.13262 + 14.0861i 0.285928 + 0.495241i 0.972834 0.231505i \(-0.0743650\pi\)
−0.686906 + 0.726746i \(0.741032\pi\)
\(810\) 4.22156 0.148330
\(811\) −10.1272 + 17.5408i −0.355613 + 0.615939i −0.987223 0.159347i \(-0.949061\pi\)
0.631610 + 0.775286i \(0.282394\pi\)
\(812\) −9.76384 16.9115i −0.342644 0.593476i
\(813\) −9.23501 15.9955i −0.323886 0.560987i
\(814\) 5.60066 9.70062i 0.196303 0.340007i
\(815\) 5.74122 + 9.94408i 0.201106 + 0.348326i
\(816\) −2.64855 + 4.58743i −0.0927179 + 0.160592i
\(817\) −38.1502 66.0782i −1.33471 2.31178i
\(818\) −11.9931 20.7726i −0.419329 0.726299i
\(819\) 6.31168 + 10.9322i 0.220548 + 0.382000i
\(820\) 8.97011 + 15.5367i 0.313250 + 0.542565i
\(821\) 4.54961 7.88016i 0.158783 0.275020i −0.775647 0.631167i \(-0.782576\pi\)
0.934430 + 0.356147i \(0.115910\pi\)
\(822\) −11.0998 19.2255i −0.387151 0.670566i
\(823\) 20.9680 + 36.3177i 0.730900 + 1.26596i 0.956499 + 0.291735i \(0.0942326\pi\)
−0.225600 + 0.974220i \(0.572434\pi\)
\(824\) 0.308966 0.0107634
\(825\) −33.0209 + 57.1939i −1.14964 + 1.99124i
\(826\) −13.7196 −0.477366
\(827\) −17.3218 30.0022i −0.602338 1.04328i −0.992466 0.122519i \(-0.960903\pi\)
0.390129 0.920760i \(-0.372431\pi\)
\(828\) 4.67761 0.162558
\(829\) 3.45142 + 5.97804i 0.119873 + 0.207626i 0.919717 0.392582i \(-0.128418\pi\)
−0.799844 + 0.600208i \(0.795085\pi\)
\(830\) 21.8472 37.8404i 0.758327 1.31346i
\(831\) −9.34358 + 16.1836i −0.324125 + 0.561402i
\(832\) −4.87229 −0.168916
\(833\) −1.52298 −0.0527683
\(834\) 2.11269 + 3.65929i 0.0731565 + 0.126711i
\(835\) 12.4976 + 21.6465i 0.432498 + 0.749108i
\(836\) 32.4800 1.12334
\(837\) −4.69341 + 8.12922i −0.162228 + 0.280987i
\(838\) 31.2268 1.07871
\(839\) −5.97930 10.3564i −0.206428 0.357544i 0.744159 0.668003i \(-0.232851\pi\)
−0.950587 + 0.310459i \(0.899517\pi\)
\(840\) 10.9374 0.377377
\(841\) −13.9045 + 24.0834i −0.479467 + 0.830461i
\(842\) 14.4217 24.9791i 0.497005 0.860838i
\(843\) −13.7258 −0.472741
\(844\) −4.11681 + 7.13052i −0.141706 + 0.245442i
\(845\) 22.6682 + 39.2624i 0.779809 + 1.35067i
\(846\) −0.796236 + 1.37912i −0.0273752 + 0.0474152i
\(847\) −20.1194 + 34.8478i −0.691310 + 1.19738i
\(848\) −0.450783 0.780778i −0.0154799 0.0268120i
\(849\) 4.96654 8.60231i 0.170451 0.295230i
\(850\) 33.9586 58.8180i 1.16477 2.01744i
\(851\) 10.1722 0.348699
\(852\) −7.07517 12.2546i −0.242391 0.419834i
\(853\) −26.3897 + 45.7083i −0.903566 + 1.56502i −0.0807352 + 0.996736i \(0.525727\pi\)
−0.822831 + 0.568287i \(0.807607\pi\)
\(854\) −17.2337 + 29.8497i −0.589726 + 1.02144i
