Properties

Label 1338.2.e.h.931.5
Level $1338$
Weight $2$
Character 1338.931
Analytic conductor $10.684$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1338,2,Mod(931,1338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1338.931"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-14,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.6839837904\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 3 x^{13} + 21 x^{12} - 26 x^{11} + 217 x^{10} - 335 x^{9} + 1058 x^{8} - 1539 x^{7} + 3657 x^{6} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 931.5
Root \(-1.35878 - 2.35347i\) of defining polynomial
Character \(\chi\) \(=\) 1338.931
Dual form 1338.2.e.h.1075.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(-0.500000 + 0.866025i) q^{3} +1.00000 q^{4} +(0.158723 + 0.274916i) q^{5} +(0.500000 - 0.866025i) q^{6} +3.33321 q^{7} -1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-0.158723 - 0.274916i) q^{10} +(1.24487 + 2.15618i) q^{11} +(-0.500000 + 0.866025i) q^{12} +6.11204 q^{13} -3.33321 q^{14} -0.317445 q^{15} +1.00000 q^{16} +0.481807 q^{17} +(0.500000 + 0.866025i) q^{18} +(-3.81125 + 6.60128i) q^{19} +(0.158723 + 0.274916i) q^{20} +(-1.66660 + 2.88664i) q^{21} +(-1.24487 - 2.15618i) q^{22} +(-1.21640 + 2.10687i) q^{23} +(0.500000 - 0.866025i) q^{24} +(2.44961 - 4.24286i) q^{25} -6.11204 q^{26} +1.00000 q^{27} +3.33321 q^{28} +(-5.17524 - 8.96378i) q^{29} +0.317445 q^{30} +(3.61153 - 6.25535i) q^{31} -1.00000 q^{32} -2.48974 q^{33} -0.481807 q^{34} +(0.529055 + 0.916351i) q^{35} +(-0.500000 - 0.866025i) q^{36} +(2.06556 + 3.57765i) q^{37} +(3.81125 - 6.60128i) q^{38} +(-3.05602 + 5.29318i) q^{39} +(-0.158723 - 0.274916i) q^{40} +11.4607 q^{41} +(1.66660 - 2.88664i) q^{42} +(1.13846 - 1.97188i) q^{43} +(1.24487 + 2.15618i) q^{44} +(0.158723 - 0.274916i) q^{45} +(1.21640 - 2.10687i) q^{46} +(0.338188 + 0.585760i) q^{47} +(-0.500000 + 0.866025i) q^{48} +4.11026 q^{49} +(-2.44961 + 4.24286i) q^{50} +(-0.240904 + 0.417257i) q^{51} +6.11204 q^{52} +(3.03581 + 5.25818i) q^{53} -1.00000 q^{54} +(-0.395178 + 0.684469i) q^{55} -3.33321 q^{56} +(-3.81125 - 6.60128i) q^{57} +(5.17524 + 8.96378i) q^{58} -10.4971 q^{59} -0.317445 q^{60} +(-4.31593 + 7.47540i) q^{61} +(-3.61153 + 6.25535i) q^{62} +(-1.66660 - 2.88664i) q^{63} +1.00000 q^{64} +(0.970120 + 1.68030i) q^{65} +2.48974 q^{66} +(2.08306 - 3.60796i) q^{67} +0.481807 q^{68} +(-1.21640 - 2.10687i) q^{69} +(-0.529055 - 0.916351i) q^{70} +(-0.623014 + 1.07909i) q^{71} +(0.500000 + 0.866025i) q^{72} +(-2.95216 - 5.11330i) q^{73} +(-2.06556 - 3.57765i) q^{74} +(2.44961 + 4.24286i) q^{75} +(-3.81125 + 6.60128i) q^{76} +(4.14941 + 7.18698i) q^{77} +(3.05602 - 5.29318i) q^{78} +(4.00598 + 6.93857i) q^{79} +(0.158723 + 0.274916i) q^{80} +(-0.500000 + 0.866025i) q^{81} -11.4607 q^{82} +(-0.899848 - 1.55858i) q^{83} +(-1.66660 + 2.88664i) q^{84} +(0.0764738 + 0.132456i) q^{85} +(-1.13846 + 1.97188i) q^{86} +10.3505 q^{87} +(-1.24487 - 2.15618i) q^{88} +(-5.53862 + 9.59317i) q^{89} +(-0.158723 + 0.274916i) q^{90} +20.3727 q^{91} +(-1.21640 + 2.10687i) q^{92} +(3.61153 + 6.25535i) q^{93} +(-0.338188 - 0.585760i) q^{94} -2.41973 q^{95} +(0.500000 - 0.866025i) q^{96} +(-0.704230 - 1.21976i) q^{97} -4.11026 q^{98} +(1.24487 - 2.15618i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{2} - 7 q^{3} + 14 q^{4} - 4 q^{5} + 7 q^{6} + 12 q^{7} - 14 q^{8} - 7 q^{9} + 4 q^{10} - 10 q^{11} - 7 q^{12} - 4 q^{13} - 12 q^{14} + 8 q^{15} + 14 q^{16} + 8 q^{17} + 7 q^{18} - 8 q^{19}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1338\mathbb{Z}\right)^\times\).

\(n\) \(893\) \(895\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 1.00000 0.500000
\(5\) 0.158723 + 0.274916i 0.0709830 + 0.122946i 0.899332 0.437266i \(-0.144053\pi\)
−0.828349 + 0.560212i \(0.810720\pi\)
\(6\) 0.500000 0.866025i 0.204124 0.353553i
\(7\) 3.33321 1.25983 0.629917 0.776663i \(-0.283089\pi\)
0.629917 + 0.776663i \(0.283089\pi\)
\(8\) −1.00000 −0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −0.158723 0.274916i −0.0501925 0.0869360i
\(11\) 1.24487 + 2.15618i 0.375342 + 0.650112i 0.990378 0.138387i \(-0.0441918\pi\)
−0.615036 + 0.788499i \(0.710858\pi\)
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) 6.11204 1.69518 0.847588 0.530655i \(-0.178054\pi\)
0.847588 + 0.530655i \(0.178054\pi\)
\(14\) −3.33321 −0.890837
\(15\) −0.317445 −0.0819641
\(16\) 1.00000 0.250000
\(17\) 0.481807 0.116855 0.0584277 0.998292i \(-0.481391\pi\)
0.0584277 + 0.998292i \(0.481391\pi\)
\(18\) 0.500000 + 0.866025i 0.117851 + 0.204124i
\(19\) −3.81125 + 6.60128i −0.874361 + 1.51444i −0.0169197 + 0.999857i \(0.505386\pi\)
−0.857442 + 0.514581i \(0.827947\pi\)
\(20\) 0.158723 + 0.274916i 0.0354915 + 0.0614731i
\(21\) −1.66660 + 2.88664i −0.363682 + 0.629917i
\(22\) −1.24487 2.15618i −0.265407 0.459699i
\(23\) −1.21640 + 2.10687i −0.253637 + 0.439312i −0.964524 0.263994i \(-0.914960\pi\)
0.710887 + 0.703306i \(0.248294\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) 2.44961 4.24286i 0.489923 0.848571i
\(26\) −6.11204 −1.19867
\(27\) 1.00000 0.192450
\(28\) 3.33321 0.629917
\(29\) −5.17524 8.96378i −0.961018 1.66453i −0.719953 0.694022i \(-0.755837\pi\)
−0.241064 0.970509i \(-0.577496\pi\)
\(30\) 0.317445 0.0579574
\(31\) 3.61153 6.25535i 0.648650 1.12349i −0.334796 0.942291i \(-0.608667\pi\)
0.983446 0.181203i \(-0.0579992\pi\)
\(32\) −1.00000 −0.176777
\(33\) −2.48974 −0.433408
\(34\) −0.481807 −0.0826292
\(35\) 0.529055 + 0.916351i 0.0894267 + 0.154892i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 2.06556 + 3.57765i 0.339576 + 0.588162i 0.984353 0.176208i \(-0.0563832\pi\)
−0.644777 + 0.764371i \(0.723050\pi\)
\(38\) 3.81125 6.60128i 0.618267 1.07087i
\(39\) −3.05602 + 5.29318i −0.489355 + 0.847588i
\(40\) −0.158723 0.274916i −0.0250963 0.0434680i
\(41\) 11.4607 1.78987 0.894933 0.446201i \(-0.147223\pi\)
0.894933 + 0.446201i \(0.147223\pi\)
\(42\) 1.66660 2.88664i 0.257162 0.445418i
\(43\) 1.13846 1.97188i 0.173614 0.300708i −0.766067 0.642761i \(-0.777789\pi\)
0.939681 + 0.342053i \(0.111122\pi\)
\(44\) 1.24487 + 2.15618i 0.187671 + 0.325056i
\(45\) 0.158723 0.274916i 0.0236610 0.0409820i
\(46\) 1.21640 2.10687i 0.179349 0.310641i
\(47\) 0.338188 + 0.585760i 0.0493299 + 0.0854418i 0.889636 0.456670i \(-0.150958\pi\)
−0.840306 + 0.542112i \(0.817625\pi\)
\(48\) −0.500000 + 0.866025i −0.0721688 + 0.125000i
\(49\) 4.11026 0.587179
\(50\) −2.44961 + 4.24286i −0.346428 + 0.600030i
\(51\) −0.240904 + 0.417257i −0.0337332 + 0.0584277i
\(52\) 6.11204 0.847588
\(53\) 3.03581 + 5.25818i 0.417001 + 0.722266i 0.995636 0.0933200i \(-0.0297480\pi\)
−0.578636 + 0.815586i \(0.696415\pi\)
\(54\) −1.00000 −0.136083
\(55\) −0.395178 + 0.684469i −0.0532858 + 0.0922938i
\(56\) −3.33321 −0.445418
\(57\) −3.81125 6.60128i −0.504813 0.874361i
\(58\) 5.17524 + 8.96378i 0.679542 + 1.17700i
\(59\) −10.4971 −1.36661 −0.683306 0.730132i \(-0.739459\pi\)
−0.683306 + 0.730132i \(0.739459\pi\)
\(60\) −0.317445 −0.0409820
\(61\) −4.31593 + 7.47540i −0.552598 + 0.957127i 0.445488 + 0.895288i \(0.353030\pi\)
−0.998086 + 0.0618396i \(0.980303\pi\)
