Properties

Label 1338.2.e.h.1075.6
Level $1338$
Weight $2$
Character 1338.1075
Analytic conductor $10.684$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1338,2,Mod(931,1338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1338.931"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-14,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.6839837904\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 3 x^{13} + 21 x^{12} - 26 x^{11} + 217 x^{10} - 335 x^{9} + 1058 x^{8} - 1539 x^{7} + 3657 x^{6} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1075.6
Root \(0.379092 - 0.656607i\) of defining polynomial
Character \(\chi\) \(=\) 1338.1075
Dual form 1338.2.e.h.931.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(-0.500000 - 0.866025i) q^{3} +1.00000 q^{4} +(0.652613 - 1.13036i) q^{5} +(0.500000 + 0.866025i) q^{6} +3.36767 q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.652613 + 1.13036i) q^{10} +(-0.271475 + 0.470208i) q^{11} +(-0.500000 - 0.866025i) q^{12} +1.71940 q^{13} -3.36767 q^{14} -1.30523 q^{15} +1.00000 q^{16} +1.55840 q^{17} +(0.500000 - 0.866025i) q^{18} +(3.69076 + 6.39259i) q^{19} +(0.652613 - 1.13036i) q^{20} +(-1.68384 - 2.91649i) q^{21} +(0.271475 - 0.470208i) q^{22} +(1.97801 + 3.42601i) q^{23} +(0.500000 + 0.866025i) q^{24} +(1.64819 + 2.85475i) q^{25} -1.71940 q^{26} +1.00000 q^{27} +3.36767 q^{28} +(2.60664 - 4.51483i) q^{29} +1.30523 q^{30} +(-0.119344 - 0.206710i) q^{31} -1.00000 q^{32} +0.542949 q^{33} -1.55840 q^{34} +(2.19779 - 3.80668i) q^{35} +(-0.500000 + 0.866025i) q^{36} +(-2.09940 + 3.63626i) q^{37} +(-3.69076 - 6.39259i) q^{38} +(-0.859702 - 1.48905i) q^{39} +(-0.652613 + 1.13036i) q^{40} -3.87207 q^{41} +(1.68384 + 2.91649i) q^{42} +(1.01702 + 1.76152i) q^{43} +(-0.271475 + 0.470208i) q^{44} +(0.652613 + 1.13036i) q^{45} +(-1.97801 - 3.42601i) q^{46} +(-3.55440 + 6.15641i) q^{47} +(-0.500000 - 0.866025i) q^{48} +4.34121 q^{49} +(-1.64819 - 2.85475i) q^{50} +(-0.779202 - 1.34962i) q^{51} +1.71940 q^{52} +(-2.96526 + 5.13598i) q^{53} -1.00000 q^{54} +(0.354336 + 0.613727i) q^{55} -3.36767 q^{56} +(3.69076 - 6.39259i) q^{57} +(-2.60664 + 4.51483i) q^{58} +0.705752 q^{59} -1.30523 q^{60} +(1.93180 + 3.34597i) q^{61} +(0.119344 + 0.206710i) q^{62} +(-1.68384 + 2.91649i) q^{63} +1.00000 q^{64} +(1.12211 - 1.94354i) q^{65} -0.542949 q^{66} +(-3.32588 - 5.76059i) q^{67} +1.55840 q^{68} +(1.97801 - 3.42601i) q^{69} +(-2.19779 + 3.80668i) q^{70} +(-0.295931 - 0.512568i) q^{71} +(0.500000 - 0.866025i) q^{72} +(1.65303 - 2.86313i) q^{73} +(2.09940 - 3.63626i) q^{74} +(1.64819 - 2.85475i) q^{75} +(3.69076 + 6.39259i) q^{76} +(-0.914237 + 1.58350i) q^{77} +(0.859702 + 1.48905i) q^{78} +(6.83269 - 11.8346i) q^{79} +(0.652613 - 1.13036i) q^{80} +(-0.500000 - 0.866025i) q^{81} +3.87207 q^{82} +(5.59413 - 9.68933i) q^{83} +(-1.68384 - 2.91649i) q^{84} +(1.01703 - 1.76156i) q^{85} +(-1.01702 - 1.76152i) q^{86} -5.21328 q^{87} +(0.271475 - 0.470208i) q^{88} +(2.23576 + 3.87245i) q^{89} +(-0.652613 - 1.13036i) q^{90} +5.79039 q^{91} +(1.97801 + 3.42601i) q^{92} +(-0.119344 + 0.206710i) q^{93} +(3.55440 - 6.15641i) q^{94} +9.63456 q^{95} +(0.500000 + 0.866025i) q^{96} +(-2.08092 + 3.60426i) q^{97} -4.34121 q^{98} +(-0.271475 - 0.470208i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{2} - 7 q^{3} + 14 q^{4} - 4 q^{5} + 7 q^{6} + 12 q^{7} - 14 q^{8} - 7 q^{9} + 4 q^{10} - 10 q^{11} - 7 q^{12} - 4 q^{13} - 12 q^{14} + 8 q^{15} + 14 q^{16} + 8 q^{17} + 7 q^{18} - 8 q^{19}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1338\mathbb{Z}\right)^\times\).

\(n\) \(893\) \(895\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 1.00000 0.500000
\(5\) 0.652613 1.13036i 0.291857 0.505512i −0.682392 0.730987i \(-0.739060\pi\)
0.974249 + 0.225475i \(0.0723934\pi\)
\(6\) 0.500000 + 0.866025i 0.204124 + 0.353553i
\(7\) 3.36767 1.27286 0.636430 0.771334i \(-0.280410\pi\)
0.636430 + 0.771334i \(0.280410\pi\)
\(8\) −1.00000 −0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −0.652613 + 1.13036i −0.206374 + 0.357451i
\(11\) −0.271475 + 0.470208i −0.0818526 + 0.141773i −0.904046 0.427436i \(-0.859417\pi\)
0.822193 + 0.569209i \(0.192750\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) 1.71940 0.476877 0.238439 0.971158i \(-0.423364\pi\)
0.238439 + 0.971158i \(0.423364\pi\)
\(14\) −3.36767 −0.900048
\(15\) −1.30523 −0.337008
\(16\) 1.00000 0.250000
\(17\) 1.55840 0.377969 0.188984 0.981980i \(-0.439480\pi\)
0.188984 + 0.981980i \(0.439480\pi\)
\(18\) 0.500000 0.866025i 0.117851 0.204124i
\(19\) 3.69076 + 6.39259i 0.846719 + 1.46656i 0.884120 + 0.467260i \(0.154759\pi\)
−0.0374007 + 0.999300i \(0.511908\pi\)
\(20\) 0.652613 1.13036i 0.145929 0.252756i
\(21\) −1.68384 2.91649i −0.367443 0.636430i
\(22\) 0.271475 0.470208i 0.0578786 0.100249i
\(23\) 1.97801 + 3.42601i 0.412443 + 0.714372i 0.995156 0.0983055i \(-0.0313422\pi\)
−0.582713 + 0.812678i \(0.698009\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) 1.64819 + 2.85475i 0.329639 + 0.570951i
\(26\) −1.71940 −0.337203
\(27\) 1.00000 0.192450
\(28\) 3.36767 0.636430
\(29\) 2.60664 4.51483i 0.484041 0.838384i −0.515791 0.856714i \(-0.672502\pi\)
0.999832 + 0.0183309i \(0.00583522\pi\)
\(30\) 1.30523 0.238301
\(31\) −0.119344 0.206710i −0.0214348 0.0371262i 0.855109 0.518448i \(-0.173490\pi\)
−0.876544 + 0.481322i \(0.840157\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0.542949 0.0945153
\(34\) −1.55840 −0.267264
\(35\) 2.19779 3.80668i 0.371494 0.643446i
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) −2.09940 + 3.63626i −0.345139 + 0.597798i −0.985379 0.170377i \(-0.945502\pi\)
0.640240 + 0.768175i \(0.278835\pi\)
\(38\) −3.69076 6.39259i −0.598721 1.03701i
\(39\) −0.859702 1.48905i −0.137663 0.238439i
\(40\) −0.652613 + 1.13036i −0.103187 + 0.178725i
\(41\) −3.87207 −0.604716 −0.302358 0.953194i \(-0.597774\pi\)
−0.302358 + 0.953194i \(0.597774\pi\)
\(42\) 1.68384 + 2.91649i 0.259821 + 0.450024i
\(43\) 1.01702 + 1.76152i 0.155094 + 0.268630i 0.933093 0.359635i \(-0.117099\pi\)
−0.778000 + 0.628265i \(0.783765\pi\)
\(44\) −0.271475 + 0.470208i −0.0409263 + 0.0708865i
\(45\) 0.652613 + 1.13036i 0.0972858 + 0.168504i
\(46\) −1.97801 3.42601i −0.291641 0.505138i
\(47\) −3.55440 + 6.15641i −0.518463 + 0.898004i 0.481307 + 0.876552i \(0.340162\pi\)
−0.999770 + 0.0214520i \(0.993171\pi\)
\(48\) −0.500000 0.866025i −0.0721688 0.125000i
\(49\) 4.34121 0.620173
\(50\) −1.64819 2.85475i −0.233090 0.403723i
\(51\) −0.779202 1.34962i −0.109110 0.188984i
\(52\) 1.71940 0.238439
\(53\) −2.96526 + 5.13598i −0.407310 + 0.705481i −0.994587 0.103905i \(-0.966866\pi\)
0.587278 + 0.809386i \(0.300200\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0.354336 + 0.613727i 0.0477786 + 0.0827549i
\(56\) −3.36767 −0.450024
\(57\) 3.69076 6.39259i 0.488854 0.846719i
\(58\) −2.60664 + 4.51483i −0.342269 + 0.592827i
\(59\) 0.705752 0.0918810 0.0459405 0.998944i \(-0.485372\pi\)
0.0459405 + 0.998944i \(0.485372\pi\)
\(60\) −1.30523 −0.168504
\(61\) 1.93180 + 3.34597i 0.247342 + 0.428408i 0.962787 0.270260i \(-0.0871097\pi\)
−0.715446 + 0.698668i \(0.753776\pi\)