\(855\) 13.3101 + 23.0537i 0.455195 + 0.788422i
\(856\) 1.46442 + 2.53645i 0.0500529 + 0.0866941i
\(857\) 3.50182 + 6.06533i 0.119620 + 0.207188i 0.919617 0.392816i \(-0.128499\pi\)
−0.799997 + 0.600004i \(0.795166\pi\)
\(858\) 25.0964 0.856776
\(859\) −29.3119 −1.00011 −0.500055 0.865994i \(-0.666687\pi\)
−0.500055 + 0.865994i \(0.666687\pi\)
\(860\) −51.0813 −1.74186
\(861\) −5.50512 + 9.53515i −0.187614 + 0.324957i
\(862\) −35.4989 −1.20910
\(863\) 16.3601 + 28.3365i 0.556904 + 0.964587i 0.997753 + 0.0670050i \(0.0213443\pi\)
−0.440848 + 0.897582i \(0.645322\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 61.8248 2.10210
\(866\) −32.4135 −1.10145
\(867\) −5.52967 + 9.57767i −0.187798 + 0.325275i
\(868\) −12.1599 + 21.0616i −0.412734 + 0.714876i
\(869\) 3.02751 5.24381i 0.102701 0.177884i
\(870\) −15.9093 27.5558i −0.539377 0.934228i
\(871\) 6.23255 10.7951i 0.211182 0.365778i
\(872\) −2.15271 3.72861i −0.0729000 0.126267i
\(873\) 1.65648 2.86911i 0.0560633 0.0971046i
\(874\) 14.7480 + 25.5442i 0.498858 + 0.864047i
\(875\) −85.5477 −2.89204
\(876\) −9.07800 −0.306717
\(877\) 41.4720 1.40041 0.700205 0.713942i \(-0.253092\pi\)
0.700205 + 0.713942i \(0.253092\pi\)
\(878\) −21.5280 −0.726533
\(879\) −10.1436 −0.342136
\(880\) 10.8723 18.8313i 0.366505 0.634804i
\(881\) −11.7823 20.4075i −0.396956 0.687547i 0.596393 0.802693i \(-0.296600\pi\)
−0.993349 + 0.115145i \(0.963267\pi\)
\(882\) −0.143756 0.248993i −0.00484052 0.00838403i
\(883\) −23.9023 41.4000i −0.804376 1.39322i −0.916711 0.399550i \(-0.869166\pi\)
0.112335 0.993670i \(-0.464167\pi\)
\(884\) −25.8091 −0.868053
\(885\) −22.3549 −0.751452
\(886\) 3.75378 6.50174i 0.126111 0.218430i
\(887\) 8.34544 + 14.4547i 0.280213 + 0.485342i 0.971437 0.237298i \(-0.0762617\pi\)
−0.691224 + 0.722640i \(0.742928\pi\)
\(888\) −2.17466 −0.0729768
\(889\) 12.9281 22.3921i 0.433595 0.751008i
\(890\) 10.7170 0.359235
\(891\) 5.15084 0.172560
\(892\) 10.7116 10.4049i 0.358651 0.348382i
\(893\) −10.0418 −0.336035
\(894\) 10.9702 0.366897
\(895\) 7.52766 13.0383i 0.251622 0.435822i
\(896\) −2.59085 −0.0865541
\(897\) 11.3954 + 19.7373i 0.380480 + 0.659010i
\(898\) 12.6958 21.9897i 0.423663 0.733806i
\(899\) 70.7501 2.35965
\(900\) 12.8216 0.427386
\(901\) −2.38784 4.13587i −0.0795506 0.137786i
\(902\) 10.9447 + 18.9567i 0.364418 + 0.631190i
\(903\) −15.6748 27.1495i −0.521624 0.903479i
\(904\) 2.20178 3.81359i 0.0732300 0.126838i
\(905\) −37.5318 −1.24760
\(906\) −17.3517 −0.576472