\(62\) −3.61153 + 6.25535i −0.458664 + 0.794430i
\(63\) −1.66660 2.88664i −0.209972 0.363682i
\(64\) 1.00000 0.125000
\(65\) 0.970120 + 1.68030i 0.120329 + 0.208415i
\(66\) 2.48974 0.306466
\(67\) 2.08306 3.60796i 0.254486 0.440783i −0.710270 0.703930i \(-0.751427\pi\)
0.964756 + 0.263147i \(0.0847604\pi\)
\(68\) 0.481807 0.0584277
\(69\) −1.21640 2.10687i −0.146437 0.253637i
\(70\) −0.529055 0.916351i −0.0632342 0.109525i
\(71\) −0.623014 + 1.07909i −0.0739382 + 0.128065i −0.900624 0.434599i \(-0.856890\pi\)
0.826686 + 0.562664i \(0.190223\pi\)
\(72\) 0.500000 + 0.866025i 0.0589256 + 0.102062i
\(73\) −2.95216 5.11330i −0.345525 0.598466i 0.639924 0.768438i \(-0.278966\pi\)
−0.985449 + 0.169972i \(0.945632\pi\)
\(74\) −2.06556 3.57765i −0.240116 0.415894i
\(75\) 2.44961 + 4.24286i 0.282857 + 0.489923i
\(76\) −3.81125 + 6.60128i −0.437181 + 0.757219i
\(77\) 4.14941 + 7.18698i 0.472869 + 0.819033i
\(78\) 3.05602 5.29318i 0.346026 0.599335i
\(79\) 4.00598 + 6.93857i 0.450708 + 0.780650i 0.998430 0.0560106i \(-0.0178381\pi\)
−0.547722 + 0.836661i \(0.684505\pi\)
\(80\) 0.158723 + 0.274916i 0.0177457 + 0.0307365i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −11.4607 −1.26563
\(83\) −0.899848 1.55858i −0.0987712 0.171077i 0.812405 0.583093i \(-0.198158\pi\)
−0.911176 + 0.412017i \(0.864825\pi\)
\(84\) −1.66660 + 2.88664i −0.181841 + 0.314958i
\(85\) 0.0764738 + 0.132456i 0.00829474 + 0.0143669i
\(86\) −1.13846 + 1.97188i −0.122764 + 0.212633i
\(87\) 10.3505 1.10969
\(88\) −1.24487 2.15618i −0.132704 0.229849i
\(89\) −5.53862 + 9.59317i −0.587093 + 1.01687i 0.407518 + 0.913197i \(0.366394\pi\)
−0.994611 + 0.103677i \(0.966939\pi\)
\(90\) −0.158723 + 0.274916i −0.0167308 + 0.0289787i
\(91\) 20.3727 2.13564
\(92\) −1.21640 + 2.10687i −0.126819 + 0.219656i
\(93\) 3.61153 + 6.25535i 0.374498 + 0.648650i
\(94\) −0.338188 0.585760i −0.0348815 0.0604165i
\(95\) −2.41973 −0.248259
\(96\) 0.500000 0.866025i 0.0510310 0.0883883i
\(97\) −0.704230 1.21976i −0.0715037 0.123848i 0.828057 0.560644i \(-0.189446\pi\)
−0.899561 + 0.436796i \(0.856113\pi\)
\(98\) −4.11026 −0.415199
\(99\) 1.24487 2.15618i 0.125114 0.216704i
\(100\) 2.44961 4.24286i 0.244961 0.424286i
\(101\) 3.32729 5.76303i 0.331078 0.573443i −0.651646 0.758523i \(-0.725921\pi\)
0.982723 + 0.185080i \(0.0592545\pi\)
\(102\) 0.240904 0.417257i 0.0238530 0.0413146i
\(103\) 1.36349 0.134349 0.0671744 0.997741i \(-0.478602\pi\)
0.0671744 + 0.997741i \(0.478602\pi\)
\(104\) −6.11204 −0.599335
\(105\) −1.05811 −0.103261
\(106\) −3.03581 5.25818i −0.294864 0.510719i
\(107\) 7.47456 + 12.9463i 0.722593 + 1.25157i 0.959957 + 0.280148i \(0.0903834\pi\)
−0.237364 + 0.971421i \(0.576283\pi\)
\(108\) 1.00000 0.0962250
\(109\) 6.24230 + 10.8120i 0.597903 + 1.03560i 0.993130 + 0.117016i \(0.0373327\pi\)
−0.395227 + 0.918584i \(0.629334\pi\)
\(110\) 0.395178 0.684469i 0.0376788 0.0652616i
\(111\) −4.13112 −0.392108
\(112\) 3.33321 0.314958
\(113\) −0.514881 + 0.891800i −0.0484359 + 0.0838935i −0.889227 0.457466i \(-0.848757\pi\)
0.840791 + 0.541360i \(0.182090\pi\)
\(114\) 3.81125 + 6.60128i 0.356957 + 0.618267i
\(115\) −0.772282 −0.0720157
\(116\) −5.17524 8.96378i −0.480509 0.832266i
\(117\) −3.05602 5.29318i −0.282529 0.489355i
\(118\) 10.4971 0.966341
\(119\) 1.60596 0.147218
\(120\) 0.317445 0.0289787
\(121\) 2.40060 4.15796i 0.218236 0.377996i
\(122\) 4.31593 7.47540i 0.390746 0.676791i
\(123\) −5.73037 + 9.92529i −0.516690 + 0.894933i
\(124\) 3.61153 6.25535i 0.324325 0.561747i
\(125\) 3.14247 0.281071
\(126\) 1.66660 + 2.88664i 0.148473 + 0.257162i
\(127\) −3.07874 + 5.33254i −0.273194 + 0.473186i −0.969678 0.244386i \(-0.921414\pi\)
0.696484 + 0.717573i \(0.254747\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 1.13846 + 1.97188i 0.100236 + 0.173614i
\(130\) −0.970120 1.68030i −0.0850852 0.147372i
\(131\) −5.59778 + 9.69565i −0.489081 + 0.847112i −0.999921 0.0125631i \(-0.996001\pi\)
0.510840 + 0.859676i \(0.329334\pi\)
\(132\) −2.48974 −0.216704
\(133\) −12.7037 + 22.0034i −1.10155 + 1.90794i
\(134\) −2.08306 + 3.60796i −0.179949 + 0.311681i
\(135\) 0.158723 + 0.274916i 0.0136607 + 0.0236610i
\(136\) −0.481807 −0.0413146
\(137\) 3.93682 6.81877i 0.336345 0.582567i −0.647397 0.762153i \(-0.724143\pi\)
0.983742 + 0.179586i \(0.0574759\pi\)
\(138\) 1.21640 + 2.10687i 0.103547 + 0.179349i
\(139\) −2.32804 + 4.03228i −0.197461 + 0.342013i −0.947705 0.319149i \(-0.896603\pi\)
0.750243 + 0.661162i \(0.229936\pi\)
\(140\) 0.529055 + 0.916351i 0.0447133 + 0.0774458i
\(141\) −0.676377 −0.0569612
\(142\) 0.623014 1.07909i 0.0522822 0.0905554i
\(143\) 7.60870 + 13.1787i 0.636271 + 1.10205i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) 1.64286 2.84551i 0.136432 0.236307i
\(146\) 2.95216 + 5.11330i 0.244323 + 0.423180i
\(147\) −2.05513 + 3.55959i −0.169504 + 0.293590i
\(148\) 2.06556 + 3.57765i 0.169788 + 0.294081i
\(149\) 7.18795 + 12.4499i 0.588860 + 1.01993i 0.994382 + 0.105850i \(0.0337563\pi\)
−0.405522 + 0.914085i \(0.632910\pi\)
\(150\) −2.44961 4.24286i −0.200010 0.346428i
\(151\) 2.67314 + 4.63001i 0.217537 + 0.376785i 0.954054 0.299634i \(-0.0968644\pi\)
−0.736517 + 0.676419i \(0.763531\pi\)
\(152\) 3.81125 6.60128i 0.309133 0.535435i
\(153\) −0.240904 0.417257i −0.0194759 0.0337332i
\(154\) −4.14941 7.18698i −0.334369 0.579144i
\(155\) 2.29293 0.184172
\(156\) −3.05602 + 5.29318i −0.244677 + 0.423794i
\(157\) −21.2688 −1.69744 −0.848719 0.528844i \(-0.822626\pi\)
−0.848719 + 0.528844i \(0.822626\pi\)
\(158\) −4.00598 6.93857i −0.318699 0.552003i
\(159\) −6.07162 −0.481511
\(160\) −0.158723 0.274916i −0.0125481 0.0217340i
\(161\) −4.05451 + 7.02262i −0.319540 + 0.553460i
\(162\) 0.500000 0.866025i 0.0392837 0.0680414i
\(163\) 13.3427 1.04508 0.522539 0.852616i \(-0.324985\pi\)
0.522539 + 0.852616i \(0.324985\pi\)
\(164\) 11.4607 0.894933
\(165\) −0.395178 0.684469i −0.0307646 0.0532858i
\(166\) 0.899848 + 1.55858i 0.0698418 + 0.120969i
\(167\) 2.05239 0.158819 0.0794093 0.996842i \(-0.474697\pi\)
0.0794093 + 0.996842i \(0.474697\pi\)
\(168\) 1.66660 2.88664i 0.128581 0.222709i
\(169\) 24.3571 1.87362
\(170\) −0.0764738 0.132456i −0.00586527 0.0101589i
\(171\) 7.62251 0.582908
\(172\) 1.13846 1.97188i 0.0868070 0.150354i
\(173\) −0.748011 + 1.29559i −0.0568702 + 0.0985021i −0.893059 0.449940i \(-0.851445\pi\)
0.836189 + 0.548442i \(0.184779\pi\)
\(174\) −10.3505 −0.784668
\(175\) 8.16507 14.1423i 0.617221 1.06906i
\(176\) 1.24487 + 2.15618i 0.0938356 + 0.162528i
\(177\) 5.24857 9.09080i 0.394507 0.683306i
\(178\) 5.53862 9.59317i 0.415137 0.719039i
\(179\) −12.1097 20.9746i −0.905121 1.56772i −0.820755 0.571281i \(-0.806447\pi\)
−0.0843666 0.996435i \(-0.526887\pi\)
\(180\) 0.158723 0.274916i 0.0118305 0.0204910i
\(181\) 1.69523 2.93622i 0.126005 0.218247i −0.796120 0.605138i \(-0.793118\pi\)
0.922125 + 0.386891i \(0.126451\pi\)
\(182\) −20.3727 −1.51012
\(183\) −4.31593 7.47540i −0.319042 0.552598i
\(184\) 1.21640 2.10687i 0.0896743 0.155320i
\(185\) −0.655702 + 1.13571i −0.0482082 + 0.0834990i
\(186\) −3.61153 6.25535i −0.264810 0.458664i
\(187\) 0.599787 + 1.03886i 0.0438608 + 0.0759691i
