Properties

Label 1338.2.e.f
Level $1338$
Weight $2$
Character orbit 1338.e
Analytic conductor $10.684$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1338,2,Mod(931,1338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1338.931"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.6839837904\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + (\beta_{3} + 1) q^{3} + q^{4} + \beta_{3} q^{5} + (\beta_{3} + 1) q^{6} + (2 \beta_{2} + 1) q^{7} + q^{8} + \beta_{3} q^{9} + \beta_{3} q^{10} + (5 \beta_{3} - \beta_{2} - \beta_1) q^{11}+ \cdots + ( - 5 \beta_{3} + \beta_1 - 5) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 2 q^{3} + 4 q^{4} - 2 q^{5} + 2 q^{6} + 4 q^{8} - 2 q^{9} - 2 q^{10} - 9 q^{11} + 2 q^{12} + 4 q^{13} - 4 q^{15} + 4 q^{16} - 18 q^{17} - 2 q^{18} + 7 q^{19} - 2 q^{20} - 9 q^{22} + 2 q^{24}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 2x^{2} + x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 1 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 2\nu^{2} - 2\nu - 1 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + \beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{2} - 1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1338\mathbb{Z}\right)^\times\).

\(n\) \(893\) \(895\)
\(\chi(n)\) \(1\) \(\beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
931.1
0.809017 1.40126i
−0.309017 + 0.535233i
0.809017 + 1.40126i
−0.309017 0.535233i
1.00000 0.500000 0.866025i 1.00000 −0.500000 0.866025i 0.500000 0.866025i −2.23607 1.00000 −0.500000 0.866025i −0.500000 0.866025i
931.2 1.00000 0.500000 0.866025i 1.00000 −0.500000 0.866025i 0.500000 0.866025i 2.23607 1.00000 −0.500000 0.866025i −0.500000 0.866025i
1075.1 1.00000 0.500000 + 0.866025i 1.00000 −0.500000 + 0.866025i 0.500000 + 0.866025i −2.23607 1.00000 −0.500000 + 0.866025i −0.500000 + 0.866025i
1075.2 1.00000 0.500000 + 0.866025i 1.00000 −0.500000 + 0.866025i 0.500000 + 0.866025i 2.23607 1.00000 −0.500000 + 0.866025i −0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
223.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1338.2.e.f 4
223.c even 3 1 inner 1338.2.e.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1338.2.e.f 4 1.a even 1 1 trivial
1338.2.e.f 4 223.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1338, [\chi])\):

\( T_{5}^{2} + T_{5} + 1 \) Copy content Toggle raw display
\( T_{7}^{2} - 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - 5)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 9 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$13$ \( (T^{2} - 2 T - 19)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 9 T + 9)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 7 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$23$ \( T^{4} + 5T^{2} + 25 \) Copy content Toggle raw display
$29$ \( T^{4} + T^{3} + \cdots + 3721 \) Copy content Toggle raw display
$31$ \( T^{4} - 10 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$37$ \( T^{4} + 125 T^{2} + 15625 \) Copy content Toggle raw display
$41$ \( (T^{2} + 11 T + 19)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 5 T^{3} + \cdots + 625 \) Copy content Toggle raw display
$47$ \( (T^{2} - 7 T + 49)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} - 7 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$59$ \( (T^{2} - 5 T - 145)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} - 14 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$67$ \( T^{4} + T^{3} + 2 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{4} - 3 T^{3} + \cdots + 841 \) Copy content Toggle raw display
$73$ \( T^{4} - 6 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$79$ \( T^{4} - 15 T^{3} + \cdots + 625 \) Copy content Toggle raw display
$83$ \( T^{4} - 6 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$89$ \( T^{4} - 19 T^{3} + \cdots + 7921 \) Copy content Toggle raw display
$97$ \( T^{4} - 11 T^{3} + \cdots + 5041 \) Copy content Toggle raw display
show more
show less