\(62\) 0.119344 + 0.206710i 0.0151567 + 0.0262522i
\(63\) −1.68384 + 2.91649i −0.212143 + 0.367443i
\(64\) 1.00000 0.125000
\(65\) 1.12211 1.94354i 0.139180 0.241067i
\(66\) −0.542949 −0.0668324
\(67\) −3.32588 5.76059i −0.406321 0.703768i 0.588154 0.808749i \(-0.299855\pi\)
−0.994474 + 0.104981i \(0.966522\pi\)
\(68\) 1.55840 0.188984
\(69\) 1.97801 3.42601i 0.238124 0.412443i
\(70\) −2.19779 + 3.80668i −0.262686 + 0.454985i
\(71\) −0.295931 0.512568i −0.0351206 0.0608307i 0.847931 0.530107i \(-0.177848\pi\)
−0.883051 + 0.469276i \(0.844515\pi\)
\(72\) 0.500000 0.866025i 0.0589256 0.102062i
\(73\) 1.65303 2.86313i 0.193473 0.335105i −0.752926 0.658105i \(-0.771358\pi\)
0.946399 + 0.323001i \(0.104692\pi\)
\(74\) 2.09940 3.63626i 0.244050 0.422707i
\(75\) 1.64819 2.85475i 0.190317 0.329639i
\(76\) 3.69076 + 6.39259i 0.423360 + 0.733280i
\(77\) −0.914237 + 1.58350i −0.104187 + 0.180457i
\(78\) 0.859702 + 1.48905i 0.0973421 + 0.168601i
\(79\) 6.83269 11.8346i 0.768737 1.33149i −0.169510 0.985528i \(-0.554219\pi\)
0.938248 0.345964i \(-0.112448\pi\)
\(80\) 0.652613 1.13036i 0.0729643 0.126378i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 3.87207 0.427599
\(83\) 5.59413 9.68933i 0.614036 1.06354i −0.376517 0.926410i \(-0.622878\pi\)
0.990553 0.137132i \(-0.0437884\pi\)
\(84\) −1.68384 2.91649i −0.183722 0.318215i
\(85\) 1.01703 1.76156i 0.110313 0.191068i
\(86\) −1.01702 1.76152i −0.109668 0.189950i
\(87\) −5.21328 −0.558922
\(88\) 0.271475 0.470208i 0.0289393 0.0501243i
\(89\) 2.23576 + 3.87245i 0.236990 + 0.410479i 0.959849 0.280517i \(-0.0905058\pi\)
−0.722859 + 0.690995i \(0.757173\pi\)
\(90\) −0.652613 1.13036i −0.0687914 0.119150i
\(91\) 5.79039 0.606998
\(92\) 1.97801 + 3.42601i 0.206222 + 0.357186i
\(93\) −0.119344 + 0.206710i −0.0123754 + 0.0214348i
\(94\) 3.55440 6.15641i 0.366609 0.634985i
\(95\) 9.63456 0.988485
\(96\) 0.500000 + 0.866025i 0.0510310 + 0.0883883i
\(97\) −2.08092 + 3.60426i −0.211285 + 0.365957i −0.952117 0.305734i \(-0.901098\pi\)
0.740832 + 0.671691i \(0.234432\pi\)
\(98\) −4.34121 −0.438528
\(99\) −0.271475 0.470208i −0.0272842 0.0472576i
\(100\) 1.64819 + 2.85475i 0.164819 + 0.285475i
\(101\) −3.97843 6.89084i −0.395868 0.685664i 0.597343 0.801986i \(-0.296223\pi\)
−0.993212 + 0.116322i \(0.962890\pi\)
\(102\) 0.779202 + 1.34962i 0.0771525 + 0.133632i
\(103\) 6.41415 0.632005 0.316002 0.948758i \(-0.397659\pi\)
0.316002 + 0.948758i \(0.397659\pi\)
\(104\) −1.71940 −0.168601
\(105\) −4.39557 −0.428964
\(106\) 2.96526 5.13598i 0.288011 0.498850i
\(107\) 6.81559 11.8049i 0.658888 1.14123i −0.322016 0.946734i \(-0.604361\pi\)
0.980904 0.194493i \(-0.0623060\pi\)
\(108\) 1.00000 0.0962250
\(109\) 0.665484 1.15265i 0.0637418 0.110404i −0.832393 0.554185i \(-0.813030\pi\)
0.896135 + 0.443781i \(0.146363\pi\)
\(110\) −0.354336 0.613727i −0.0337846 0.0585166i
\(111\) 4.19880 0.398532
\(112\) 3.36767 0.318215
\(113\) −0.992514 1.71908i −0.0933678 0.161718i 0.815558 0.578675i \(-0.196430\pi\)
−0.908926 + 0.416957i \(0.863097\pi\)
\(114\) −3.69076 + 6.39259i −0.345672 + 0.598721i
\(115\) 5.16349 0.481498
\(116\) 2.60664 4.51483i 0.242020 0.419192i
\(117\) −0.859702 + 1.48905i −0.0794795 + 0.137663i
\(118\) −0.705752 −0.0649697
\(119\) 5.24819 0.481101
\(120\) 1.30523 0.119150
\(121\) 5.35260 + 9.27098i 0.486600 + 0.842816i
\(122\) −1.93180 3.34597i −0.174897 0.302930i
\(123\) 1.93604 + 3.35331i 0.174567 + 0.302358i
\(124\) −0.119344 0.206710i −0.0107174 0.0185631i
\(125\) 10.8287 0.968544
\(126\) 1.68384 2.91649i 0.150008 0.259821i
\(127\) 6.09999 + 10.5655i 0.541287 + 0.937536i 0.998830 + 0.0483493i \(0.0153960\pi\)
−0.457544 + 0.889187i \(0.651271\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 1.01702 1.76152i 0.0895433 0.155094i
\(130\) −1.12211 + 1.94354i −0.0984152 + 0.170460i
\(131\) 1.18727 + 2.05640i 0.103732 + 0.179669i 0.913219 0.407468i \(-0.133588\pi\)
−0.809488 + 0.587137i \(0.800255\pi\)
\(132\) 0.542949 0.0472576
\(133\) 12.4293 + 21.5281i 1.07775 + 1.86673i
\(134\) 3.32588 + 5.76059i 0.287312 + 0.497639i
\(135\) 0.652613 1.13036i 0.0561680 0.0972858i
\(136\) −1.55840 −0.133632
\(137\) −7.69606 13.3300i −0.657518 1.13886i −0.981256 0.192708i \(-0.938273\pi\)
0.323738 0.946147i \(-0.395060\pi\)
\(138\) −1.97801 + 3.42601i −0.168379 + 0.291641i
\(139\) −7.88789 13.6622i −0.669042 1.15881i −0.978172 0.207795i \(-0.933371\pi\)
0.309130 0.951020i \(-0.399962\pi\)
\(140\) 2.19779 3.80668i 0.185747 0.321723i
\(141\) 7.10881 0.598669
\(142\) 0.295931 + 0.512568i 0.0248340 + 0.0430138i
\(143\) −0.466775 + 0.808477i −0.0390336 + 0.0676083i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) −3.40225 5.89288i −0.282542 0.489377i
\(146\) −1.65303 + 2.86313i −0.136806 + 0.236955i
\(147\) −2.17060 3.75960i −0.179028 0.310086i
\(148\) −2.09940 + 3.63626i −0.172569 + 0.298899i
\(149\) 2.03745 3.52896i 0.166914 0.289104i −0.770419 0.637538i \(-0.779953\pi\)
0.937333 + 0.348434i \(0.113286\pi\)
\(150\) −1.64819 + 2.85475i −0.134574 + 0.233090i
\(151\) 5.52311 9.56630i 0.449464 0.778495i −0.548887 0.835896i \(-0.684948\pi\)
0.998351 + 0.0574019i \(0.0182817\pi\)
\(152\) −3.69076 6.39259i −0.299360 0.518507i
\(153\) −0.779202 + 1.34962i −0.0629948 + 0.109110i
\(154\) 0.914237 1.58350i 0.0736713 0.127602i
\(155\) −0.311542 −0.0250237
\(156\) −0.859702 1.48905i −0.0688313 0.119219i
\(157\) 14.7840 1.17989 0.589945 0.807443i \(-0.299149\pi\)
0.589945 + 0.807443i \(0.299149\pi\)
\(158\) −6.83269 + 11.8346i −0.543579 + 0.941507i
\(159\) 5.93052 0.470321
\(160\) −0.652613 + 1.13036i −0.0515936 + 0.0893627i
\(161\) 6.66128 + 11.5377i 0.524982 + 0.909296i
\(162\) 0.500000 + 0.866025i 0.0392837 + 0.0680414i
\(163\) −5.37708 −0.421165 −0.210583 0.977576i \(-0.567536\pi\)
−0.210583 + 0.977576i \(0.567536\pi\)
\(164\) −3.87207 −0.302358
\(165\) 0.354336 0.613727i 0.0275850 0.0477786i
\(166\) −5.59413 + 9.68933i −0.434189 + 0.752038i
\(167\) −18.1137 −1.40168 −0.700841 0.713318i \(-0.747192\pi\)
−0.700841 + 0.713318i \(0.747192\pi\)
\(168\) 1.68384 + 2.91649i 0.129911 + 0.225012i
\(169\) −10.0436 −0.772588
\(170\) −1.01703 + 1.76156i −0.0780030 + 0.135105i
\(171\) −7.38153 −0.564479
\(172\) 1.01702 + 1.76152i 0.0775468 + 0.134315i
\(173\) −2.41732 4.18691i −0.183785 0.318325i 0.759381 0.650646i \(-0.225502\pi\)
−0.943166 + 0.332321i \(0.892168\pi\)
\(174\) 5.21328 0.395218
\(175\) 5.55057 + 9.61387i 0.419584 + 0.726740i
\(176\) −0.271475 + 0.470208i −0.0204632 + 0.0354432i
\(177\) −0.352876 0.611199i −0.0265238 0.0459405i
\(178\) −2.23576 3.87245i −0.167577 0.290252i
\(179\) 2.12325 3.67758i 0.158699 0.274875i −0.775701 0.631101i \(-0.782603\pi\)
0.934400 + 0.356226i \(0.115937\pi\)
\(180\) 0.652613 + 1.13036i 0.0486429 + 0.0842520i
\(181\) −3.64457 6.31258i −0.270899 0.469210i 0.698193 0.715909i \(-0.253988\pi\)
−0.969092 + 0.246699i \(0.920654\pi\)
\(182\) −5.79039 −0.429212
\(183\) 1.93180 3.34597i 0.142803 0.247342i
\(184\) −1.97801 3.42601i −0.145821 0.252569i
\(185\) 2.74019 + 4.74614i 0.201463 + 0.348944i
\(186\) 0.119344 0.206710i 0.00875074 0.0151567i
\(187\) −0.423067 + 0.732774i −0.0309377 + 0.0535857i
\(188\) −3.55440 + 6.15641i −0.259231 + 0.449002i