\(188\) 0.338188 + 0.585760i 0.0246649 + 0.0427209i
\(189\) 3.33321 0.242455
\(190\) 2.41973 0.175546
\(191\) 8.72580 0.631377 0.315688 0.948863i \(-0.397765\pi\)
0.315688 + 0.948863i \(0.397765\pi\)
\(192\) −0.500000 + 0.866025i −0.0360844 + 0.0625000i
\(193\) 12.2142 0.879196 0.439598 0.898195i \(-0.355121\pi\)
0.439598 + 0.898195i \(0.355121\pi\)
\(194\) 0.704230 + 1.21976i 0.0505608 + 0.0875738i
\(195\) −1.94024 −0.138943
\(196\) 4.11026 0.293590
\(197\) −0.344699 −0.0245588 −0.0122794 0.999925i \(-0.503909\pi\)
−0.0122794 + 0.999925i \(0.503909\pi\)
\(198\) −1.24487 + 2.15618i −0.0884691 + 0.153233i
\(199\) −0.512952 + 0.888459i −0.0363622 + 0.0629812i −0.883634 0.468179i \(-0.844910\pi\)
0.847272 + 0.531160i \(0.178244\pi\)
\(200\) −2.44961 + 4.24286i −0.173214 + 0.300015i
\(201\) 2.08306 + 3.60796i 0.146928 + 0.254486i
\(202\) −3.32729 + 5.76303i −0.234107 + 0.405486i
\(203\) −17.2501 29.8781i −1.21072 2.09703i
\(204\) −0.240904 + 0.417257i −0.0168666 + 0.0292138i
\(205\) 1.81908 + 3.15074i 0.127050 + 0.220057i
\(206\) −1.36349 −0.0949989
\(207\) 2.43280 0.169091
\(208\) 6.11204 0.423794
\(209\) −18.9781 −1.31274
\(210\) 1.05811 0.0730166
\(211\) −0.327413 + 0.567096i −0.0225401 + 0.0390405i −0.877075 0.480353i \(-0.840509\pi\)
0.854535 + 0.519393i \(0.173842\pi\)
\(212\) 3.03581 + 5.25818i 0.208500 + 0.361133i
\(213\) −0.623014 1.07909i −0.0426882 0.0739382i
\(214\) −7.47456 12.9463i −0.510951 0.884993i
\(215\) 0.722800 0.0492946
\(216\) −1.00000 −0.0680414
\(217\) 12.0380 20.8504i 0.817190 1.41541i
\(218\) −6.24230 10.8120i −0.422782 0.732279i
\(219\) 5.90433 0.398978
\(220\) −0.395178 + 0.684469i −0.0266429 + 0.0461469i
\(221\) 2.94483 0.198090
\(222\) 4.13112 0.277262
\(223\) 7.09104 + 13.1422i 0.474851 + 0.880066i
\(224\) −3.33321 −0.222709
\(225\) −4.89923 −0.326615
\(226\) 0.514881 0.891800i 0.0342494 0.0593216i
\(227\) −22.0684 −1.46473 −0.732366 0.680911i \(-0.761584\pi\)
−0.732366 + 0.680911i \(0.761584\pi\)
\(228\) −3.81125 6.60128i −0.252406 0.437181i
\(229\) 12.3111 21.3234i 0.813538 1.40909i −0.0968354 0.995300i \(-0.530872\pi\)
0.910373 0.413788i \(-0.135795\pi\)
\(230\) 0.772282 0.0509228
\(231\) −8.29881 −0.546022
\(232\) 5.17524 + 8.96378i 0.339771 + 0.588501i
\(233\) −14.0993 24.4206i −0.923673 1.59985i −0.793681 0.608334i \(-0.791838\pi\)
−0.129992 0.991515i \(-0.541495\pi\)
\(234\) 3.05602 + 5.29318i 0.199778 + 0.346026i
\(235\) −0.107356 + 0.185947i −0.00700316 + 0.0121298i
\(236\) −10.4971 −0.683306
\(237\) −8.01197 −0.520433
\(238\) −1.60596 −0.104099
\(239\) −1.06849 −0.0691151 −0.0345575 0.999403i \(-0.511002\pi\)
−0.0345575 + 0.999403i \(0.511002\pi\)
\(240\) −0.317445 −0.0204910
\(241\) −12.0709 20.9074i −0.777553 1.34676i −0.933349 0.358972i \(-0.883128\pi\)
0.155796 0.987789i \(-0.450206\pi\)
\(242\) −2.40060 + 4.15796i −0.154316 + 0.267284i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) −4.31593 + 7.47540i −0.276299 + 0.478564i
\(245\) 0.652391 + 1.12997i 0.0416797 + 0.0721914i
\(246\) 5.73037 9.92529i 0.365355 0.632813i
\(247\) −23.2945 + 40.3473i −1.48220 + 2.56724i
\(248\) −3.61153 + 6.25535i −0.229332 + 0.397215i
\(249\) 1.79970 0.114051
\(250\) −3.14247 −0.198747
\(251\) 8.71182 0.549885 0.274943 0.961461i \(-0.411341\pi\)
0.274943 + 0.961461i \(0.411341\pi\)
\(252\) −1.66660 2.88664i −0.104986 0.181841i
\(253\) −6.05704 −0.380803
\(254\) 3.07874 5.33254i 0.193177 0.334593i
\(255\) −0.152948 −0.00957794
\(256\) 1.00000 0.0625000
\(257\) 4.14474 0.258542 0.129271 0.991609i \(-0.458736\pi\)
0.129271 + 0.991609i \(0.458736\pi\)
\(258\) −1.13846 1.97188i −0.0708776 0.122764i
\(259\) 6.88493 + 11.9250i 0.427809 + 0.740986i
\(260\) 0.970120 + 1.68030i 0.0601643 + 0.104208i
\(261\) −5.17524 + 8.96378i −0.320339 + 0.554844i
\(262\) 5.59778 9.69565i 0.345832 0.598999i
\(263\) 10.5375 + 18.2516i 0.649773 + 1.12544i 0.983177 + 0.182656i \(0.0584694\pi\)
−0.333404 + 0.942784i \(0.608197\pi\)
\(264\) 2.48974 0.153233
\(265\) −0.963704 + 1.66918i −0.0591999 + 0.102537i
\(266\) 12.7037 22.0034i 0.778913 1.34912i
\(267\) −5.53862 9.59317i −0.338958 0.587093i
\(268\) 2.08306 3.60796i 0.127243 0.220391i
\(269\) 0.765600 1.32606i 0.0466795 0.0808512i −0.841742 0.539881i \(-0.818469\pi\)
0.888421 + 0.459029i \(0.151803\pi\)
\(270\) −0.158723 0.274916i −0.00965956 0.0167308i
\(271\) 9.18460 15.9082i 0.557925 0.966354i −0.439745 0.898123i \(-0.644931\pi\)
0.997670 0.0682313i \(-0.0217356\pi\)
\(272\) 0.481807 0.0292138
\(273\) −10.1863 + 17.6433i −0.616506 + 1.06782i
\(274\) −3.93682 + 6.81877i −0.237832 + 0.411937i
\(275\) 12.1978 0.735555
\(276\) −1.21640 2.10687i −0.0732187 0.126819i
\(277\) −24.6709 −1.48233 −0.741165 0.671323i \(-0.765726\pi\)
−0.741165 + 0.671323i \(0.765726\pi\)
\(278\) 2.32804 4.03228i 0.139626 0.241840i
\(279\) −7.22306 −0.432433
\(280\) −0.529055 0.916351i −0.0316171 0.0547624i
\(281\) −7.67302 13.2901i −0.457734 0.792818i 0.541107 0.840954i \(-0.318005\pi\)
−0.998841 + 0.0481354i \(0.984672\pi\)
\(282\) 0.676377 0.0402777
\(283\) −16.4101 −0.975477 −0.487738 0.872990i \(-0.662178\pi\)
−0.487738 + 0.872990i \(0.662178\pi\)
\(284\) −0.623014 + 1.07909i −0.0369691 + 0.0640324i
\(285\) 1.20986 2.09555i 0.0716662 0.124130i
\(286\) −7.60870 13.1787i −0.449912 0.779270i
\(287\) 38.2010 2.25493
\(288\) 0.500000 + 0.866025i 0.0294628 + 0.0510310i
\(289\) −16.7679 −0.986345
\(290\) −1.64286 + 2.84551i −0.0964718 + 0.167094i
\(291\) 1.40846 0.0825654
\(292\) −2.95216 5.11330i −0.172762 0.299233i
\(293\) −12.2124 21.1525i −0.713455 1.23574i −0.963553 0.267519i \(-0.913796\pi\)
0.250098 0.968221i \(-0.419537\pi\)
\(294\) 2.05513 3.55959i 0.119858 0.207599i
\(295\) −1.66614 2.88583i −0.0970062 0.168020i
\(296\) −2.06556 3.57765i −0.120058 0.207947i
\(297\) 1.24487 + 2.15618i 0.0722347 + 0.125114i
\(298\) −7.18795 12.4499i −0.416387 0.721203i
\(299\) −7.43469 + 12.8773i −0.429959 + 0.744712i
\(300\) 2.44961 + 4.24286i 0.141429 + 0.244961i
\(301\) 3.79473 6.57267i 0.218725 0.378842i
\(302\) −2.67314 4.63001i −0.153822 0.266427i
\(303\) 3.32729 + 5.76303i 0.191148 + 0.331078i
\(304\) −3.81125 + 6.60128i −0.218590 + 0.378610i
\(305\) −2.74014 −0.156900
\(306\) 0.240904 + 0.417257i 0.0137715 + 0.0238530i
\(307\) −10.3706 + 17.9624i −0.591880 + 1.02517i 0.402099 + 0.915596i \(0.368281\pi\)
−0.993979 + 0.109571i \(0.965052\pi\)
\(308\) 4.14941 + 7.18698i 0.236434 + 0.409516i
\(309\) −0.681745 + 1.18082i −0.0387831 + 0.0671744i
\(310\) −2.29293 −0.130229
\(311\) 11.2169 + 19.4283i 0.636055 + 1.10168i 0.986291 + 0.165018i \(0.0527681\pi\)
−0.350236 + 0.936662i \(0.613899\pi\)
\(312\) 3.05602 5.29318i 0.173013 0.299667i
\(313\) 0.621989 1.07732i 0.0351569 0.0608935i −0.847912 0.530138i \(-0.822140\pi\)
0.883068 + 0.469244i \(0.155474\pi\)
\(314\) 21.2688 1.20027
\(315\) 0.529055 0.916351i 0.0298089 0.0516305i
\(316\) 4.00598 + 6.93857i 0.225354 + 0.390325i
\(317\) −11.4277 19.7934i −0.641844 1.11171i −0.985021 0.172436i \(-0.944836\pi\)
0.343177 0.939271i \(-0.388497\pi\)
\(318\) 6.07162 0.340480
\(319\) 12.8850 22.3175i 0.721421 1.24954i
\(320\) 0.158723 + 0.274916i 0.00887287 + 0.0153683i
\(321\) −14.9491 −0.834379
\(322\) 4.05451 7.02262i 0.225949 0.391356i