\(907\) −21.1667 −0.702830 −0.351415 0.936220i \(-0.614299\pi\)
−0.351415 + 0.936220i \(0.614299\pi\)
\(908\) −11.4774 −0.380892
\(909\) 2.17883 0.0722671
\(910\) 26.6451 + 46.1507i 0.883278 + 1.52988i
\(911\) −16.5585 + 28.6802i −0.548608 + 0.950216i 0.449763 + 0.893148i \(0.351509\pi\)
−0.998370 + 0.0570682i \(0.981825\pi\)
\(912\) −3.15288 5.46095i −0.104402 0.180830i
\(913\) 26.6563 46.1701i 0.882195 1.52801i
\(914\) 11.4188 + 19.7780i 0.377701 + 0.654197i
\(915\) −28.0809 + 48.6375i −0.928325 + 1.60791i
\(916\) −4.09598 + 7.09444i −0.135335 + 0.234407i
\(917\) 21.7992 37.7572i 0.719872 1.24685i
\(918\) −5.29711 −0.174831
\(919\) −28.3192 −0.934164 −0.467082 0.884214i \(-0.654695\pi\)
−0.467082 + 0.884214i \(0.654695\pi\)
\(920\) 19.7468 0.651034
\(921\) 11.2890 + 19.5532i 0.371986 + 0.644299i
\(922\) −2.25619 −0.0743036
\(923\) 34.4723 59.7078i 1.13467 1.96531i
\(924\) 13.3450 0.439019
\(925\) 27.8825 0.916772
\(926\) −33.3883 −1.09721
\(927\) 0.154483 + 0.267573i 0.00507389 + 0.00878824i
\(928\) 3.76859 + 6.52739i 0.123710 + 0.214272i
\(929\) −16.9828 29.4151i −0.557187 0.965077i −0.997730 0.0673450i \(-0.978547\pi\)
0.440542 0.897732i \(-0.354786\pi\)
\(930\) −19.8135 + 34.3180i −0.649710 + 1.12533i
\(931\) 0.906493 1.57009i 0.0297091 0.0514577i
\(932\) −11.3704 19.6941i −0.372449 0.645101i
\(933\) −11.2929 −0.369711
\(934\) −12.6313 + 21.8781i −0.413310 + 0.715874i
\(935\) 57.5916 99.7517i 1.88345 3.26223i
\(936\) −2.43615 4.21953i −0.0796279 0.137920i
\(937\) 16.5063 28.5897i 0.539237 0.933986i −0.459708 0.888070i \(-0.652046\pi\)
0.998945 0.0459158i \(-0.0146206\pi\)
\(938\) 3.31417 5.74030i 0.108211 0.187428i
\(939\) 12.7927 + 22.1576i 0.417474 + 0.723086i
\(940\) −3.36136 + 5.82204i −0.109635 + 0.189894i
\(941\) 3.33920 0.108855 0.0544274 0.998518i \(-0.482667\pi\)
0.0544274 + 0.998518i \(0.482667\pi\)
\(942\) 8.84158 15.3141i 0.288074 0.498959i
\(943\) −9.93915 + 17.2151i −0.323663 + 0.560601i
\(944\) 5.29542 0.172351
\(945\) 5.46871 + 9.47208i 0.177897 + 0.308127i
\(946\) −62.3257 −2.02638
\(947\) −19.8402 + 34.3643i −0.644720 + 1.11669i 0.339646 + 0.940553i \(0.389693\pi\)
−0.984366 + 0.176135i \(0.943640\pi\)
\(948\) −1.17554 −0.0381799
\(949\) −22.1153 38.3049i −0.717894 1.24343i
\(950\) 40.4249 + 70.0180i 1.31156 + 2.27168i
\(951\) 11.0099 0.357019
\(952\) −13.7240 −0.444797
\(953\) 12.6871 21.9748i 0.410977 0.711832i −0.584020 0.811739i \(-0.698521\pi\)
0.994997 + 0.0999067i \(0.0318544\pi\)
\(954\) 0.450783 0.780778i 0.0145946 0.0252786i