\(189\) 3.36767 0.244962
\(190\) −9.63456 −0.698964
\(191\) 12.8931 0.932909 0.466455 0.884545i \(-0.345531\pi\)
0.466455 + 0.884545i \(0.345531\pi\)
\(192\) −0.500000 0.866025i −0.0360844 0.0625000i
\(193\) −6.52539 −0.469708 −0.234854 0.972031i \(-0.575461\pi\)
−0.234854 + 0.972031i \(0.575461\pi\)
\(194\) 2.08092 3.60426i 0.149401 0.258771i
\(195\) −2.24421 −0.160711
\(196\) 4.34121 0.310086
\(197\) −17.7001 −1.26108 −0.630541 0.776156i \(-0.717167\pi\)
−0.630541 + 0.776156i \(0.717167\pi\)
\(198\) 0.271475 + 0.470208i 0.0192929 + 0.0334162i
\(199\) 3.51636 + 6.09051i 0.249268 + 0.431745i 0.963323 0.268345i \(-0.0864766\pi\)
−0.714055 + 0.700090i \(0.753143\pi\)
\(200\) −1.64819 2.85475i −0.116545 0.201862i
\(201\) −3.32588 + 5.76059i −0.234589 + 0.406321i
\(202\) 3.97843 + 6.89084i 0.279921 + 0.484838i
\(203\) 8.77831 15.2045i 0.616116 1.06714i
\(204\) −0.779202 1.34962i −0.0545551 0.0944921i
\(205\) −2.52696 + 4.37683i −0.176491 + 0.305691i
\(206\) −6.41415 −0.446895
\(207\) −3.95602 −0.274962
\(208\) 1.71940 0.119219
\(209\) −4.00779 −0.277225
\(210\) 4.39557 0.303323
\(211\) 2.51652 + 4.35875i 0.173245 + 0.300069i 0.939552 0.342405i \(-0.111242\pi\)
−0.766308 + 0.642474i \(0.777908\pi\)
\(212\) −2.96526 + 5.13598i −0.203655 + 0.352740i
\(213\) −0.295931 + 0.512568i −0.0202769 + 0.0351206i
\(214\) −6.81559 + 11.8049i −0.465904 + 0.806969i
\(215\) 2.65487 0.181061
\(216\) −1.00000 −0.0680414
\(217\) −0.401912 0.696132i −0.0272836 0.0472565i
\(218\) −0.665484 + 1.15265i −0.0450723 + 0.0780675i
\(219\) −3.30606 −0.223403
\(220\) 0.354336 + 0.613727i 0.0238893 + 0.0413775i
\(221\) 2.67953 0.180244
\(222\) −4.19880 −0.281805
\(223\) −2.19702 14.7707i −0.147123 0.989118i
\(224\) −3.36767 −0.225012
\(225\) −3.29639 −0.219759
\(226\) 0.992514 + 1.71908i 0.0660210 + 0.114352i
\(227\) 0.167753 0.0111342 0.00556709 0.999985i \(-0.498228\pi\)
0.00556709 + 0.999985i \(0.498228\pi\)
\(228\) 3.69076 6.39259i 0.244427 0.423360i
\(229\) −1.13208 1.96081i −0.0748097 0.129574i 0.826194 0.563386i \(-0.190502\pi\)
−0.901003 + 0.433812i \(0.857168\pi\)
\(230\) −5.16349 −0.340471
\(231\) 1.82847 0.120305
\(232\) −2.60664 + 4.51483i −0.171134 + 0.296413i
\(233\) 1.40286 2.42982i 0.0919042 0.159183i −0.816408 0.577475i \(-0.804038\pi\)
0.908312 + 0.418293i \(0.137371\pi\)
\(234\) 0.859702 1.48905i 0.0562005 0.0973421i
\(235\) 4.63930 + 8.03550i 0.302634 + 0.524178i
\(236\) 0.705752 0.0459405
\(237\) −13.6654 −0.887662
\(238\) −5.24819 −0.340190
\(239\) 16.7388 1.08274 0.541372 0.840783i \(-0.317905\pi\)
0.541372 + 0.840783i \(0.317905\pi\)
\(240\) −1.30523 −0.0842520
\(241\) 0.0507932 0.0879765i 0.00327188 0.00566706i −0.864385 0.502831i \(-0.832292\pi\)
0.867657 + 0.497164i \(0.165625\pi\)
\(242\) −5.35260 9.27098i −0.344078 0.595961i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 1.93180 + 3.34597i 0.123671 + 0.214204i
\(245\) 2.83313 4.90712i 0.181002 0.313504i
\(246\) −1.93604 3.35331i −0.123437 0.213799i
\(247\) 6.34591 + 10.9914i 0.403781 + 0.699369i
\(248\) 0.119344 + 0.206710i 0.00757836 + 0.0131261i
\(249\) −11.1883 −0.709028
\(250\) −10.8287 −0.684864
\(251\) 10.8626 0.685643 0.342821 0.939401i \(-0.388617\pi\)
0.342821 + 0.939401i \(0.388617\pi\)
\(252\) −1.68384 + 2.91649i −0.106072 + 0.183722i
\(253\) −2.14791 −0.135038
\(254\) −6.09999 10.5655i −0.382748 0.662938i
\(255\) −2.03407 −0.127378
\(256\) 1.00000 0.0625000
\(257\) −29.6495 −1.84948 −0.924742 0.380594i \(-0.875720\pi\)
−0.924742 + 0.380594i \(0.875720\pi\)
\(258\) −1.01702 + 1.76152i −0.0633167 + 0.109668i
\(259\) −7.07008 + 12.2457i −0.439313 + 0.760913i
\(260\) 1.12211 1.94354i 0.0695900 0.120533i
\(261\) 2.60664 + 4.51483i 0.161347 + 0.279461i
\(262\) −1.18727 2.05640i −0.0733495 0.127045i
\(263\) −15.0614 + 26.0870i −0.928723 + 1.60860i −0.143263 + 0.989685i \(0.545759\pi\)
−0.785461 + 0.618912i \(0.787574\pi\)
\(264\) −0.542949 −0.0334162
\(265\) 3.87033 + 6.70361i 0.237753 + 0.411800i
\(266\) −12.4293 21.5281i −0.762088 1.31997i
\(267\) 2.23576 3.87245i 0.136826 0.236990i
\(268\) −3.32588 5.76059i −0.203160 0.351884i
\(269\) 1.56533 + 2.71123i 0.0954398 + 0.165307i 0.909792 0.415064i \(-0.136241\pi\)
−0.814352 + 0.580371i \(0.802908\pi\)
\(270\) −0.652613 + 1.13036i −0.0397168 + 0.0687914i
\(271\) −1.83828 3.18399i −0.111667 0.193414i 0.804775 0.593580i \(-0.202286\pi\)
−0.916443 + 0.400166i \(0.868952\pi\)
\(272\) 1.55840 0.0944921
\(273\) −2.89519 5.01462i −0.175225 0.303499i
\(274\) 7.69606 + 13.3300i 0.464936 + 0.805292i
\(275\) −1.78977 −0.107927
\(276\) 1.97801 3.42601i 0.119062 0.206222i
\(277\) −14.2648 −0.857091 −0.428545 0.903520i \(-0.640974\pi\)
−0.428545 + 0.903520i \(0.640974\pi\)
\(278\) 7.88789 + 13.6622i 0.473084 + 0.819406i
\(279\) 0.238688 0.0142899
\(280\) −2.19779 + 3.80668i −0.131343 + 0.227492i
\(281\) −5.23430 + 9.06607i −0.312252 + 0.540836i −0.978850 0.204581i \(-0.934417\pi\)
0.666598 + 0.745418i \(0.267750\pi\)
\(282\) −7.10881 −0.423323
\(283\) 7.04563 0.418819 0.209410 0.977828i \(-0.432846\pi\)
0.209410 + 0.977828i \(0.432846\pi\)
\(284\) −0.295931 0.512568i −0.0175603 0.0304153i
\(285\) −4.81728 8.34377i −0.285351 0.494242i
\(286\) 0.466775 0.808477i 0.0276010 0.0478063i
\(287\) −13.0399 −0.769719
\(288\) 0.500000 0.866025i 0.0294628 0.0510310i
\(289\) −14.5714 −0.857140
\(290\) 3.40225 + 5.89288i 0.199787 + 0.346042i
\(291\) 4.16184 0.243971
\(292\) 1.65303 2.86313i 0.0967363 0.167552i
\(293\) 0.195843 0.339210i 0.0114413 0.0198168i −0.860248 0.509876i \(-0.829691\pi\)
0.871689 + 0.490059i \(0.163025\pi\)
\(294\) 2.17060 + 3.75960i 0.126592 + 0.219264i
\(295\) 0.460583 0.797752i 0.0268162 0.0464469i
\(296\) 2.09940 3.63626i 0.122025 0.211354i
\(297\) −0.271475 + 0.470208i −0.0157525 + 0.0272842i
\(298\) −2.03745 + 3.52896i −0.118026 + 0.204427i
\(299\) 3.40100 + 5.89070i 0.196685 + 0.340668i
\(300\) 1.64819 2.85475i 0.0951585 0.164819i
\(301\) 3.42498 + 5.93223i 0.197412 + 0.341928i
\(302\) −5.52311 + 9.56630i −0.317819 + 0.550479i
\(303\) −3.97843 + 6.89084i −0.228555 + 0.395868i
\(304\) 3.69076 + 6.39259i 0.211680 + 0.366640i
\(305\) 5.04287 0.288754
\(306\) 0.779202 1.34962i 0.0445440 0.0771525i
\(307\) −6.86335 11.8877i −0.391712 0.678465i 0.600964 0.799276i \(-0.294784\pi\)
−0.992675 + 0.120811i \(0.961450\pi\)
\(308\) −0.914237 + 1.58350i −0.0520935 + 0.0902286i
\(309\) −3.20707 5.55482i −0.182444 0.316002i
\(310\) 0.311542 0.0176944
\(311\) −4.96301 + 8.59618i −0.281426 + 0.487445i −0.971736 0.236069i \(-0.924141\pi\)
0.690310 + 0.723514i \(0.257474\pi\)
\(312\) 0.859702 + 1.48905i 0.0486711 + 0.0843007i
\(313\) −14.3231 24.8083i −0.809589 1.40225i −0.913149 0.407626i \(-0.866357\pi\)
0.103559 0.994623i \(-0.466977\pi\)
\(314\) −14.7840 −0.834308
\(315\) 2.19779 + 3.80668i 0.123831 + 0.214482i
\(316\) 6.83269 11.8346i 0.384369 0.665746i
\(317\) 3.51918 6.09540i 0.197657 0.342352i −0.750111 0.661312i \(-0.770000\pi\)
0.947768 + 0.318960i \(0.103333\pi\)
\(318\) −5.93052 −0.332567
\(319\) 1.41527 + 2.45132i 0.0792401 + 0.137248i
\(320\) 0.652613 1.13036i 0.0364822 0.0631890i
\(321\) −13.6312 −0.760818