\(323\) −1.83629 + 3.18055i −0.102174 + 0.176970i
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) 14.9721 25.9325i 0.830505 1.43848i
\(326\) −13.3427 −0.738981
\(327\) −12.4846 −0.690399
\(328\) −11.4607 −0.632813
\(329\) 1.12725 + 1.95246i 0.0621474 + 0.107642i
\(330\) 0.395178 + 0.684469i 0.0217539 + 0.0376788i
\(331\) 12.7162 0.698948 0.349474 0.936946i \(-0.386360\pi\)
0.349474 + 0.936946i \(0.386360\pi\)
\(332\) −0.899848 1.55858i −0.0493856 0.0855383i
\(333\) 2.06556 3.57765i 0.113192 0.196054i
\(334\) −2.05239 −0.112302
\(335\) 1.32252 0.0722567
\(336\) −1.66660 + 2.88664i −0.0909206 + 0.157479i
\(337\) −5.08368 8.80519i −0.276926 0.479649i 0.693694 0.720270i \(-0.255982\pi\)
−0.970619 + 0.240621i \(0.922649\pi\)
\(338\) −24.3571 −1.32485
\(339\) −0.514881 0.891800i −0.0279645 0.0484359i
\(340\) 0.0764738 + 0.132456i 0.00414737 + 0.00718346i
\(341\) 17.9835 0.973863
\(342\) −7.62251 −0.412178
\(343\) −9.63211 −0.520085
\(344\) −1.13846 + 1.97188i −0.0613818 + 0.106316i
\(345\) 0.386141 0.668816i 0.0207891 0.0360078i
\(346\) 0.748011 1.29559i 0.0402133 0.0696515i
\(347\) 1.36218 2.35936i 0.0731254 0.126657i −0.827144 0.561990i \(-0.810036\pi\)
0.900270 + 0.435333i \(0.143369\pi\)
\(348\) 10.3505 0.554844
\(349\) 4.07814 + 7.06354i 0.218298 + 0.378103i 0.954288 0.298890i \(-0.0966163\pi\)
−0.735990 + 0.676992i \(0.763283\pi\)
\(350\) −8.16507 + 14.1423i −0.436441 + 0.755938i
\(351\) 6.11204 0.326237
\(352\) −1.24487 2.15618i −0.0663518 0.114925i
\(353\) 6.34205 + 10.9847i 0.337553 + 0.584659i 0.983972 0.178324i \(-0.0570674\pi\)
−0.646419 + 0.762983i \(0.723734\pi\)
\(354\) −5.24857 + 9.09080i −0.278959 + 0.483170i
\(355\) −0.395546 −0.0209934
\(356\) −5.53862 + 9.59317i −0.293546 + 0.508437i
\(357\) −0.802981 + 1.39080i −0.0424983 + 0.0736092i
\(358\) 12.1097 + 20.9746i 0.640017 + 1.10854i
\(359\) 28.4555 1.50183 0.750913 0.660401i \(-0.229614\pi\)
0.750913 + 0.660401i \(0.229614\pi\)
\(360\) −0.158723 + 0.274916i −0.00836542 + 0.0144893i
\(361\) −19.5513 33.8638i −1.02902 1.78231i
\(362\) −1.69523 + 2.93622i −0.0890991 + 0.154324i
\(363\) 2.40060 + 4.15796i 0.125999 + 0.218236i
\(364\) 20.3727 1.06782
\(365\) 0.937151 1.62319i 0.0490527 0.0849618i
\(366\) 4.31593 + 7.47540i 0.225597 + 0.390746i
\(367\) −12.6326 21.8803i −0.659417 1.14214i −0.980767 0.195183i \(-0.937470\pi\)
0.321350 0.946960i \(-0.395863\pi\)
\(368\) −1.21640 + 2.10687i −0.0634093 + 0.109828i
\(369\) −5.73037 9.92529i −0.298311 0.516690i
\(370\) 0.655702 1.13571i 0.0340883 0.0590427i
\(371\) 10.1190 + 17.5266i 0.525351 + 0.909935i
\(372\) 3.61153 + 6.25535i 0.187249 + 0.324325i
\(373\) −0.641700 1.11146i −0.0332260 0.0575491i 0.848934 0.528498i \(-0.177245\pi\)
−0.882160 + 0.470949i \(0.843911\pi\)
\(374\) −0.599787 1.03886i −0.0310143 0.0537183i
\(375\) −1.57123 + 2.72145i −0.0811381 + 0.140535i
\(376\) −0.338188 0.585760i −0.0174407 0.0302082i
\(377\) −31.6313 54.7870i −1.62909 2.82167i
\(378\) −3.33321 −0.171442
\(379\) 2.09075 3.62128i 0.107395 0.186013i −0.807319 0.590115i \(-0.799083\pi\)
0.914714 + 0.404102i \(0.132416\pi\)
\(380\) −2.41973 −0.124130
\(381\) −3.07874 5.33254i −0.157729 0.273194i
\(382\) −8.72580 −0.446451
\(383\) −3.76289 6.51751i −0.192275 0.333029i 0.753729 0.657185i \(-0.228253\pi\)
−0.946004 + 0.324156i \(0.894920\pi\)
\(384\) 0.500000 0.866025i 0.0255155 0.0441942i
\(385\) −1.31721 + 2.28148i −0.0671313 + 0.116275i
\(386\) −12.2142 −0.621685
\(387\) −2.27693 −0.115743
\(388\) −0.704230 1.21976i −0.0357519 0.0619241i
\(389\) 1.28543 + 2.22642i 0.0651737 + 0.112884i 0.896771 0.442495i \(-0.145907\pi\)
−0.831597 + 0.555379i \(0.812573\pi\)
\(390\) 1.94024 0.0982479
\(391\) −0.586071 + 1.01510i −0.0296389 + 0.0513360i
\(392\) −4.11026 −0.207599
\(393\) −5.59778 9.69565i −0.282371 0.489081i
\(394\) 0.344699 0.0173657
\(395\) −1.27168 + 2.20262i −0.0639852 + 0.110826i
\(396\) 1.24487 2.15618i 0.0625571 0.108352i
\(397\) −0.563474 −0.0282799 −0.0141400 0.999900i \(-0.504501\pi\)
−0.0141400 + 0.999900i \(0.504501\pi\)
\(398\) 0.512952 0.888459i 0.0257120 0.0445344i
\(399\) −12.7037 22.0034i −0.635980 1.10155i
\(400\) 2.44961 4.24286i 0.122481 0.212143i
\(401\) 6.71838 11.6366i 0.335500 0.581103i −0.648081 0.761572i \(-0.724428\pi\)
0.983581 + 0.180469i \(0.0577615\pi\)
\(402\) −2.08306 3.60796i −0.103894 0.179949i
\(403\) 22.0738 38.2330i 1.09957 1.90452i
\(404\) 3.32729 5.76303i 0.165539 0.286722i
\(405\) −0.317445 −0.0157740
\(406\) 17.2501 + 29.8781i 0.856110 + 1.48283i
\(407\) −5.14270 + 8.90742i −0.254914 + 0.441525i
\(408\) 0.240904 0.417257i 0.0119265 0.0206573i
\(409\) 13.2735 + 22.9903i 0.656331 + 1.13680i 0.981558 + 0.191162i \(0.0612257\pi\)
−0.325228 + 0.945636i \(0.605441\pi\)
\(410\) −1.81908 3.15074i −0.0898379 0.155604i
\(411\) 3.93682 + 6.81877i 0.194189 + 0.336345i
\(412\) 1.36349 0.0671744
\(413\) −34.9892 −1.72170
\(414\) −2.43280 −0.119566
\(415\) 0.285653 0.494765i 0.0140221 0.0242871i
\(416\) −6.11204 −0.299667
\(417\) −2.32804 4.03228i −0.114004 0.197461i
\(418\) 18.9781 0.928247
\(419\) 4.44546 0.217175 0.108587 0.994087i \(-0.465367\pi\)
0.108587 + 0.994087i \(0.465367\pi\)
\(420\) −1.05811 −0.0516305
\(421\) −8.30460 + 14.3840i −0.404741 + 0.701033i −0.994291 0.106699i \(-0.965972\pi\)
0.589550 + 0.807732i \(0.299305\pi\)
\(422\) 0.327413 0.567096i 0.0159382 0.0276058i
\(423\) 0.338188 0.585760i 0.0164433 0.0284806i
\(424\) −3.03581 5.25818i −0.147432 0.255360i
\(425\) 1.18024 2.04424i 0.0572501 0.0991601i
\(426\) 0.623014 + 1.07909i 0.0301851 + 0.0522822i
\(427\) −14.3859 + 24.9171i −0.696181 + 1.20582i
\(428\) 7.47456 + 12.9463i 0.361297 + 0.625784i
\(429\) −15.2174 −0.734703
\(430\) −0.722800 −0.0348565
\(431\) −24.7175 −1.19060 −0.595301 0.803503i \(-0.702967\pi\)
−0.595301 + 0.803503i \(0.702967\pi\)
\(432\) 1.00000 0.0481125
\(433\) −39.1940 −1.88354 −0.941772 0.336253i \(-0.890840\pi\)
−0.941772 + 0.336253i \(0.890840\pi\)
\(434\) −12.0380 + 20.8504i −0.577841 + 1.00085i
\(435\) 1.64286 + 2.84551i 0.0787689 + 0.136432i
\(436\) 6.24230 + 10.8120i 0.298952 + 0.517800i
\(437\) −9.27202 16.0596i −0.443541 0.768236i
\(438\) −5.90433 −0.282120
\(439\) −21.2037 −1.01200 −0.505999 0.862534i \(-0.668876\pi\)
−0.505999 + 0.862534i \(0.668876\pi\)
\(440\) 0.395178 0.684469i 0.0188394 0.0326308i
\(441\) −2.05513 3.55959i −0.0978632 0.169504i
\(442\) −2.94483 −0.140071
\(443\) −3.68286 + 6.37890i −0.174978 + 0.303071i −0.940154 0.340751i \(-0.889319\pi\)
0.765176 + 0.643822i \(0.222652\pi\)
\(444\) −4.13112 −0.196054
\(445\) −3.51642 −0.166694
\(446\) −7.09104 13.1422i −0.335770 0.622301i
\(447\) −14.3759 −0.679957
\(448\) 3.33321 0.157479
\(449\) 4.81711 8.34347i 0.227333 0.393753i −0.729684 0.683785i \(-0.760333\pi\)
0.957017 + 0.290032i \(0.0936660\pi\)
\(450\) 4.89923 0.230952
\(451\) 14.2671 + 24.7114i 0.671813 + 1.16361i
\(452\) −0.514881 + 0.891800i −0.0242180 + 0.0419467i
\(453\) −5.34628 −0.251190
\(454\) 22.0684 1.03572
\(455\) 3.23361 + 5.60078i 0.151594 + 0.262568i
\(456\) 3.81125 + 6.60128i 0.178478 + 0.309133i
\(457\) −19.6936 34.1103i −0.921228 1.59561i −0.797517 0.603296i \(-0.793854\pi\)