\(955\) 24.4613 + 42.3682i 0.791548 + 1.37100i
\(956\) 13.6010 0.439886
\(957\) −19.4114 33.6215i −0.627481 1.08683i
\(958\) −30.1457 −0.973963
\(959\) 28.7580 49.8103i 0.928644 1.60846i
\(960\) −4.22156 −0.136250
\(961\) −28.5561 49.4607i −0.921166 1.59551i
\(962\) −5.29779 9.17604i −0.170808 0.295847i
\(963\) −1.46442 + 2.53645i −0.0471903 + 0.0817360i
\(964\) 1.96708 + 3.40707i 0.0633552 + 0.109734i
\(965\) −7.59314 13.1517i −0.244432 0.423368i
\(966\) 6.05949 + 10.4953i 0.194961 + 0.337682i
\(967\) −2.69263 4.66378i −0.0865893 0.149977i 0.819478 0.573111i \(-0.194263\pi\)
−0.906067 + 0.423134i \(0.860930\pi\)
\(968\) 7.76556 13.4503i 0.249594 0.432310i
\(969\) −16.7012 28.9273i −0.536519 0.929278i
\(970\) 6.99293 12.1121i 0.224529 0.388896i
\(971\) −16.6325 28.8083i −0.533762 0.924504i −0.999222 0.0394346i \(-0.987444\pi\)
0.465460 0.885069i \(-0.345889\pi\)
\(972\) −0.500000 0.866025i −0.0160375 0.0277778i
\(973\) −5.47366 + 9.48066i −0.175478 + 0.303936i
\(974\) 28.1640 0.902433
\(975\) 31.2352 + 54.1010i 1.00033 + 1.73262i
\(976\) 6.65178 11.5212i 0.212918 0.368785i
\(977\) −14.7510 25.5494i −0.471925 0.817399i 0.527559 0.849519i \(-0.323108\pi\)
−0.999484 + 0.0321198i \(0.989774\pi\)
\(978\) 1.35997 2.35555i 0.0434872 0.0753220i
\(979\) 13.0761 0.417914
\(980\) −0.606875 1.05114i −0.0193859 0.0335774i
\(981\) 2.15271 3.72861i 0.0687308 0.119045i
\(982\) 6.70442 11.6124i 0.213947 0.370566i
\(983\) 21.4869 0.685325 0.342663 0.939458i \(-0.388671\pi\)
0.342663 + 0.939458i \(0.388671\pi\)
\(984\) 2.12483 3.68032i 0.0677372 0.117324i
\(985\) 10.8285 + 18.7554i 0.345023 + 0.597598i
\(986\) 19.9626 + 34.5763i 0.635740 + 1.10113i
\(987\) −4.12585 −0.131327
\(988\) 15.3618 26.6074i 0.488723 0.846493i
\(989\) −28.2998 49.0167i −0.899882 1.55864i
\(990\) 21.7446 0.691088
\(991\) 18.3169 31.7258i 0.581855 1.00780i −0.413405 0.910547i \(-0.635660\pi\)
0.995260 0.0972548i \(-0.0310062\pi\)
\(992\) 4.69341 8.12922i 0.149016 0.258103i
\(993\) 5.08442 8.80648i 0.161349 0.279465i
\(994\) 18.3307 31.7497i 0.581414 1.00704i
\(995\) −35.3251 −1.11988
\(996\) −10.3503 −0.327961
\(997\) 50.8776 1.61131 0.805655 0.592385i \(-0.201814\pi\)
0.805655 + 0.592385i \(0.201814\pi\)
\(998\) −7.92225 13.7217i −0.250774 0.434354i
\(999\) −1.08733 1.88331i −0.0344016 0.0595853i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.e.h.931.7 14
223.183 even 3 inner 1338.2.e.h.1075.7 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.e.h.931.7 14 1.1 even 1 trivial
1338.2.e.h.1075.7 yes 14 223.183 even 3 inner