\(322\) −6.66128 11.5377i −0.371219 0.642969i
\(323\) 5.75170 + 9.96224i 0.320033 + 0.554314i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 2.83391 + 4.90848i 0.157197 + 0.272273i
\(326\) 5.37708 0.297809
\(327\) −1.33097 −0.0736027
\(328\) 3.87207 0.213799
\(329\) −11.9701 + 20.7328i −0.659931 + 1.14303i
\(330\) −0.354336 + 0.613727i −0.0195055 + 0.0337846i
\(331\) 25.7320 1.41436 0.707179 0.707035i \(-0.249968\pi\)
0.707179 + 0.707035i \(0.249968\pi\)
\(332\) 5.59413 9.68933i 0.307018 0.531771i
\(333\) −2.09940 3.63626i −0.115046 0.199266i
\(334\) 18.1137 0.991139
\(335\) −8.68204 −0.474351
\(336\) −1.68384 2.91649i −0.0918608 0.159107i
\(337\) 0.810305 1.40349i 0.0441401 0.0764530i −0.843111 0.537739i \(-0.819279\pi\)
0.887251 + 0.461286i \(0.152612\pi\)
\(338\) 10.0436 0.546302
\(339\) −0.992514 + 1.71908i −0.0539059 + 0.0933678i
\(340\) 1.01703 1.76156i 0.0551564 0.0955338i
\(341\) 0.129596 0.00701800
\(342\) 7.38153 0.399147
\(343\) −8.95394 −0.483467
\(344\) −1.01702 1.76152i −0.0548338 0.0949750i
\(345\) −2.58175 4.47172i −0.138997 0.240749i
\(346\) 2.41732 + 4.18691i 0.129956 + 0.225090i
\(347\) −2.15834 3.73835i −0.115866 0.200685i 0.802260 0.596975i \(-0.203631\pi\)
−0.918125 + 0.396290i \(0.870298\pi\)
\(348\) −5.21328 −0.279461
\(349\) −11.2092 + 19.4149i −0.600013 + 1.03925i 0.392805 + 0.919622i \(0.371505\pi\)
−0.992818 + 0.119632i \(0.961829\pi\)
\(350\) −5.55057 9.61387i −0.296691 0.513883i
\(351\) 1.71940 0.0917750
\(352\) 0.271475 0.470208i 0.0144696 0.0250622i
\(353\) −12.0903 + 20.9410i −0.643503 + 1.11458i 0.341142 + 0.940012i \(0.389186\pi\)
−0.984645 + 0.174568i \(0.944147\pi\)
\(354\) 0.352876 + 0.611199i 0.0187551 + 0.0324849i
\(355\) −0.772515 −0.0410008
\(356\) 2.23576 + 3.87245i 0.118495 + 0.205239i
\(357\) −2.62410 4.54507i −0.138882 0.240550i
\(358\) −2.12325 + 3.67758i −0.112217 + 0.194366i
\(359\) −9.52104 −0.502502 −0.251251 0.967922i \(-0.580842\pi\)
−0.251251 + 0.967922i \(0.580842\pi\)
\(360\) −0.652613 1.13036i −0.0343957 0.0595751i
\(361\) −17.7435 + 30.7326i −0.933867 + 1.61750i
\(362\) 3.64457 + 6.31258i 0.191554 + 0.331782i
\(363\) 5.35260 9.27098i 0.280939 0.486600i
\(364\) 5.79039 0.303499
\(365\) −2.15758 3.73704i −0.112933 0.195605i
\(366\) −1.93180 + 3.34597i −0.100977 + 0.174897i
\(367\) 8.63445 14.9553i 0.450715 0.780661i −0.547716 0.836664i \(-0.684502\pi\)
0.998431 + 0.0560035i \(0.0178358\pi\)
\(368\) 1.97801 + 3.42601i 0.103111 + 0.178593i
\(369\) 1.93604 3.35331i 0.100786 0.174567i
\(370\) −2.74019 4.74614i −0.142456 0.246740i
\(371\) −9.98602 + 17.2963i −0.518448 + 0.897978i
\(372\) −0.119344 + 0.206710i −0.00618771 + 0.0107174i
\(373\) 6.69532 11.5966i 0.346670 0.600451i −0.638985 0.769219i \(-0.720646\pi\)
0.985656 + 0.168768i \(0.0539789\pi\)
\(374\) 0.423067 0.732774i 0.0218763 0.0378908i
\(375\) −5.41433 9.37789i −0.279595 0.484272i
\(376\) 3.55440 6.15641i 0.183304 0.317492i
\(377\) 4.48187 7.76283i 0.230828 0.399806i
\(378\) −3.36767 −0.173214
\(379\) −5.17288 8.95968i −0.265713 0.460228i 0.702037 0.712140i \(-0.252274\pi\)
−0.967750 + 0.251912i \(0.918941\pi\)
\(380\) 9.63456 0.494242
\(381\) 6.09999 10.5655i 0.312512 0.541287i
\(382\) −12.8931 −0.659666
\(383\) 9.37495 16.2379i 0.479038 0.829718i −0.520673 0.853756i \(-0.674319\pi\)
0.999711 + 0.0240384i \(0.00765239\pi\)
\(384\) 0.500000 + 0.866025i 0.0255155 + 0.0441942i
\(385\) 1.19329 + 2.06683i 0.0608155 + 0.105335i
\(386\) 6.52539 0.332133
\(387\) −2.03403 −0.103396
\(388\) −2.08092 + 3.60426i −0.105643 + 0.182978i
\(389\) −8.34766 + 14.4586i −0.423243 + 0.733079i −0.996255 0.0864685i \(-0.972442\pi\)
0.573011 + 0.819548i \(0.305775\pi\)
\(390\) 2.24421 0.113640
\(391\) 3.08254 + 5.33911i 0.155891 + 0.270010i
\(392\) −4.34121 −0.219264
\(393\) 1.18727 2.05640i 0.0598896 0.103732i
\(394\) 17.7001 0.891720
\(395\) −8.91820 15.4468i −0.448723 0.777212i
\(396\) −0.271475 0.470208i −0.0136421 0.0236288i
\(397\) −29.1796 −1.46448 −0.732242 0.681045i \(-0.761526\pi\)
−0.732242 + 0.681045i \(0.761526\pi\)
\(398\) −3.51636 6.09051i −0.176259 0.305290i
\(399\) 12.4293 21.5281i 0.622242 1.07775i
\(400\) 1.64819 + 2.85475i 0.0824096 + 0.142738i
\(401\) −2.60047 4.50415i −0.129861 0.224927i 0.793761 0.608229i \(-0.208120\pi\)
−0.923623 + 0.383303i \(0.874787\pi\)
\(402\) 3.32588 5.76059i 0.165880 0.287312i
\(403\) −0.205201 0.355418i −0.0102218 0.0177047i
\(404\) −3.97843 6.89084i −0.197934 0.342832i
\(405\) −1.30523 −0.0648572
\(406\) −8.77831 + 15.2045i −0.435660 + 0.754585i
\(407\) −1.13987 1.97431i −0.0565011 0.0978627i
\(408\) 0.779202 + 1.34962i 0.0385762 + 0.0668160i
\(409\) −11.8825 + 20.5811i −0.587551 + 1.01767i 0.407001 + 0.913428i \(0.366575\pi\)
−0.994552 + 0.104241i \(0.966759\pi\)
\(410\) 2.52696 4.37683i 0.124798 0.216156i
\(411\) −7.69606 + 13.3300i −0.379618 + 0.657518i
\(412\) 6.41415 0.316002
\(413\) 2.37674 0.116952
\(414\) 3.95602 0.194428
\(415\) −7.30161 12.6468i −0.358422 0.620805i
\(416\) −1.71940 −0.0843007
\(417\) −7.88789 + 13.6622i −0.386272 + 0.669042i
\(418\) 4.00779 0.196028
\(419\) −7.60407 −0.371483 −0.185742 0.982599i \(-0.559469\pi\)
−0.185742 + 0.982599i \(0.559469\pi\)
\(420\) −4.39557 −0.214482
\(421\) −11.9689 20.7308i −0.583329 1.01036i −0.995081 0.0990597i \(-0.968417\pi\)
0.411753 0.911296i \(-0.364917\pi\)
\(422\) −2.51652 4.35875i −0.122502 0.212180i
\(423\) −3.55440 6.15641i −0.172821 0.299335i
\(424\) 2.96526 5.13598i 0.144006 0.249425i
\(425\) 2.56855 + 4.44886i 0.124593 + 0.215801i
\(426\) 0.295931 0.512568i 0.0143379 0.0248340i
\(427\) 6.50566 + 11.2681i 0.314831 + 0.545304i
\(428\) 6.81559 11.8049i 0.329444 0.570613i
\(429\) 0.933549 0.0450722
\(430\) −2.65487 −0.128029
\(431\) −4.07084 −0.196085 −0.0980427 0.995182i \(-0.531258\pi\)
−0.0980427 + 0.995182i \(0.531258\pi\)
\(432\) 1.00000 0.0481125
\(433\) −12.5158 −0.601473 −0.300736 0.953707i \(-0.597232\pi\)
−0.300736 + 0.953707i \(0.597232\pi\)
\(434\) 0.401912 + 0.696132i 0.0192924 + 0.0334154i
\(435\) −3.40225 + 5.89288i −0.163126 + 0.282542i
\(436\) 0.665484 1.15265i 0.0318709 0.0552020i
\(437\) −14.6007 + 25.2892i −0.698447 + 1.20975i
\(438\) 3.30606 0.157970
\(439\) −16.8005 −0.801844 −0.400922 0.916112i \(-0.631310\pi\)
−0.400922 + 0.916112i \(0.631310\pi\)
\(440\) −0.354336 0.613727i −0.0168923 0.0292583i
\(441\) −2.17060 + 3.75960i −0.103362 + 0.179028i
\(442\) −2.67953 −0.127452
\(443\) −2.36304 4.09291i −0.112271 0.194460i 0.804414 0.594069i \(-0.202479\pi\)
−0.916686 + 0.399609i \(0.869146\pi\)
\(444\) 4.19880 0.199266
\(445\) 5.83634 0.276669
\(446\) 2.19702 + 14.7707i 0.104032 + 0.699412i
\(447\) −4.07489 −0.192736
\(448\) 3.36767 0.159107
\(449\) 6.15229 + 10.6561i 0.290344 + 0.502891i 0.973891 0.227015i \(-0.0728968\pi\)
−0.683547 + 0.729907i \(0.739563\pi\)
\(450\) 3.29639 0.155393
\(451\) 1.05117 1.82068i 0.0494976 0.0857324i
\(452\) −0.992514 1.71908i −0.0466839 0.0808589i
\(453\) −11.0462 −0.518996
\(454\) −0.167753 −0.00787305
\(455\) 3.77888 6.54522i 0.177157 0.306844i
\(456\) −3.69076 + 6.39259i −0.172836 + 0.299360i
\(457\) −3.66778 + 6.35277i −0.171571 + 0.297170i −0.938969 0.344001i \(-0.888218\pi\)
0.767398 + 0.641171i \(0.221551\pi\)