−0.123711 0.992318i \(-0.539480\pi\)
\(458\) −12.3111 + 21.3234i −0.575258 + 0.996376i
\(459\) 0.481807 0.0224888
\(460\) −0.772282 −0.0360078
\(461\) 20.6899 0.963626 0.481813 0.876274i \(-0.339978\pi\)
0.481813 + 0.876274i \(0.339978\pi\)
\(462\) 8.29881 0.386096
\(463\) 7.94253 0.369121 0.184560 0.982821i \(-0.440914\pi\)
0.184560 + 0.982821i \(0.440914\pi\)
\(464\) −5.17524 8.96378i −0.240254 0.416133i
\(465\) −1.14646 + 1.98573i −0.0531660 + 0.0920861i
\(466\) 14.0993 + 24.4206i 0.653136 + 1.13126i
\(467\) 0.995744 1.72468i 0.0460775 0.0798086i −0.842067 0.539373i \(-0.818661\pi\)
0.888144 + 0.459565i \(0.151995\pi\)
\(468\) −3.05602 5.29318i −0.141265 0.244677i
\(469\) 6.94326 12.0261i 0.320610 0.555313i
\(470\) 0.107356 0.185947i 0.00495198 0.00857708i
\(471\) 10.6344 18.4194i 0.490008 0.848719i
\(472\) 10.4971 0.483170
\(473\) 5.66896 0.260659
\(474\) 8.01197 0.368002
\(475\) 18.6722 + 32.3412i 0.856739 + 1.48392i
\(476\) 1.60596 0.0736092
\(477\) 3.03581 5.25818i 0.139000 0.240755i
\(478\) 1.06849 0.0488717
\(479\) 27.5409 1.25838 0.629188 0.777253i \(-0.283388\pi\)
0.629188 + 0.777253i \(0.283388\pi\)
\(480\) 0.317445 0.0144893
\(481\) 12.6248 + 21.8668i 0.575640 + 0.997038i
\(482\) 12.0709 + 20.9074i 0.549813 + 0.952304i
\(483\) −4.05451 7.02262i −0.184487 0.319540i
\(484\) 2.40060 4.15796i 0.109118 0.188998i
\(485\) 0.223555 0.387208i 0.0101511 0.0175822i
\(486\) 0.500000 + 0.866025i 0.0226805 + 0.0392837i
\(487\) −24.4289 −1.10698 −0.553490 0.832856i \(-0.686704\pi\)
−0.553490 + 0.832856i \(0.686704\pi\)
\(488\) 4.31593 7.47540i 0.195373 0.338396i
\(489\) −6.67133 + 11.5551i −0.301688 + 0.522539i
\(490\) −0.652391 1.12997i −0.0294720 0.0510471i
\(491\) −4.40001 + 7.62104i −0.198570 + 0.343933i −0.948065 0.318077i \(-0.896963\pi\)
0.749495 + 0.662010i \(0.230296\pi\)
\(492\) −5.73037 + 9.92529i −0.258345 + 0.447466i
\(493\) −2.49347 4.31881i −0.112300 0.194509i
\(494\) 23.2945 40.3473i 1.04807 1.81531i
\(495\) 0.790357 0.0355239
\(496\) 3.61153 6.25535i 0.162162 0.280873i
\(497\) −2.07663 + 3.59684i −0.0931498 + 0.161340i
\(498\) −1.79970 −0.0806463
\(499\) −8.72858 15.1183i −0.390745 0.676790i 0.601803 0.798644i \(-0.294449\pi\)
−0.992548 + 0.121855i \(0.961116\pi\)
\(500\) 3.14247 0.140535
\(501\) −1.02619 + 1.77742i −0.0458470 + 0.0794093i
\(502\) −8.71182 −0.388827
\(503\) −17.6188 30.5167i −0.785585 1.36067i −0.928649 0.370960i \(-0.879029\pi\)
0.143064 0.989713i \(-0.454305\pi\)
\(504\) 1.66660 + 2.88664i 0.0742364 + 0.128581i
\(505\) 2.11247 0.0940035
\(506\) 6.05704 0.269268
\(507\) −12.1785 + 21.0938i −0.540867 + 0.936810i
\(508\) −3.07874 + 5.33254i −0.136597 + 0.236593i
\(509\) 3.85406 + 6.67542i 0.170828 + 0.295883i 0.938710 0.344709i \(-0.112022\pi\)
−0.767881 + 0.640592i \(0.778689\pi\)
\(510\) 0.152948 0.00677263
\(511\) −9.84017 17.0437i −0.435303 0.753968i
\(512\) −1.00000 −0.0441942
\(513\) −3.81125 + 6.60128i −0.168271 + 0.291454i
\(514\) −4.14474 −0.182817
\(515\) 0.216417 + 0.374845i 0.00953647 + 0.0165177i
\(516\) 1.13846 + 1.97188i 0.0501181 + 0.0868070i
\(517\) −0.842001 + 1.45839i −0.0370312 + 0.0641399i
\(518\) −6.88493 11.9250i −0.302506 0.523956i
\(519\) −0.748011 1.29559i −0.0328340 0.0568702i
\(520\) −0.970120 1.68030i −0.0425426 0.0736859i
\(521\) 12.0088 + 20.7999i 0.526117 + 0.911262i 0.999537 + 0.0304249i \(0.00968604\pi\)
−0.473420 + 0.880837i \(0.656981\pi\)
\(522\) 5.17524 8.96378i 0.226514 0.392334i
\(523\) −4.38324 7.59200i −0.191666 0.331975i 0.754137 0.656718i \(-0.228056\pi\)
−0.945802 + 0.324743i \(0.894722\pi\)
\(524\) −5.59778 + 9.69565i −0.244540 + 0.423556i
\(525\) 8.16507 + 14.1423i 0.356353 + 0.617221i
\(526\) −10.5375 18.2516i −0.459459 0.795806i
\(527\) 1.74006 3.01387i 0.0757982 0.131286i
\(528\) −2.48974 −0.108352
\(529\) 8.54074 + 14.7930i 0.371336 + 0.643174i
\(530\) 0.963704 1.66918i 0.0418606 0.0725048i
\(531\) 5.24857 + 9.09080i 0.227769 + 0.394507i
\(532\) −12.7037 + 22.0034i −0.550775 + 0.953970i
\(533\) 70.0485 3.03414
\(534\) 5.53862 + 9.59317i 0.239680 + 0.415137i
\(535\) −2.37277 + 4.10975i −0.102584 + 0.177680i
\(536\) −2.08306 + 3.60796i −0.0899744 + 0.155840i
\(537\) 24.2194 1.04514
\(538\) −0.765600 + 1.32606i −0.0330074 + 0.0571704i
\(539\) 5.11674 + 8.86245i 0.220393 + 0.381733i
\(540\) 0.158723 + 0.274916i 0.00683034 + 0.0118305i
\(541\) −29.1676 −1.25401 −0.627006 0.779015i \(-0.715720\pi\)
−0.627006 + 0.779015i \(0.715720\pi\)
\(542\) −9.18460 + 15.9082i −0.394512 + 0.683316i
\(543\) 1.69523 + 2.93622i 0.0727491 + 0.126005i
\(544\) −0.481807 −0.0206573
\(545\) −1.98159 + 3.43221i −0.0848819 + 0.147020i
\(546\) 10.1863 17.6433i 0.435935 0.755062i
\(547\) 4.91342 8.51030i 0.210083 0.363874i −0.741657 0.670779i \(-0.765960\pi\)
0.951740 + 0.306905i \(0.0992933\pi\)
\(548\) 3.93682 6.81877i 0.168172 0.291283i
\(549\) 8.63185 0.368398
\(550\) −12.1978 −0.520116
\(551\) 78.8966 3.36111
\(552\) 1.21640 + 2.10687i 0.0517735 + 0.0896743i
\(553\) 13.3528 + 23.1277i 0.567817 + 0.983489i
\(554\) 24.6709 1.04817
\(555\) −0.655702 1.13571i −0.0278330 0.0482082i
\(556\) −2.32804 + 4.03228i −0.0987307 + 0.171007i
\(557\) −14.0735 −0.596313 −0.298156 0.954517i \(-0.596372\pi\)
−0.298156 + 0.954517i \(0.596372\pi\)
\(558\) 7.22306 0.305776
\(559\) 6.95834 12.0522i 0.294306 0.509753i
\(560\) 0.529055 + 0.916351i 0.0223567 + 0.0387229i
\(561\) −1.19957 −0.0506461
\(562\) 7.67302 + 13.2901i 0.323667 + 0.560607i
\(563\) 3.65190 + 6.32527i 0.153909 + 0.266579i 0.932661 0.360753i \(-0.117480\pi\)
−0.778752 + 0.627332i \(0.784147\pi\)
\(564\) −0.676377 −0.0284806
\(565\) −0.326893 −0.0137525
\(566\) 16.4101 0.689766
\(567\) −1.66660 + 2.88664i −0.0699907 + 0.121227i
\(568\) 0.623014 1.07909i 0.0261411 0.0452777i
\(569\) −8.59100 + 14.8801i −0.360154 + 0.623804i −0.987986 0.154544i \(-0.950609\pi\)
0.627832 + 0.778349i \(0.283942\pi\)
\(570\) −1.20986 + 2.09555i −0.0506757 + 0.0877728i
\(571\) 41.6488 1.74295 0.871473 0.490443i \(-0.163165\pi\)
0.871473 + 0.490443i \(0.163165\pi\)
\(572\) 7.60870 + 13.1787i 0.318136 + 0.551027i
\(573\) −4.36290 + 7.55677i −0.182263 + 0.315688i
\(574\) −38.2010 −1.59448
\(575\) 5.95943 + 10.3220i 0.248525 + 0.430458i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) −10.1443 + 17.5705i −0.422314 + 0.731470i −0.996165 0.0874898i \(-0.972115\pi\)
0.573851 + 0.818960i \(0.305449\pi\)
\(578\) 16.7679 0.697451
\(579\) −6.10709 + 10.5778i −0.253802 + 0.439598i
\(580\) 1.64286 2.84551i 0.0682159 0.118153i
\(581\) −2.99938 5.19508i −0.124435 0.215528i
\(582\) −1.40846 −0.0583826
\(583\) −7.55838 + 13.0915i −0.313036 + 0.542194i
\(584\) 2.95216 + 5.11330i 0.122161 + 0.211590i
\(585\) 0.970120 1.68030i 0.0401095 0.0694717i
\(586\) 12.2124 + 21.1525i 0.504489 + 0.873800i
\(587\) 14.9715 0.617941 0.308970 0.951072i \(-0.400016\pi\)
0.308970 + 0.951072i \(0.400016\pi\)
\(588\) −2.05513 + 3.55959i −0.0847521 + 0.146795i
\(589\) 27.5289 + 47.6814i 1.13431 + 1.96468i
\(590\) 1.66614 + 2.88583i 0.0685938 + 0.118808i
\(591\) 0.172350 0.298518i 0.00708952 0.0122794i
\(592\) 2.06556 + 3.57765i 0.0848939 + 0.147041i
\(593\) 2.02707 3.51098i 0.0832416 0.144179i −0.821399 0.570354i \(-0.806806\pi\)