\(458\) 1.13208 + 1.96081i 0.0528984 + 0.0916227i
\(459\) 1.55840 0.0727401
\(460\) 5.16349 0.240749
\(461\) 25.8860 1.20563 0.602815 0.797881i \(-0.294046\pi\)
0.602815 + 0.797881i \(0.294046\pi\)
\(462\) −1.82847 −0.0850683
\(463\) 28.0018 1.30135 0.650676 0.759355i \(-0.274485\pi\)
0.650676 + 0.759355i \(0.274485\pi\)
\(464\) 2.60664 4.51483i 0.121010 0.209596i
\(465\) 0.155771 + 0.269803i 0.00722371 + 0.0125118i
\(466\) −1.40286 + 2.42982i −0.0649861 + 0.112559i
\(467\) 5.07482 + 8.78984i 0.234835 + 0.406745i 0.959225 0.282645i \(-0.0912118\pi\)
−0.724390 + 0.689390i \(0.757878\pi\)
\(468\) −0.859702 + 1.48905i −0.0397398 + 0.0688313i
\(469\) −11.2005 19.3998i −0.517189 0.895798i
\(470\) −4.63930 8.03550i −0.213995 0.370650i
\(471\) −7.39199 12.8033i −0.340605 0.589945i
\(472\) −0.705752 −0.0324849
\(473\) −1.10438 −0.0507793
\(474\) 13.6654 0.627672
\(475\) −12.1662 + 21.0724i −0.558223 + 0.966870i
\(476\) 5.24819 0.240550
\(477\) −2.96526 5.13598i −0.135770 0.235160i
\(478\) −16.7388 −0.765615
\(479\) 21.2551 0.971169 0.485584 0.874190i \(-0.338607\pi\)
0.485584 + 0.874190i \(0.338607\pi\)
\(480\) 1.30523 0.0595751
\(481\) −3.60971 + 6.25221i −0.164589 + 0.285076i
\(482\) −0.0507932 + 0.0879765i −0.00231357 + 0.00400722i
\(483\) 6.66128 11.5377i 0.303099 0.524982i
\(484\) 5.35260 + 9.27098i 0.243300 + 0.421408i
\(485\) 2.71607 + 4.70437i 0.123330 + 0.213614i
\(486\) 0.500000 0.866025i 0.0226805 0.0392837i
\(487\) −25.0729 −1.13616 −0.568081 0.822973i \(-0.692314\pi\)
−0.568081 + 0.822973i \(0.692314\pi\)
\(488\) −1.93180 3.34597i −0.0874485 0.151465i
\(489\) 2.68854 + 4.65669i 0.121580 + 0.210583i
\(490\) −2.83313 + 4.90712i −0.127988 + 0.221681i
\(491\) 19.3019 + 33.4318i 0.871081 + 1.50876i 0.860879 + 0.508809i \(0.169914\pi\)
0.0102018 + 0.999948i \(0.496753\pi\)
\(492\) 1.93604 + 3.35331i 0.0872833 + 0.151179i
\(493\) 4.06220 7.03594i 0.182952 0.316883i
\(494\) −6.34591 10.9914i −0.285516 0.494529i
\(495\) −0.708671 −0.0318524
\(496\) −0.119344 0.206710i −0.00535871 0.00928156i
\(497\) −0.996600 1.72616i −0.0447036 0.0774289i
\(498\) 11.1883 0.501358
\(499\) 13.7728 23.8552i 0.616556 1.06791i −0.373553 0.927609i \(-0.621861\pi\)
0.990109 0.140298i \(-0.0448060\pi\)
\(500\) 10.8287 0.484272
\(501\) 9.05686 + 15.6869i 0.404631 + 0.700841i
\(502\) −10.8626 −0.484823
\(503\) 2.79892 4.84786i 0.124797 0.216156i −0.796856 0.604169i \(-0.793505\pi\)
0.921654 + 0.388013i \(0.126839\pi\)
\(504\) 1.68384 2.91649i 0.0750040 0.129911i
\(505\) −10.3855 −0.462148
\(506\) 2.14791 0.0954865
\(507\) 5.02182 + 8.69805i 0.223027 + 0.386294i
\(508\) 6.09999 + 10.5655i 0.270643 + 0.468768i
\(509\) −5.66444 + 9.81110i −0.251072 + 0.434869i −0.963821 0.266550i \(-0.914116\pi\)
0.712749 + 0.701419i \(0.247450\pi\)
\(510\) 2.03407 0.0900701
\(511\) 5.56687 9.64209i 0.246264 0.426541i
\(512\) −1.00000 −0.0441942
\(513\) 3.69076 + 6.39259i 0.162951 + 0.282240i
\(514\) 29.6495 1.30778
\(515\) 4.18596 7.25029i 0.184455 0.319486i
\(516\) 1.01702 1.76152i 0.0447716 0.0775468i
\(517\) −1.92986 3.34261i −0.0848751 0.147008i
\(518\) 7.07008 12.2457i 0.310642 0.538047i
\(519\) −2.41732 + 4.18691i −0.106108 + 0.183785i
\(520\) −1.12211 + 1.94354i −0.0492076 + 0.0852300i
\(521\) −19.6072 + 33.9606i −0.859005 + 1.48784i 0.0138742 + 0.999904i \(0.495584\pi\)
−0.872879 + 0.487936i \(0.837750\pi\)
\(522\) −2.60664 4.51483i −0.114090 0.197609i
\(523\) 18.3659 31.8106i 0.803083 1.39098i −0.114495 0.993424i \(-0.536525\pi\)
0.917578 0.397557i \(-0.130142\pi\)
\(524\) 1.18727 + 2.05640i 0.0518659 + 0.0898344i
\(525\) 5.55057 9.61387i 0.242247 0.419584i
\(526\) 15.0614 26.0870i 0.656707 1.13745i
\(527\) −0.185986 0.322138i −0.00810170 0.0140325i
\(528\) 0.542949 0.0236288
\(529\) 3.67497 6.36524i 0.159781 0.276749i
\(530\) −3.87033 6.70361i −0.168116 0.291186i
\(531\) −0.352876 + 0.611199i −0.0153135 + 0.0265238i
\(532\) 12.4293 + 21.5281i 0.538877 + 0.933363i
\(533\) −6.65766 −0.288375
\(534\) −2.23576 + 3.87245i −0.0967507 + 0.167577i
\(535\) −8.89588 15.4081i −0.384602 0.666151i
\(536\) 3.32588 + 5.76059i 0.143656 + 0.248820i
\(537\) −4.24650 −0.183250
\(538\) −1.56533 2.71123i −0.0674861 0.116889i
\(539\) −1.17853 + 2.04127i −0.0507628 + 0.0879237i
\(540\) 0.652613 1.13036i 0.0280840 0.0486429i
\(541\) 14.2029 0.610629 0.305314 0.952252i \(-0.401238\pi\)
0.305314 + 0.952252i \(0.401238\pi\)
\(542\) 1.83828 + 3.18399i 0.0789608 + 0.136764i
\(543\) −3.64457 + 6.31258i −0.156403 + 0.270899i
\(544\) −1.55840 −0.0668160
\(545\) −0.868607 1.50447i −0.0372070 0.0644445i
\(546\) 2.89519 + 5.01462i 0.123903 + 0.214606i
\(547\) −0.545315 0.944514i −0.0233160 0.0403845i 0.854132 0.520056i \(-0.174089\pi\)
−0.877448 + 0.479672i \(0.840756\pi\)
\(548\) −7.69606 13.3300i −0.328759 0.569428i
\(549\) −3.86360 −0.164894
\(550\) 1.78977 0.0763160
\(551\) 38.4820 1.63939
\(552\) −1.97801 + 3.42601i −0.0841896 + 0.145821i
\(553\) 23.0102 39.8549i 0.978495 1.69480i
\(554\) 14.2648 0.606055
\(555\) 2.74019 4.74614i 0.116315 0.201463i
\(556\) −7.88789 13.6622i −0.334521 0.579407i
\(557\) 43.5769 1.84641 0.923206 0.384305i \(-0.125559\pi\)
0.923206 + 0.384305i \(0.125559\pi\)
\(558\) −0.238688 −0.0101045
\(559\) 1.74866 + 3.02877i 0.0739605 + 0.128103i
\(560\) 2.19779 3.80668i 0.0928734 0.160861i
\(561\) 0.846134 0.0357238
\(562\) 5.23430 9.06607i 0.220796 0.382429i
\(563\) 14.1395 24.4904i 0.595910 1.03215i −0.397508 0.917599i \(-0.630125\pi\)
0.993418 0.114547i \(-0.0365417\pi\)
\(564\) 7.10881 0.299335
\(565\) −2.59091 −0.109000
\(566\) −7.04563 −0.296150
\(567\) −1.68384 2.91649i −0.0707144 0.122481i
\(568\) 0.295931 + 0.512568i 0.0124170 + 0.0215069i
\(569\) 11.1000 + 19.2258i 0.465337 + 0.805988i 0.999217 0.0395727i \(-0.0125997\pi\)
−0.533879 + 0.845561i \(0.679266\pi\)
\(570\) 4.81728 + 8.34377i 0.201774 + 0.349482i
\(571\) −4.67982 −0.195845 −0.0979223 0.995194i \(-0.531220\pi\)
−0.0979223 + 0.995194i \(0.531220\pi\)
\(572\) −0.466775 + 0.808477i −0.0195168 + 0.0338041i
\(573\) −6.44653 11.1657i −0.269308 0.466455i
\(574\) 13.0399 0.544274
\(575\) −6.52028 + 11.2935i −0.271914 + 0.470969i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 2.61190 + 4.52395i 0.108735 + 0.188334i 0.915258 0.402868i \(-0.131987\pi\)
−0.806523 + 0.591203i \(0.798653\pi\)
\(578\) 14.5714 0.606089
\(579\) 3.26269 + 5.65115i 0.135593 + 0.234854i
\(580\) −3.40225 5.89288i −0.141271 0.244688i
\(581\) 18.8392 32.6305i 0.781582 1.35374i
\(582\) −4.16184 −0.172514
\(583\) −1.60998 2.78857i −0.0666787 0.115491i
\(584\) −1.65303 + 2.86313i −0.0684029 + 0.118477i
\(585\) 1.12211 + 1.94354i 0.0463934 + 0.0803556i
\(586\) −0.195843 + 0.339210i −0.00809019 + 0.0140126i
\(587\) 6.73233 0.277873 0.138936 0.990301i \(-0.455632\pi\)
0.138936 + 0.990301i \(0.455632\pi\)
\(588\) −2.17060 3.75960i −0.0895142 0.155043i
\(589\) 0.880942 1.52584i 0.0362986 0.0628710i
\(590\) −0.460583 + 0.797752i −0.0189619 + 0.0328429i
\(591\) 8.85006 + 15.3288i 0.364043 + 0.630541i
\(592\) −2.09940 + 3.63626i −0.0862847 + 0.149450i
\(593\) 1.65855 + 2.87268i 0.0681083 + 0.117967i 0.898069 0.439855i \(-0.144970\pi\)
−0.829960 + 0.557822i \(0.811637\pi\)
\(594\) 0.271475 0.470208i 0.0111387 0.0192929i
\(595\) 3.42504 5.93234i 0.140413 0.243202i
\(596\) 2.03745 3.52896i 0.0834571 0.144552i
\(597\) 3.51636 6.09051i 0.143915 0.249268i
\(598\) −3.40100 5.89070i −0.139077 0.240889i
\(599\) 0.604589 1.04718i 0.0247028 0.0427866i −0.853410 0.521241i \(-0.825469\pi\)
0.878113 + 0.478454i \(0.158803\pi\)
\(600\) −1.64819 + 2.85475i −0.0672872 + 0.116545i
\(601\) −7.01994 −0.286349 −0.143175 0.989697i \(-0.545731\pi\)
−0.143175 + 0.989697i \(0.545731\pi\)
\(602\) −3.42498 5.93223i −0.139592 0.241780i
\(603\) 6.65175 0.270880
\(604\) 5.52311 9.56630i 0.224732 0.389247i
\(605\) 13.9727 0.568071
\(606\) 3.97843 6.89084i 0.161613 0.279921i
\(607\) −12.5670 21.7667i −0.510079 0.883483i −0.999932 0.0116775i \(-0.996283\pi\)
0.489853 0.871805i \(-0.337050\pi\)
\(608\) −3.69076 6.39259i −0.149680 0.259254i
\(609\) −17.5566 −0.711430
\(610\) −5.04287 −0.204180
\(611\) −6.11146 + 10.5854i −0.247243 + 0.428238i
\(612\) −0.779202 + 1.34962i −0.0314974 + 0.0545551i
\(613\) −39.7122 −1.60396 −0.801980 0.597351i \(-0.796220\pi\)
−0.801980 + 0.597351i \(0.796220\pi\)
\(614\) 6.86335 + 11.8877i 0.276982 + 0.479747i
\(615\) 5.05393 0.203794
\(616\) 0.914237 1.58350i 0.0368357 0.0638012i
\(617\) 27.8438 1.12095 0.560474 0.828172i \(-0.310619\pi\)
0.560474 + 0.828172i \(0.310619\pi\)
\(618\) 3.20707 + 5.55482i 0.129007 + 0.223447i
\(619\) 0.787646 + 1.36424i 0.0316582 + 0.0548335i 0.881420 0.472333i \(-0.156588\pi\)
−0.849762 + 0.527166i \(0.823255\pi\)
\(620\) −0.311542 −0.0125118
\(621\) 1.97801 + 3.42601i 0.0793747 + 0.137481i
\(622\) 4.96301 8.59618i 0.198998 0.344675i
\(623\) 7.52930 + 13.0411i 0.301655 + 0.522482i
\(624\) −0.859702 1.48905i −0.0344156 0.0596096i
\(625\) −1.17405 + 2.03351i −0.0469618 + 0.0813402i
\(626\) 14.3231 + 24.8083i 0.572466 + 0.991540i
\(627\) 2.00390 + 3.47085i 0.0800279 + 0.138612i
\(628\) 14.7840 0.589945
\(629\) −3.27171 + 5.66677i −0.130452 + 0.225949i
\(630\) −2.19779 3.80668i −0.0875619 0.151662i
\(631\) 23.3723 + 40.4820i 0.930437 + 1.61156i 0.782575 + 0.622556i \(0.213906\pi\)
0.147862 + 0.989008i \(0.452761\pi\)
\(632\) −6.83269 + 11.8346i −0.271790 + 0.470754i
\(633\) 2.51652 4.35875i 0.100023 0.173245i
\(634\) −3.51918 + 6.09540i −0.139765 + 0.242079i
\(635\) 15.9237 0.631914
\(636\) 5.93052 0.235160
\(637\) 7.46429 0.295746
\(638\) −1.41527 2.45132i −0.0560312 0.0970489i
\(639\) 0.591863 0.0234137
\(640\) −0.652613 + 1.13036i −0.0257968 + 0.0446813i
\(641\) 19.2549 0.760522 0.380261 0.924879i \(-0.375834\pi\)
0.380261 + 0.924879i \(0.375834\pi\)
\(642\) 13.6312 0.537979
\(643\) −6.08078 −0.239803 −0.119901 0.992786i \(-0.538258\pi\)
−0.119901 + 0.992786i \(0.538258\pi\)
\(644\) 6.66128 + 11.5377i 0.262491 + 0.454648i
\(645\) −1.32744 2.29919i −0.0522677 0.0905304i
\(646\) −5.75170 9.96224i −0.226298 0.391959i
\(647\) −15.4462 + 26.7536i −0.607252 + 1.05179i 0.384439 + 0.923150i \(0.374395\pi\)
−0.991691 + 0.128641i \(0.958939\pi\)
\(648\) 0.500000 + 0.866025i 0.0196419 + 0.0340207i
\(649\) −0.191594 + 0.331850i −0.00752071 + 0.0130262i
\(650\) −2.83391 4.90848i −0.111155 0.192526i
\(651\) −0.401912 + 0.696132i −0.0157522 + 0.0272836i
\(652\) −5.37708 −0.210583
\(653\) −15.7699 −0.617122 −0.308561 0.951205i \(-0.599847\pi\)
−0.308561 + 0.951205i \(0.599847\pi\)
\(654\) 1.33097 0.0520450
\(655\) 3.09930 0.121100
\(656\) −3.87207 −0.151179
\(657\) 1.65303 + 2.86313i 0.0644909 + 0.111702i
\(658\) 11.9701 20.7328i 0.466641 0.808247i
\(659\) 16.7094 28.9415i 0.650904 1.12740i −0.332000 0.943280i \(-0.607723\pi\)
0.982904 0.184120i \(-0.0589434\pi\)
\(660\) 0.354336 0.613727i 0.0137925 0.0238893i
\(661\) 5.21464 0.202826 0.101413 0.994844i \(-0.467664\pi\)
0.101413 + 0.994844i \(0.467664\pi\)
\(662\) −25.7320 −1.00010
\(663\) −1.33976 2.32054i −0.0520321 0.0901222i
\(664\) −5.59413 + 9.68933i −0.217095 + 0.376019i
\(665\) 32.4460 1.25820
\(666\) 2.09940 + 3.63626i 0.0813500 + 0.140902i
\(667\) 20.6238 0.798558
\(668\) −18.1137 −0.700841
\(669\) −11.6933 + 9.28802i −0.452088 + 0.359095i
\(670\) 8.68204 0.335417
\(671\) −2.09774 −0.0809823
\(672\) 1.68384 + 2.91649i 0.0649554 + 0.112506i
\(673\) −14.6188 −0.563512 −0.281756 0.959486i \(-0.590917\pi\)
−0.281756 + 0.959486i \(0.590917\pi\)
\(674\) −0.810305 + 1.40349i −0.0312118 + 0.0540604i
\(675\) 1.64819 + 2.85475i 0.0634390 + 0.109880i
\(676\) −10.0436 −0.386294
\(677\) 30.3183 1.16523 0.582614 0.812749i \(-0.302030\pi\)
0.582614 + 0.812749i \(0.302030\pi\)
\(678\) 0.992514 1.71908i 0.0381173 0.0660210i
\(679\) −7.00785 + 12.1380i −0.268937 + 0.465812i
\(680\) −1.01703 + 1.76156i −0.0390015 + 0.0675526i
\(681\) −0.0838767 0.145279i −0.00321416 0.00556709i
\(682\) −0.129596 −0.00496247
\(683\) −34.1573 −1.30699 −0.653496 0.756930i \(-0.726698\pi\)
−0.653496 + 0.756930i \(0.726698\pi\)
\(684\) −7.38153 −0.282240
\(685\) −20.0902 −0.767606
\(686\) 8.95394 0.341863
\(687\) −1.13208 + 1.96081i −0.0431914 + 0.0748097i
\(688\) 1.01702 + 1.76152i 0.0387734 + 0.0671575i
\(689\) −5.09848 + 8.83082i −0.194237 + 0.336428i
\(690\) 2.58175 + 4.47172i 0.0982854 + 0.170235i
\(691\) 26.2137 45.4035i 0.997218 1.72723i 0.434053 0.900887i \(-0.357083\pi\)
0.563165 0.826345i \(-0.309584\pi\)
\(692\) −2.41732 4.18691i −0.0918926 0.159163i
\(693\) −0.914237 1.58350i −0.0347290 0.0601524i
\(694\) 2.15834 + 3.73835i 0.0819295 + 0.141906i
\(695\) −20.5909 −0.781059
\(696\) 5.21328 0.197609
\(697\) −6.03425 −0.228564
\(698\) 11.2092 19.4149i 0.424274 0.734863i
\(699\) −2.80571 −0.106122
\(700\) 5.55057 + 9.61387i 0.209792 + 0.363370i
\(701\) −21.7141 −0.820131 −0.410066 0.912056i \(-0.634494\pi\)
−0.410066 + 0.912056i \(0.634494\pi\)
\(702\) −1.71940 −0.0648947
\(703\) −30.9935 −1.16894
\(704\) −0.271475 + 0.470208i −0.0102316 + 0.0177216i
\(705\) 4.63930 8.03550i 0.174726 0.302634i
\(706\) 12.0903 20.9410i 0.455025 0.788127i
\(707\) −13.3980 23.2061i −0.503885 0.872754i
\(708\) −0.352876 0.611199i −0.0132619 0.0229703i
\(709\) −1.77390 + 3.07248i −0.0666202 + 0.115390i −0.897412 0.441194i \(-0.854555\pi\)
0.830791 + 0.556584i \(0.187888\pi\)
\(710\) 0.772515 0.0289920
\(711\) 6.83269 + 11.8346i 0.256246 + 0.443831i
\(712\) −2.23576 3.87245i −0.0837886 0.145126i
\(713\) 0.472127 0.817749i 0.0176813 0.0306249i
\(714\) 2.62410 + 4.54507i 0.0982043 + 0.170095i
\(715\) 0.609246 + 1.05525i 0.0227845 + 0.0394639i
\(716\) 2.12325 3.67758i 0.0793496 0.137438i
\(717\) −8.36941 14.4962i −0.312561 0.541372i
\(718\) 9.52104 0.355322
\(719\) −2.38961 4.13892i −0.0891172 0.154356i 0.818021 0.575188i \(-0.195071\pi\)
−0.907138 + 0.420833i \(0.861738\pi\)
\(720\) 0.652613 + 1.13036i 0.0243214 + 0.0421260i
\(721\) 21.6007 0.804454
\(722\) 17.7435 30.7326i 0.660343 1.14375i
\(723\) −0.101586 −0.00377804
\(724\) −3.64457 6.31258i −0.135449 0.234605i
\(725\) 17.1850 0.638234
\(726\) −5.35260 + 9.27098i −0.198654 + 0.344078i
\(727\) −11.3542 + 19.6660i −0.421103 + 0.729372i −0.996048 0.0888203i \(-0.971690\pi\)
0.574944 + 0.818192i \(0.305024\pi\)
\(728\) −5.79039 −0.214606
\(729\) 1.00000 0.0370370
\(730\) 2.15758 + 3.73704i 0.0798556 + 0.138314i
\(731\) 1.58492 + 2.74517i 0.0586205 + 0.101534i