0.904641 + 0.426175i \(0.140139\pi\)
\(594\) −1.24487 2.15618i −0.0510776 0.0884691i
\(595\) 0.254903 + 0.441504i 0.0104500 + 0.0180999i
\(596\) 7.18795 + 12.4499i 0.294430 + 0.509967i
\(597\) −0.512952 0.888459i −0.0209937 0.0363622i
\(598\) 7.43469 12.8773i 0.304027 0.526591i
\(599\) −23.2687 40.3025i −0.950732 1.64672i −0.743846 0.668351i \(-0.767000\pi\)
−0.206886 0.978365i \(-0.566333\pi\)
\(600\) −2.44961 4.24286i −0.100005 0.173214i
\(601\) 17.0109 0.693890 0.346945 0.937885i \(-0.387219\pi\)
0.346945 + 0.937885i \(0.387219\pi\)
\(602\) −3.79473 + 6.57267i −0.154662 + 0.267882i
\(603\) −4.16612 −0.169657
\(604\) 2.67314 + 4.63001i 0.108768 + 0.188393i
\(605\) 1.52412 0.0619642
\(606\) −3.32729 5.76303i −0.135162 0.234107i
\(607\) −17.1751 + 29.7481i −0.697114 + 1.20744i 0.272349 + 0.962199i \(0.412200\pi\)
−0.969463 + 0.245238i \(0.921134\pi\)
\(608\) 3.81125 6.60128i 0.154567 0.267717i
\(609\) 34.5003 1.39802
\(610\) 2.74014 0.110945
\(611\) 2.06702 + 3.58019i 0.0836227 + 0.144839i
\(612\) −0.240904 0.417257i −0.00973795 0.0168666i
\(613\) −41.0387 −1.65754 −0.828769 0.559590i \(-0.810959\pi\)
−0.828769 + 0.559590i \(0.810959\pi\)
\(614\) 10.3706 17.9624i 0.418523 0.724903i
\(615\) −3.63816 −0.146705
\(616\) −4.14941 7.18698i −0.167184 0.289572i
\(617\) 15.1746 0.610905 0.305453 0.952207i \(-0.401192\pi\)
0.305453 + 0.952207i \(0.401192\pi\)
\(618\) 0.681745 1.18082i 0.0274238 0.0474994i
\(619\) 5.53570 9.58812i 0.222499 0.385379i −0.733067 0.680156i \(-0.761912\pi\)
0.955566 + 0.294777i \(0.0952454\pi\)
\(620\) 2.29293 0.0920861
\(621\) −1.21640 + 2.10687i −0.0488125 + 0.0845457i
\(622\) −11.2169 19.4283i −0.449759 0.779005i
\(623\) −18.4614 + 31.9760i −0.739639 + 1.28109i
\(624\) −3.05602 + 5.29318i −0.122339 + 0.211897i
\(625\) −11.7493 20.3504i −0.469972 0.814015i
\(626\) −0.621989 + 1.07732i −0.0248597 + 0.0430582i
\(627\) 9.48903 16.4355i 0.378955 0.656370i
\(628\) −21.2688 −0.848719
\(629\) 0.995201 + 1.72374i 0.0396812 + 0.0687299i
\(630\) −0.529055 + 0.916351i −0.0210781 + 0.0365083i
\(631\) −22.1404 + 38.3482i −0.881394 + 1.52662i −0.0316018 + 0.999501i \(0.510061\pi\)
−0.849792 + 0.527118i \(0.823272\pi\)
\(632\) −4.00598 6.93857i −0.159349 0.276001i
\(633\) −0.327413 0.567096i −0.0130135 0.0225401i
\(634\) 11.4277 + 19.7934i 0.453852 + 0.786095i
\(635\) −1.95467 −0.0775686
\(636\) −6.07162 −0.240755
\(637\) 25.1221 0.995372
\(638\) −12.8850 + 22.3175i −0.510122 + 0.883557i
\(639\) 1.24603 0.0492921
\(640\) −0.158723 0.274916i −0.00627407 0.0108670i
\(641\) 21.0479 0.831343 0.415672 0.909515i \(-0.363547\pi\)
0.415672 + 0.909515i \(0.363547\pi\)
\(642\) 14.9491 0.589995
\(643\) −30.5915 −1.20641 −0.603206 0.797585i \(-0.706110\pi\)
−0.603206 + 0.797585i \(0.706110\pi\)
\(644\) −4.05451 + 7.02262i −0.159770 + 0.276730i
\(645\) −0.361400 + 0.625963i −0.0142301 + 0.0246473i
\(646\) 1.83629 3.18055i 0.0722478 0.125137i
\(647\) −17.3926 30.1249i −0.683775 1.18433i −0.973820 0.227320i \(-0.927004\pi\)
0.290045 0.957013i \(-0.406330\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) −13.0676 22.6337i −0.512948 0.888451i
\(650\) −14.9721 + 25.9325i −0.587256 + 1.01716i
\(651\) 12.0380 + 20.8504i 0.471805 + 0.817190i
\(652\) 13.3427 0.522539
\(653\) 44.9841 1.76037 0.880183 0.474635i \(-0.157420\pi\)
0.880183 + 0.474635i \(0.157420\pi\)
\(654\) 12.4846 0.488186
\(655\) −3.55398 −0.138866
\(656\) 11.4607 0.447466
\(657\) −2.95216 + 5.11330i −0.115175 + 0.199489i
\(658\) −1.12725 1.95246i −0.0439448 0.0761147i
\(659\) −0.930295 1.61132i −0.0362392 0.0627681i 0.847337 0.531056i \(-0.178204\pi\)
−0.883576 + 0.468288i \(0.844871\pi\)
\(660\) −0.395178 0.684469i −0.0153823 0.0266429i
\(661\) 5.48374 0.213293 0.106646 0.994297i \(-0.465989\pi\)
0.106646 + 0.994297i \(0.465989\pi\)
\(662\) −12.7162 −0.494231
\(663\) −1.47241 + 2.55029i −0.0571838 + 0.0990452i
\(664\) 0.899848 + 1.55858i 0.0349209 + 0.0604847i
\(665\) −8.06546 −0.312765
\(666\) −2.06556 + 3.57765i −0.0800387 + 0.138631i
\(667\) 25.1807 0.974999
\(668\) 2.05239 0.0794093
\(669\) −14.9270 0.430076i −0.577111 0.0166277i
\(670\) −1.32252 −0.0510932
\(671\) −21.4911 −0.829654
\(672\) 1.66660 2.88664i 0.0642906 0.111355i
\(673\) −48.2853 −1.86126 −0.930632 0.365957i \(-0.880742\pi\)
−0.930632 + 0.365957i \(0.880742\pi\)
\(674\) 5.08368 + 8.80519i 0.195816 + 0.339163i
\(675\) 2.44961 4.24286i 0.0942857 0.163308i
\(676\) 24.3571 0.936810
\(677\) 16.8521 0.647678 0.323839 0.946112i \(-0.395026\pi\)
0.323839 + 0.946112i \(0.395026\pi\)
\(678\) 0.514881 + 0.891800i 0.0197739 + 0.0342494i
\(679\) −2.34734 4.06572i −0.0900828 0.156028i
\(680\) −0.0764738 0.132456i −0.00293263 0.00507947i
\(681\) 11.0342 19.1118i 0.422832 0.732366i
\(682\) −17.9835 −0.688625
\(683\) 37.6035 1.43886 0.719428 0.694567i \(-0.244404\pi\)
0.719428 + 0.694567i \(0.244404\pi\)
\(684\) 7.62251 0.291454
\(685\) 2.49945 0.0954991
\(686\) 9.63211 0.367756
\(687\) 12.3111 + 21.3234i 0.469696 + 0.813538i
\(688\) 1.13846 1.97188i 0.0434035 0.0751771i
\(689\) 18.5550 + 32.1382i 0.706889 + 1.22437i
\(690\) −0.386141 + 0.668816i −0.0147001 + 0.0254614i
\(691\) −20.1926 34.9746i −0.768163 1.33050i −0.938558 0.345121i \(-0.887838\pi\)
0.170396 0.985376i \(-0.445495\pi\)
\(692\) −0.748011 + 1.29559i −0.0284351 + 0.0492510i
\(693\) 4.14941 7.18698i 0.157623 0.273011i
\(694\) −1.36218 + 2.35936i −0.0517075 + 0.0895600i
\(695\) −1.47805 −0.0560656
\(696\) −10.3505 −0.392334
\(697\) 5.52186 0.209155
\(698\) −4.07814 7.06354i −0.154360 0.267359i
\(699\) 28.1985 1.06657
\(700\) 8.16507 14.1423i 0.308611 0.534529i
\(701\) −23.0771 −0.871610 −0.435805 0.900041i \(-0.643536\pi\)
−0.435805 + 0.900041i \(0.643536\pi\)
\(702\) −6.11204 −0.230684
\(703\) −31.4895 −1.18765
\(704\) 1.24487 + 2.15618i 0.0469178 + 0.0812640i
\(705\) −0.107356 0.185947i −0.00404328 0.00700316i
\(706\) −6.34205 10.9847i −0.238686 0.413417i
\(707\) 11.0905 19.2094i 0.417102 0.722443i
\(708\) 5.24857 9.09080i 0.197254 0.341653i
\(709\) −6.80452 11.7858i −0.255549 0.442624i 0.709495 0.704710i \(-0.248923\pi\)
−0.965045 + 0.262086i \(0.915590\pi\)
\(710\) 0.395546 0.0148446
\(711\) 4.00598 6.93857i 0.150236 0.260217i
\(712\) 5.53862 9.59317i 0.207569 0.359519i
\(713\) 8.78613 + 15.2180i 0.329043 + 0.569920i
\(714\) 0.802981 1.39080i 0.0300508 0.0520495i
\(715\) −2.41535 + 4.18350i −0.0903288 + 0.156454i
\(716\) −12.1097 20.9746i −0.452561 0.783858i
\(717\) 0.534247 0.925342i 0.0199518 0.0345575i
\(718\) −28.4555 −1.06195
\(719\) 6.18329 10.7098i 0.230598 0.399407i −0.727386 0.686228i \(-0.759265\pi\)
0.957984 + 0.286821i \(0.0925985\pi\)
\(720\) 0.158723 0.274916i 0.00591525 0.0102455i
\(721\) 4.54479 0.169257
\(722\) 19.5513 + 33.8638i 0.727624 + 1.26028i
\(723\) 24.1417 0.897841
\(724\) 1.69523 2.93622i 0.0630026 0.109124i
\(725\) −50.7094 −1.88330
\(726\) −2.40060 4.15796i −0.0890945 0.154316i
\(727\) −6.48532 11.2329i −0.240527 0.416605i 0.720337 0.693624i \(-0.243987\pi\)
−0.960865 + 0.277019i \(0.910654\pi\)
\(728\) −20.3727 −0.755062
\(729\) 1.00000 0.0370370
\(730\) −0.937151 + 1.62319i −0.0346855 + 0.0600771i
\(731\) 0.548520 0.950064i 0.0202877 0.0351394i