\(732\) 1.93180 3.34597i 0.0714014 0.123671i
\(733\) 24.0027 0.886558 0.443279 0.896384i \(-0.353815\pi\)
0.443279 + 0.896384i \(0.353815\pi\)
\(734\) −8.63445 + 14.9553i −0.318703 + 0.552011i
\(735\) −5.66626 −0.209003
\(736\) −1.97801 3.42601i −0.0729103 0.126284i
\(737\) 3.61156 0.133034
\(738\) −1.93604 + 3.35331i −0.0712665 + 0.123437i
\(739\) −21.2137 + 36.7433i −0.780360 + 1.35162i 0.151373 + 0.988477i \(0.451631\pi\)
−0.931732 + 0.363146i \(0.881703\pi\)
\(740\) 2.74019 + 4.74614i 0.100731 + 0.174472i
\(741\) 6.34591 10.9914i 0.233123 0.403781i
\(742\) 9.98602 17.2963i 0.366598 0.634967i
\(743\) −22.4166 + 38.8267i −0.822386 + 1.42441i 0.0815155 + 0.996672i \(0.474024\pi\)
−0.903901 + 0.427742i \(0.859309\pi\)
\(744\) 0.119344 0.206710i 0.00437537 0.00757836i
\(745\) −2.65933 4.60609i −0.0974303 0.168754i
\(746\) −6.69532 + 11.5966i −0.245133 + 0.424583i
\(747\) 5.59413 + 9.68933i 0.204679 + 0.354514i
\(748\) −0.423067 + 0.732774i −0.0154689 + 0.0267929i
\(749\) 22.9526 39.7552i 0.838672 1.45262i
\(750\) 5.41433 + 9.37789i 0.197703 + 0.342432i
\(751\) 22.6446 0.826315 0.413157 0.910660i \(-0.364426\pi\)
0.413157 + 0.910660i \(0.364426\pi\)
\(752\) −3.55440 + 6.15641i −0.129616 + 0.224501i
\(753\) −5.43131 9.40731i −0.197928 0.342821i
\(754\) −4.48187 + 7.76283i −0.163220 + 0.282705i
\(755\) −7.20890 12.4862i −0.262359 0.454419i
\(756\) 3.36767 0.122481
\(757\) 7.99883 13.8544i 0.290722 0.503546i −0.683258 0.730177i \(-0.739438\pi\)
0.973981 + 0.226631i \(0.0727711\pi\)
\(758\) 5.17288 + 8.95968i 0.187887 + 0.325430i
\(759\) 1.07396 + 1.86015i 0.0389822 + 0.0675191i
\(760\) −9.63456 −0.349482
\(761\) 9.67408 + 16.7560i 0.350685 + 0.607405i 0.986370 0.164544i \(-0.0526154\pi\)
−0.635684 + 0.771949i \(0.719282\pi\)
\(762\) −6.09999 + 10.5655i −0.220979 + 0.382748i
\(763\) 2.24113 3.88175i 0.0811344 0.140529i
\(764\) 12.8931 0.466455
\(765\) 1.01703 + 1.76156i 0.0367710 + 0.0636892i
\(766\) −9.37495 + 16.2379i −0.338731 + 0.586699i
\(767\) 1.21347 0.0438160
\(768\) −0.500000 0.866025i −0.0180422 0.0312500i
\(769\) −24.7281 42.8303i −0.891718 1.54450i −0.837814 0.545955i \(-0.816167\pi\)
−0.0539040 0.998546i \(-0.517167\pi\)
\(770\) −1.19329 2.06683i −0.0430030 0.0744834i
\(771\) 14.8247 + 25.6772i 0.533900 + 0.924742i
\(772\) −6.52539 −0.234854
\(773\) −50.5886 −1.81955 −0.909773 0.415106i \(-0.863745\pi\)
−0.909773 + 0.415106i \(0.863745\pi\)
\(774\) 2.03403 0.0731118
\(775\) 0.393404 0.681396i 0.0141315 0.0244765i
\(776\) 2.08092 3.60426i 0.0747006 0.129385i
\(777\) 14.1402 0.507276
\(778\) 8.34766 14.4586i 0.299278 0.518365i
\(779\) −14.2909 24.7526i −0.512025 0.886853i
\(780\) −2.24421 −0.0803556
\(781\) 0.321351 0.0114989
\(782\) −3.08254 5.33911i −0.110231 0.190926i
\(783\) 2.60664 4.51483i 0.0931537 0.161347i
\(784\) 4.34121 0.155043
\(785\) 9.64822 16.7112i 0.344360 0.596448i
\(786\) −1.18727 + 2.05640i −0.0423483 + 0.0733495i
\(787\) −21.2319 −0.756836 −0.378418 0.925635i \(-0.623532\pi\)
−0.378418 + 0.925635i \(0.623532\pi\)
\(788\) −17.7001 −0.630541
\(789\) 30.1227 1.07240
\(790\) 8.91820 + 15.4468i 0.317295 + 0.549572i
\(791\) −3.34246 5.78931i −0.118844 0.205844i
\(792\) 0.271475 + 0.470208i 0.00964643 + 0.0167081i
\(793\) 3.32154 + 5.75308i 0.117952 + 0.204298i
\(794\) 29.1796 1.03555
\(795\) 3.87033 6.70361i 0.137267 0.237753i
\(796\) 3.51636 + 6.09051i 0.124634 + 0.215873i
\(797\) 17.4821 0.619246 0.309623 0.950859i \(-0.399797\pi\)
0.309623 + 0.950859i \(0.399797\pi\)
\(798\) −12.4293 + 21.5281i −0.439992 + 0.762088i
\(799\) −5.53920 + 9.59417i −0.195963 + 0.339417i
\(800\) −1.64819 2.85475i −0.0582724 0.100931i
\(801\) −4.47152 −0.157993
\(802\) 2.60047 + 4.50415i 0.0918259 + 0.159047i
\(803\) 0.897512 + 1.55454i 0.0316725 + 0.0548584i
\(804\) −3.32588 + 5.76059i −0.117295 + 0.203160i
\(805\) 17.3889 0.612880
\(806\) 0.205201 + 0.355418i 0.00722789 + 0.0125191i
\(807\) 1.56533 2.71123i 0.0551022 0.0954398i
\(808\) 3.97843 + 6.89084i 0.139961 + 0.242419i
\(809\) −2.37815 + 4.11908i −0.0836114 + 0.144819i −0.904799 0.425840i \(-0.859979\pi\)
0.821187 + 0.570659i \(0.193312\pi\)
\(810\) 1.30523 0.0458610
\(811\) −4.65010 8.05421i −0.163287 0.282822i 0.772759 0.634700i \(-0.218876\pi\)
−0.936046 + 0.351878i \(0.885543\pi\)
\(812\) 8.77831 15.2045i 0.308058 0.533572i
\(813\) −1.83828 + 3.18399i −0.0644713 + 0.111667i
\(814\) 1.13987 + 1.97431i 0.0399523 + 0.0691994i
\(815\) −3.50915 + 6.07803i −0.122920 + 0.212904i
\(816\) −0.779202 1.34962i −0.0272775 0.0472461i
\(817\) −7.50713 + 13.0027i −0.262641 + 0.454908i
\(818\) 11.8825 20.5811i 0.415461 0.719600i
\(819\) −2.89519 + 5.01462i −0.101166 + 0.175225i
\(820\) −2.52696 + 4.37683i −0.0882454 + 0.152846i
\(821\) 16.6969 + 28.9198i 0.582725 + 1.00931i 0.995155 + 0.0983202i \(0.0313469\pi\)
−0.412430 + 0.910989i \(0.635320\pi\)
\(822\) 7.69606 13.3300i 0.268431 0.464936i
\(823\) −18.2336 + 31.5816i −0.635585 + 1.10086i 0.350806 + 0.936448i \(0.385908\pi\)
−0.986391 + 0.164417i \(0.947426\pi\)
\(824\) −6.41415 −0.223447
\(825\) 0.894885 + 1.54999i 0.0311559 + 0.0539636i
\(826\) −2.37674 −0.0826973
\(827\) 6.47297 11.2115i 0.225087 0.389862i −0.731259 0.682100i \(-0.761067\pi\)
0.956346 + 0.292238i \(0.0944000\pi\)
\(828\) −3.95602 −0.137481
\(829\) 3.80114 6.58376i 0.132019 0.228664i −0.792436 0.609955i \(-0.791187\pi\)
0.924455 + 0.381292i \(0.124521\pi\)
\(830\) 7.30161 + 12.6468i 0.253443 + 0.438975i
\(831\) 7.13242 + 12.3537i 0.247421 + 0.428545i
\(832\) 1.71940 0.0596096
\(833\) 6.76536 0.234406
\(834\) 7.88789 13.6622i 0.273135 0.473084i
\(835\) −11.8212 + 20.4750i −0.409091 + 0.708567i
\(836\) −4.00779 −0.138612
\(837\) −0.119344 0.206710i −0.00412514 0.00714495i
\(838\) 7.60407 0.262678
\(839\) 10.0374 17.3853i 0.346530 0.600208i −0.639100 0.769123i \(-0.720693\pi\)
0.985631 + 0.168915i \(0.0540265\pi\)
\(840\) 4.39557 0.151662
\(841\) 0.910850 + 1.57764i 0.0314086 + 0.0544013i
\(842\) 11.9689 + 20.7308i 0.412476 + 0.714429i
\(843\) 10.4686 0.360558
\(844\) 2.51652 + 4.35875i 0.0866223 + 0.150034i
\(845\) −6.55461 + 11.3529i −0.225486 + 0.390552i
\(846\) 3.55440 + 6.15641i 0.122203 + 0.211662i
\(847\) 18.0258 + 31.2216i 0.619374 + 1.07279i
\(848\) −2.96526 + 5.13598i −0.101827 + 0.176370i
\(849\) −3.52281 6.10169i −0.120903 0.209410i
\(850\) −2.56855 4.44886i −0.0881006 0.152595i
\(851\) −16.6105 −0.569401
\(852\) −0.295931 + 0.512568i −0.0101384 + 0.0175603i
\(853\) −17.7958 30.8233i −0.609317 1.05537i −0.991353 0.131221i \(-0.958110\pi\)
0.382036 0.924147i \(-0.375223\pi\)
\(854\) −6.50566 11.2681i −0.222619 0.385588i
\(855\) −4.81728 + 8.34377i −0.164747 + 0.285351i
\(856\) −6.81559 + 11.8049i −0.232952 + 0.403485i
\(857\) 22.5785 39.1071i 0.771266 1.33587i −0.165603 0.986192i \(-0.552957\pi\)
0.936869 0.349680i \(-0.113710\pi\)
\(858\) −0.933549 −0.0318708
\(859\) 37.7268 1.28722 0.643611 0.765353i \(-0.277435\pi\)
0.643611 + 0.765353i \(0.277435\pi\)
\(860\) 2.65487 0.0905304
\(861\) 6.51993 + 11.2929i 0.222199 + 0.384860i
\(862\) 4.07084 0.138653
\(863\) −3.60265 + 6.23998i −0.122636 + 0.212411i −0.920806 0.390020i \(-0.872468\pi\)
0.798171 + 0.602432i \(0.205801\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −6.31029 −0.214556
\(866\) 12.5158 0.425306
\(867\) 7.28569 + 12.6192i 0.247435 + 0.428570i
\(868\) −0.401912 0.696132i −0.0136418 0.0236283i
\(869\) 3.70980 + 6.42556i 0.125846 + 0.217972i
\(870\) 3.40225 5.89288i 0.115347 0.199787i
\(871\) −5.71853 9.90478i −0.193765 0.335611i
\(872\) −0.665484 + 1.15265i −0.0225361 + 0.0390337i
\(873\) −2.08092 3.60426i −0.0704284 0.121986i
\(874\) 14.6007 25.2892i 0.493877 0.855419i
\(875\) 36.4674 1.23282
\(876\) −3.30606 −0.111702
\(877\) −8.86093 −0.299212 −0.149606 0.988746i \(-0.547801\pi\)
−0.149606 + 0.988746i \(0.547801\pi\)
\(878\) 16.8005 0.566990
\(879\) −0.391686 −0.0132112
\(880\) 0.354336 + 0.613727i 0.0119446 + 0.0206887i
\(881\) −13.8805 + 24.0417i −0.467645 + 0.809984i −0.999317 0.0369662i \(-0.988231\pi\)
0.531672 + 0.846950i \(0.321564\pi\)
\(882\) 2.17060 3.75960i 0.0730880 0.126592i
\(883\) −13.8866 + 24.0524i −0.467323 + 0.809427i −0.999303 0.0373301i \(-0.988115\pi\)
0.531980 + 0.846757i \(0.321448\pi\)
\(884\) 2.67953 0.0901222
\(885\) −0.921165 −0.0309646
\(886\) 2.36304 + 4.09291i 0.0793879 + 0.137504i
\(887\) 2.56904 4.44970i 0.0862598 0.149406i −0.819668 0.572840i \(-0.805842\pi\)
0.905927 + 0.423433i \(0.139175\pi\)
\(888\) −4.19880 −0.140902
\(889\) 20.5428 + 35.5811i 0.688982 + 1.19335i
\(890\) −5.83634 −0.195634
\(891\) 0.542949 0.0181895
\(892\) −2.19702 14.7707i −0.0735616 0.494559i
\(893\) −52.4738 −1.75597
\(894\) 4.07489 0.136285
\(895\) −2.77132 4.80007i −0.0926351 0.160449i
\(896\) −3.36767 −0.112506
\(897\) 3.40100 5.89070i 0.113556 0.196685i
\(898\) −6.15229 10.6561i −0.205305 0.355598i
\(899\) −1.24435 −0.0415014
\(900\) −3.29639 −0.109880
\(901\) −4.62107 + 8.00393i −0.153950 + 0.266650i
\(902\) −1.05117 + 1.82068i −0.0350001 + 0.0606220i
\(903\) 3.42498 5.93223i 0.113976 0.197412i
\(904\) 0.992514 + 1.71908i 0.0330105 + 0.0571759i
\(905\) −9.51397 −0.316255
\(906\) 11.0462 0.366986
\(907\) −5.59114 −0.185651 −0.0928254 0.995682i \(-0.529590\pi\)
−0.0928254 + 0.995682i \(0.529590\pi\)
\(908\) 0.167753 0.00556709
\(909\) 7.95685 0.263912
\(910\) −3.77888 + 6.54522i −0.125269 + 0.216972i
\(911\) −7.90330 13.6889i −0.261848 0.453534i 0.704885 0.709322i \(-0.250999\pi\)
−0.966733 + 0.255788i \(0.917665\pi\)
\(912\) 3.69076 6.39259i 0.122213 0.211680i
\(913\) 3.03733 + 5.26081i 0.100521 + 0.174107i
\(914\) 3.66778 6.35277i 0.121319 0.210131i
\(915\) −2.52143 4.36725i −0.0833560 0.144377i
\(916\) −1.13208 1.96081i −0.0374048 0.0647871i
\(917\) 3.99832 + 6.92529i 0.132036 + 0.228693i
\(918\) −1.55840 −0.0514350
\(919\) −38.5677 −1.27223 −0.636115 0.771594i \(-0.719460\pi\)
−0.636115 + 0.771594i \(0.719460\pi\)
\(920\) −5.16349 −0.170235
\(921\) −6.86335 + 11.8877i −0.226155 + 0.391712i
\(922\) −25.8860 −0.852509
\(923\) −0.508826 0.881312i −0.0167482 0.0290087i
\(924\) 1.82847 0.0601524
\(925\) −13.8409 −0.455084
\(926\) −28.0018 −0.920195
\(927\) −3.20707 + 5.55482i −0.105334 + 0.182444i
\(928\) −2.60664 + 4.51483i −0.0855672 + 0.148207i
\(929\) 1.12212 1.94356i 0.0368155 0.0637662i −0.847031 0.531544i \(-0.821612\pi\)
0.883846 + 0.467778i \(0.154945\pi\)
\(930\) −0.155771 0.269803i −0.00510793 0.00884720i
\(931\) 16.0224 + 27.7516i 0.525112 + 0.909521i
\(932\) 1.40286 2.42982i 0.0459521 0.0795914i
\(933\) 9.92601 0.324963
\(934\) −5.07482 8.78984i −0.166053 0.287612i
\(935\) 0.552198 + 0.956435i 0.0180588 + 0.0312788i
\(936\) 0.859702 1.48905i 0.0281002 0.0486711i
\(937\) −12.0307 20.8378i −0.393026 0.680741i 0.599821 0.800134i \(-0.295238\pi\)
−0.992847 + 0.119393i \(0.961905\pi\)
\(938\) 11.2005 + 19.3998i 0.365708 + 0.633425i
\(939\) −14.3231 + 24.8083i −0.467417 + 0.809589i
\(940\) 4.63930 + 8.03550i 0.151317 + 0.262089i
\(941\) 17.8762 0.582746 0.291373 0.956610i \(-0.405888\pi\)
0.291373 + 0.956610i \(0.405888\pi\)
\(942\) 7.39199 + 12.8033i 0.240844 + 0.417154i
\(943\) −7.65899 13.2658i −0.249411 0.431993i
\(944\) 0.705752 0.0229703
\(945\) 2.19779 3.80668i 0.0714940 0.123831i
\(946\) 1.10438 0.0359064
\(947\) −17.5511 30.3995i −0.570336 0.987850i −0.996531 0.0832192i \(-0.973480\pi\)
0.426196 0.904631i \(-0.359854\pi\)
\(948\) −13.6654 −0.443831
\(949\) 2.84223 4.92289i 0.0922627 0.159804i
\(950\) 12.1662 21.0724i 0.394723 0.683680i
\(951\) −7.03836 −0.228235
\(952\) −5.24819 −0.170095
\(953\) −4.74893 8.22538i −0.153833 0.266446i 0.778801 0.627272i \(-0.215828\pi\)
−0.932633 + 0.360825i \(0.882495\pi\)
\(954\) 2.96526 + 5.13598i 0.0960038 + 0.166283i
\(955\) 8.41418 14.5738i 0.272276 0.471597i
\(956\) 16.7388 0.541372
\(957\) 1.41527 2.45132i 0.0457493 0.0792401i
\(958\) −21.2551 −0.686720
\(959\) −25.9178 44.8909i −0.836929 1.44960i
\(960\) −1.30523 −0.0421260
\(961\) 15.4715 26.7974i 0.499081 0.864434i
\(962\) 3.60971 6.25221i 0.116382 0.201579i
\(963\) 6.81559 + 11.8049i 0.219629 + 0.380409i
\(964\) 0.0507932 0.0879765i 0.00163594 0.00283353i
\(965\) −4.25855 + 7.37603i −0.137088 + 0.237443i
\(966\) −6.66128 + 11.5377i −0.214323 + 0.371219i
\(967\) 13.7083 23.7434i 0.440829 0.763537i −0.556923 0.830564i \(-0.688018\pi\)
0.997751 + 0.0670269i \(0.0213513\pi\)
\(968\) −5.35260 9.27098i −0.172039 0.297981i
\(969\) 5.75170 9.96224i 0.184771 0.320033i
\(970\) −2.71607 4.70437i −0.0872077 0.151048i
\(971\) 3.62547 6.27951i 0.116347 0.201519i −0.801970 0.597364i \(-0.796215\pi\)
0.918317 + 0.395845i \(0.129548\pi\)
\(972\) −0.500000 + 0.866025i −0.0160375 + 0.0277778i
\(973\) −26.5638 46.0099i −0.851597 1.47501i
\(974\) 25.0729 0.803388
\(975\) 2.83391 4.90848i 0.0907578 0.157197i
\(976\) 1.93180 + 3.34597i 0.0618354 + 0.107102i
\(977\) −5.26830 + 9.12496i −0.168548 + 0.291933i −0.937909 0.346880i \(-0.887241\pi\)
0.769362 + 0.638813i \(0.220574\pi\)
\(978\) −2.68854 4.65669i −0.0859700 0.148904i
\(979\) −2.42781 −0.0775930
\(980\) 2.83313 4.90712i 0.0905010 0.156752i
\(981\) 0.665484 + 1.15265i 0.0212473 + 0.0368014i
\(982\) −19.3019 33.4318i −0.615947 1.06685i
\(983\) 33.8130 1.07847 0.539233 0.842156i \(-0.318714\pi\)
0.539233 + 0.842156i \(0.318714\pi\)
\(984\) −1.93604 3.35331i −0.0617186 0.106900i
\(985\) −11.5513 + 20.0075i −0.368056 + 0.637492i
\(986\) −4.06220 + 7.03594i −0.129367 + 0.224070i
\(987\) 23.9401 0.762022
\(988\) 6.34591 + 10.9914i 0.201890 + 0.349685i
\(989\) −4.02333 + 6.96861i −0.127935 + 0.221589i
\(990\) 0.708671 0.0225230
\(991\) 8.94486 + 15.4929i 0.284143 + 0.492150i 0.972401 0.233316i \(-0.0749577\pi\)
−0.688258 + 0.725466i \(0.741624\pi\)
\(992\) 0.119344 + 0.206710i 0.00378918 + 0.00656305i
\(993\) −12.8660 22.2846i −0.408290 0.707179i
\(994\) 0.996600 + 1.72616i 0.0316102 + 0.0547505i
\(995\) 9.17929 0.291003
\(996\) −11.1883 −0.354514
\(997\) 29.5477 0.935785 0.467893 0.883785i \(-0.345013\pi\)
0.467893 + 0.883785i \(0.345013\pi\)
\(998\) −13.7728 + 23.8552i −0.435971 + 0.755124i
\(999\) −2.09940 + 3.63626i −0.0664220 + 0.115046i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.e.h.1075.6 yes 14
223.39 even 3 inner 1338.2.e.h.931.6 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.e.h.931.6 14 223.39 even 3 inner
1338.2.e.h.1075.6 yes 14 1.1 even 1 trivial