\(732\) −4.31593 7.47540i −0.159521 0.276299i
\(733\) 21.2661 0.785482 0.392741 0.919649i \(-0.371527\pi\)
0.392741 + 0.919649i \(0.371527\pi\)
\(734\) 12.6326 + 21.8803i 0.466278 + 0.807617i
\(735\) −1.30478 −0.0481276
\(736\) 1.21640 2.10687i 0.0448371 0.0776602i
\(737\) 10.3725 0.382078
\(738\) 5.73037 + 9.92529i 0.210938 + 0.365355i
\(739\) 10.2190 + 17.6998i 0.375911 + 0.651097i 0.990463 0.137780i \(-0.0439966\pi\)
−0.614552 + 0.788876i \(0.710663\pi\)
\(740\) −0.655702 + 1.13571i −0.0241041 + 0.0417495i
\(741\) −23.2945 40.3473i −0.855746 1.48220i
\(742\) −10.1190 17.5266i −0.371479 0.643421i
\(743\) −16.0453 27.7914i −0.588647 1.01957i −0.994410 0.105588i \(-0.966328\pi\)
0.405763 0.913978i \(-0.367006\pi\)
\(744\) −3.61153 6.25535i −0.132405 0.229332i
\(745\) −2.28178 + 3.95216i −0.0835980 + 0.144796i
\(746\) 0.641700 + 1.11146i 0.0234943 + 0.0406934i
\(747\) −0.899848 + 1.55858i −0.0329237 + 0.0570256i
\(748\) 0.599787 + 1.03886i 0.0219304 + 0.0379846i
\(749\) 24.9143 + 43.1528i 0.910347 + 1.57677i
\(750\) 1.57123 2.72145i 0.0573733 0.0993735i
\(751\) 19.5420 0.713100 0.356550 0.934276i \(-0.383953\pi\)
0.356550 + 0.934276i \(0.383953\pi\)
\(752\) 0.338188 + 0.585760i 0.0123325 + 0.0213605i
\(753\) −4.35591 + 7.54466i −0.158738 + 0.274943i
\(754\) 31.6313 + 54.7870i 1.15194 + 1.99522i
\(755\) −0.848576 + 1.46978i −0.0308828 + 0.0534906i
\(756\) 3.33321 0.121227
\(757\) −16.0647 27.8249i −0.583882 1.01131i −0.995014 0.0997368i \(-0.968200\pi\)
0.411132 0.911576i \(-0.365133\pi\)
\(758\) −2.09075 + 3.62128i −0.0759394 + 0.131531i
\(759\) 3.02852 5.24555i 0.109928 0.190402i
\(760\) 2.41973 0.0877728
\(761\) 21.1550 36.6416i 0.766870 1.32826i −0.172383 0.985030i \(-0.555147\pi\)
0.939252 0.343227i \(-0.111520\pi\)
\(762\) 3.07874 + 5.33254i 0.111531 + 0.193177i
\(763\) 20.8069 + 36.0385i 0.753259 + 1.30468i
\(764\) 8.72580 0.315688
\(765\) 0.0764738 0.132456i 0.00276491 0.00478897i
\(766\) 3.76289 + 6.51751i 0.135959 + 0.235487i
\(767\) −64.1590 −2.31665
\(768\) −0.500000 + 0.866025i −0.0180422 + 0.0312500i
\(769\) 16.2661 28.1736i 0.586569 1.01597i −0.408109 0.912933i \(-0.633812\pi\)
0.994678 0.103034i \(-0.0328551\pi\)
\(770\) 1.31721 2.28148i 0.0474690 0.0822187i
\(771\) −2.07237 + 3.58945i −0.0746345 + 0.129271i
\(772\) 12.2142 0.439598
\(773\) 12.3628 0.444658 0.222329 0.974972i \(-0.428634\pi\)
0.222329 + 0.974972i \(0.428634\pi\)
\(774\) 2.27693 0.0818424
\(775\) −17.6937 30.6464i −0.635576 1.10085i
\(776\) 0.704230 + 1.21976i 0.0252804 + 0.0437869i
\(777\) −13.7699 −0.493991
\(778\) −1.28543 2.22642i −0.0460847 0.0798211i
\(779\) −43.6798 + 75.6555i −1.56499 + 2.71064i
\(780\) −1.94024 −0.0694717
\(781\) −3.10229 −0.111009
\(782\) 0.586071 1.01510i 0.0209578 0.0363001i
\(783\) −5.17524 8.96378i −0.184948 0.320339i
\(784\) 4.11026 0.146795
\(785\) −3.37585 5.84714i −0.120489 0.208693i
\(786\) 5.59778 + 9.69565i 0.199666 + 0.345832i
\(787\) 48.8683 1.74197 0.870984 0.491311i \(-0.163482\pi\)
0.870984 + 0.491311i \(0.163482\pi\)
\(788\) −0.344699 −0.0122794
\(789\) −21.0751 −0.750293
\(790\) 1.27168 2.20262i 0.0452444 0.0783656i
\(791\) −1.71620 + 2.97255i −0.0610212 + 0.105692i
\(792\) −1.24487 + 2.15618i −0.0442345 + 0.0766165i
\(793\) −26.3791 + 45.6900i −0.936750 + 1.62250i
\(794\) 0.563474 0.0199969
\(795\) −0.963704 1.66918i −0.0341791 0.0591999i
\(796\) −0.512952 + 0.888459i −0.0181811 + 0.0314906i
\(797\) 22.8668 0.809982 0.404991 0.914321i \(-0.367275\pi\)
0.404991 + 0.914321i \(0.367275\pi\)
\(798\) 12.7037 + 22.0034i 0.449706 + 0.778913i
\(799\) 0.162942 + 0.282223i 0.00576446 + 0.00998434i
\(800\) −2.44961 + 4.24286i −0.0866069 + 0.150008i
\(801\) 11.0772 0.391395
\(802\) −6.71838 + 11.6366i −0.237234 + 0.410902i
\(803\) 7.35012 12.7308i 0.259380 0.449260i
\(804\) 2.08306 + 3.60796i 0.0734638 + 0.127243i
\(805\) −2.57417 −0.0907277
\(806\) −22.0738 + 38.2330i −0.777517 + 1.34670i
\(807\) 0.765600 + 1.32606i 0.0269504 + 0.0466795i
\(808\) −3.32729 + 5.76303i −0.117054 + 0.202743i
\(809\) −22.3195 38.6585i −0.784713 1.35916i −0.929171 0.369651i \(-0.879477\pi\)
0.144458 0.989511i \(-0.453856\pi\)
\(810\) 0.317445 0.0111539
\(811\) 10.1394 17.5620i 0.356043 0.616685i −0.631253 0.775577i \(-0.717459\pi\)
0.987296 + 0.158892i \(0.0507923\pi\)
\(812\) −17.2501 29.8781i −0.605361 1.04852i
\(813\) 9.18460 + 15.9082i 0.322118 + 0.557925i
\(814\) 5.14270 8.90742i 0.180252 0.312205i
\(815\) 2.11778 + 3.66811i 0.0741827 + 0.128488i
\(816\) −0.240904 + 0.417257i −0.00843331 + 0.0146069i
\(817\) 8.67794 + 15.0306i 0.303603 + 0.525856i
\(818\) −13.2735 22.9903i −0.464096 0.803838i
\(819\) −10.1863 17.6433i −0.355940 0.616506i
\(820\) 1.81908 + 3.15074i 0.0635250 + 0.110029i
\(821\) 6.23263 10.7952i 0.217520 0.376756i −0.736529 0.676406i \(-0.763536\pi\)
0.954049 + 0.299650i \(0.0968698\pi\)
\(822\) −3.93682 6.81877i −0.137312 0.237832i
\(823\) 21.2426 + 36.7932i 0.740469 + 1.28253i 0.952282 + 0.305220i \(0.0987301\pi\)
−0.211812 + 0.977310i \(0.567937\pi\)
\(824\) −1.36349 −0.0474994
\(825\) −6.09890 + 10.5636i −0.212337 + 0.367778i
\(826\) 34.9892 1.21743
\(827\) 23.6350 + 40.9371i 0.821871 + 1.42352i 0.904288 + 0.426924i \(0.140403\pi\)
−0.0824168 + 0.996598i \(0.526264\pi\)
\(828\) 2.43280 0.0845457
\(829\) −20.0565 34.7389i −0.696592 1.20653i −0.969641 0.244532i \(-0.921366\pi\)
0.273050 0.962000i \(-0.411968\pi\)
\(830\) −0.285653 + 0.494765i −0.00991515 + 0.0171735i
\(831\) 12.3354 21.3656i 0.427912 0.741165i
\(832\) 6.11204 0.211897
\(833\) 1.98035 0.0686151
\(834\) 2.32804 + 4.03228i 0.0806133 + 0.139626i
\(835\) 0.325761 + 0.564234i 0.0112734 + 0.0195261i
\(836\) −18.9781 −0.656370
\(837\) 3.61153 6.25535i 0.124833 0.216217i
\(838\) −4.44546 −0.153566
\(839\) −10.0241 17.3622i −0.346070 0.599410i 0.639478 0.768809i \(-0.279151\pi\)
−0.985547 + 0.169399i \(0.945817\pi\)
\(840\) 1.05811 0.0365083
\(841\) −39.0662 + 67.6646i −1.34711 + 2.33326i
\(842\) 8.30460 14.3840i 0.286195 0.495705i
\(843\) 15.3460 0.528546
\(844\) −0.327413 + 0.567096i −0.0112700 + 0.0195203i
\(845\) 3.86602 + 6.69614i 0.132995 + 0.230354i
\(846\) −0.338188 + 0.585760i −0.0116272 + 0.0201388i
\(847\) 8.00168 13.8593i 0.274941 0.476212i
\(848\) 3.03581 + 5.25818i 0.104250 + 0.180567i
\(849\) 8.20503 14.2115i 0.281596 0.487738i
\(850\) −1.18024 + 2.04424i −0.0404820 + 0.0701168i
\(851\) −10.0502 −0.344516
\(852\) −0.623014 1.07909i −0.0213441 0.0369691i
\(853\) −12.4703 + 21.5991i −0.426974 + 0.739541i −0.996603 0.0823617i \(-0.973754\pi\)
0.569629 + 0.821902i \(0.307087\pi\)
\(854\) 14.3859 24.9171i 0.492274 0.852644i
\(855\) 1.20986 + 2.09555i 0.0413765 + 0.0716662i
\(856\) −7.47456 12.9463i −0.255475 0.442496i
\(857\) −3.22089 5.57875i −0.110024 0.190567i 0.805756 0.592248i \(-0.201759\pi\)
−0.915780 + 0.401681i \(0.868426\pi\)
\(858\) 15.2174 0.519513
\(859\) −40.3276 −1.37596 −0.687979 0.725730i \(-0.741502\pi\)
−0.687979 + 0.725730i \(0.741502\pi\)
\(860\) 0.722800 0.0246473
\(861\) −19.1005 + 33.0830i −0.650943 + 1.12747i
\(862\) 24.7175 0.841883
\(863\) −21.7769 37.7187i −0.741295 1.28396i −0.951906 0.306391i \(-0.900879\pi\)
0.210611 0.977570i \(-0.432455\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −0.474905 −0.0161473
\(866\) 39.1940 1.33187
\(867\) 8.38393 14.5214i 0.284733 0.493172i
\(868\) 12.0380 20.8504i 0.408595 0.707707i
\(869\) −9.97386 + 17.2752i −0.338340 + 0.586022i
\(870\) −1.64286 2.84551i −0.0556980 0.0964718i
\(871\) 12.7317 22.0520i 0.431399 0.747204i
\(872\) −6.24230 10.8120i −0.211391 0.366140i
\(873\) −0.704230 + 1.21976i −0.0238346 + 0.0412827i
\(874\) 9.27202 + 16.0596i 0.313631 + 0.543225i
\(875\) 10.4745 0.354102
\(876\) 5.90433 0.199489
\(877\) 2.38144 0.0804156 0.0402078 0.999191i \(-0.487198\pi\)
0.0402078 + 0.999191i \(0.487198\pi\)
\(878\) 21.2037 0.715591
\(879\) 24.4248 0.823826
\(880\) −0.395178 + 0.684469i −0.0133215 + 0.0230734i
\(881\) 2.42137 + 4.19393i 0.0815780 + 0.141297i 0.903928 0.427685i \(-0.140671\pi\)
−0.822350 + 0.568982i \(0.807337\pi\)
\(882\) 2.05513 + 3.55959i 0.0691998 + 0.119858i
\(883\) −0.135575 0.234823i −0.00456247 0.00790244i 0.863735 0.503946i \(-0.168119\pi\)
−0.868298 + 0.496044i \(0.834786\pi\)
\(884\) 2.94483 0.0990452
\(885\) 3.33227 0.112013
\(886\) 3.68286 6.37890i 0.123728 0.214303i
\(887\) 4.19900 + 7.27288i 0.140989 + 0.244199i 0.927869 0.372906i \(-0.121639\pi\)
−0.786881 + 0.617105i \(0.788305\pi\)
\(888\) 4.13112 0.138631
\(889\) −10.2621 + 17.7744i −0.344179 + 0.596136i
\(890\) 3.51642 0.117871
\(891\) −2.48974 −0.0834094
\(892\) 7.09104 + 13.1422i 0.237426 + 0.440033i
\(893\) −5.15569 −0.172528
\(894\) 14.3759 0.480802
\(895\) 3.84417 6.65829i 0.128496 0.222562i
\(896\) −3.33321 −0.111355
\(897\) −7.43469 12.8773i −0.248237 0.429959i
\(898\) −4.81711 + 8.34347i −0.160749 + 0.278425i
\(899\) −74.7621 −2.49345
\(900\) −4.89923 −0.163308
\(901\) 1.46268 + 2.53343i 0.0487288 + 0.0844007i
\(902\) −14.2671 24.7114i −0.475043 0.822799i
\(903\) 3.79473 + 6.57267i 0.126281 + 0.218725i
\(904\) 0.514881 0.891800i 0.0171247 0.0296608i
\(905\) 1.07628 0.0357769
\(906\) 5.34628 0.177618
\(907\) 43.5298 1.44538 0.722691 0.691171i \(-0.242905\pi\)
0.722691 + 0.691171i \(0.242905\pi\)
\(908\) −22.0684 −0.732366
\(909\) −6.65458 −0.220718
\(910\) −3.23361 5.60078i −0.107193 0.185664i
\(911\) 13.2304 22.9157i 0.438343 0.759232i −0.559219 0.829020i \(-0.688899\pi\)
0.997562 + 0.0697882i \(0.0222323\pi\)
\(912\) −3.81125 6.60128i −0.126203 0.218590i
\(913\) 2.24039 3.88047i 0.0741460 0.128425i
\(914\) 19.6936 + 34.1103i 0.651407 + 1.12827i
\(915\) 1.37007 2.37303i 0.0452932 0.0784501i
\(916\) 12.3111 21.3234i 0.406769 0.704544i
\(917\) −18.6586 + 32.3176i −0.616160 + 1.06722i
\(918\) −0.481807 −0.0159020
\(919\) 21.9412 0.723774 0.361887 0.932222i \(-0.382133\pi\)
0.361887 + 0.932222i \(0.382133\pi\)
\(920\) 0.772282 0.0254614
\(921\) −10.3706 17.9624i −0.341722 0.591880i
\(922\) −20.6899 −0.681387
\(923\) −3.80789 + 6.59546i −0.125338 + 0.217092i
\(924\) −8.29881 −0.273011
\(925\) 20.2393 0.665463
\(926\) −7.94253 −0.261008
\(927\) −0.681745 1.18082i −0.0223915 0.0387831i
\(928\) 5.17524 + 8.96378i 0.169886 + 0.294250i
\(929\) 22.4389 + 38.8653i 0.736196 + 1.27513i 0.954197 + 0.299181i \(0.0967133\pi\)
−0.218000 + 0.975949i \(0.569953\pi\)
\(930\) 1.14646 1.98573i 0.0375940 0.0651147i
\(931\) −15.6652 + 27.1330i −0.513407 + 0.889247i
\(932\) −14.0993 24.4206i −0.461837 0.799925i
\(933\) −22.4339 −0.734453
\(934\) −0.995744 + 1.72468i −0.0325817 + 0.0564332i
\(935\) −0.190400 + 0.329782i −0.00622674 + 0.0107850i
\(936\) 3.05602 + 5.29318i 0.0998892 + 0.173013i
\(937\) 20.0763 34.7731i 0.655864 1.13599i −0.325813 0.945434i \(-0.605638\pi\)
0.981677 0.190555i \(-0.0610287\pi\)
\(938\) −6.94326 + 12.0261i −0.226706 + 0.392665i
\(939\) 0.621989 + 1.07732i 0.0202978 + 0.0351569i
\(940\) −0.107356 + 0.185947i −0.00350158 + 0.00606491i
\(941\) 53.7174 1.75114 0.875568 0.483094i \(-0.160487\pi\)
0.875568 + 0.483094i \(0.160487\pi\)
\(942\) −10.6344 + 18.4194i −0.346488 + 0.600135i
\(943\) −13.9408 + 24.1463i −0.453976 + 0.786310i
\(944\) −10.4971 −0.341653
\(945\) 0.529055 + 0.916351i 0.0172102 + 0.0298089i
\(946\) −5.66896 −0.184314
\(947\) 17.0801 29.5835i 0.555027 0.961336i −0.442874 0.896584i \(-0.646041\pi\)
0.997901 0.0647518i \(-0.0206256\pi\)
\(948\) −8.01197 −0.260217
\(949\) −18.0438 31.2527i −0.585725 1.01451i
\(950\) −18.6722 32.3412i −0.605806 1.04929i
\(951\) 22.8554 0.741138
\(952\) −1.60596 −0.0520495
\(953\) −4.26587 + 7.38870i −0.138185 + 0.239344i −0.926810 0.375531i \(-0.877460\pi\)
0.788625 + 0.614875i \(0.210794\pi\)
\(954\) −3.03581 + 5.25818i −0.0982880 + 0.170240i
\(955\) 1.38498 + 2.39886i 0.0448170 + 0.0776253i
\(956\) −1.06849 −0.0345575
\(957\) 12.8850 + 22.3175i 0.416513 + 0.721421i
\(958\) −27.5409 −0.889806
\(959\) 13.1222 22.7283i 0.423739 0.733937i
\(960\) −0.317445 −0.0102455
\(961\) −10.5863 18.3359i −0.341492 0.591482i
\(962\) −12.6248 21.8668i −0.407039 0.705012i
\(963\) 7.47456 12.9463i 0.240864 0.417189i
\(964\) −12.0709 20.9074i −0.388776 0.673380i
\(965\) 1.93867 + 3.35787i 0.0624079 + 0.108094i
\(966\) 4.05451 + 7.02262i 0.130452 + 0.225949i
\(967\) −19.5270 33.8218i −0.627947 1.08764i −0.987963 0.154690i \(-0.950562\pi\)
0.360016 0.932946i \(-0.382771\pi\)
\(968\) −2.40060 + 4.15796i −0.0771581 + 0.133642i
\(969\) −1.83629 3.18055i −0.0589901 0.102174i
\(970\) −0.223555 + 0.387208i −0.00717791 + 0.0124325i
\(971\) −0.153652 0.266133i −0.00493092 0.00854061i 0.863549 0.504264i \(-0.168236\pi\)
−0.868480 + 0.495724i \(0.834903\pi\)
\(972\) −0.500000 0.866025i −0.0160375 0.0277778i
\(973\) −7.75982 + 13.4404i −0.248768 + 0.430879i
\(974\) 24.4289 0.782753
\(975\) 14.9721 + 25.9325i 0.479492 + 0.830505i
\(976\) −4.31593 + 7.47540i −0.138149 + 0.239282i
\(977\) 5.30320 + 9.18541i 0.169664 + 0.293867i 0.938302 0.345817i \(-0.112398\pi\)
−0.768637 + 0.639685i \(0.779065\pi\)
\(978\) 6.67133 11.5551i 0.213325 0.369491i
\(979\) −27.5795 −0.881443
\(980\) 0.652391 + 1.12997i 0.0208399 + 0.0360957i
\(981\) 6.24230 10.8120i 0.199301 0.345200i
\(982\) 4.40001 7.62104i 0.140410 0.243197i
\(983\) −46.0507 −1.46879 −0.734395 0.678722i \(-0.762534\pi\)
−0.734395 + 0.678722i \(0.762534\pi\)
\(984\) 5.73037 9.92529i 0.182677 0.316407i
\(985\) −0.0547116 0.0947633i −0.00174326 0.00301941i
\(986\) 2.49347 + 4.31881i 0.0794082 + 0.137539i
\(987\) −2.25450 −0.0717616
\(988\) −23.2945 + 40.3473i −0.741098 + 1.28362i
\(989\) 2.76966 + 4.79719i 0.0880699 + 0.152542i
\(990\) −0.790357 −0.0251192
\(991\) 11.0012 19.0547i 0.349466 0.605292i −0.636689 0.771121i \(-0.719696\pi\)
0.986155 + 0.165828i \(0.0530298\pi\)
\(992\) −3.61153 + 6.25535i −0.114666 + 0.198608i
\(993\) −6.35812 + 11.0126i −0.201769 + 0.349474i
\(994\) 2.07663 3.59684i 0.0658669 0.114085i
\(995\) −0.325669 −0.0103244
\(996\) 1.79970 0.0570256
\(997\) −9.10641 −0.288403 −0.144201 0.989548i \(-0.546061\pi\)
−0.144201 + 0.989548i \(0.546061\pi\)
\(998\) 8.72858 + 15.1183i 0.276298 + 0.478563i
\(999\) 2.06556 + 3.57765i 0.0653514 + 0.113192i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.e.h.931.5 14
223.183 even 3 inner 1338.2.e.h.1075.5 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.e.h.931.5 14 1.1 even 1 trivial
1338.2.e.h.1075.5 yes 14 223.183 even 3 inner