L(s) = 1 | + 2-s + (0.5 + 0.866i)3-s + 4-s + (−0.5 + 0.866i)5-s + (0.5 + 0.866i)6-s − 2.23·7-s + 8-s + (−0.499 + 0.866i)9-s + (−0.5 + 0.866i)10-s + (−1.69 + 2.92i)11-s + (0.5 + 0.866i)12-s + 5.47·13-s − 2.23·14-s − 0.999·15-s + 16-s − 1.14·17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (0.288 + 0.499i)3-s + 0.5·4-s + (−0.223 + 0.387i)5-s + (0.204 + 0.353i)6-s − 0.845·7-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.158 + 0.273i)10-s + (−0.509 + 0.883i)11-s + (0.144 + 0.249i)12-s + 1.51·13-s − 0.597·14-s − 0.258·15-s + 0.250·16-s − 0.277·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.282 - 0.959i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.282 - 0.959i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.224652388\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.224652388\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 223 | \( 1 + (11.5 - 9.52i)T \) |
good | 5 | \( 1 + (0.5 - 0.866i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 2.23T + 7T^{2} \) |
| 11 | \( 1 + (1.69 - 2.92i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 5.47T + 13T^{2} \) |
| 17 | \( 1 + 1.14T + 17T^{2} \) |
| 19 | \( 1 + (-1.19 - 2.06i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.11 + 1.93i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.16 - 7.21i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.38 - 2.39i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (5.59 - 9.68i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 8.85T + 41T^{2} \) |
| 43 | \( 1 + (1.54 + 2.67i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.5 + 6.06i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.04 - 1.81i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 14.7T + 59T^{2} \) |
| 61 | \( 1 + (-2.38 - 4.12i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.309 - 0.535i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2.04 + 3.54i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (0.736 - 1.27i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.54 + 11.3i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.85 + 8.40i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.19 - 7.25i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.78 + 13.4i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.18709651488908596688007316460, −9.007519091225434965254939547219, −8.313779234516428663038689954328, −7.14581017569050487615155681620, −6.61832487878401388514131451482, −5.57197384063155249128602662407, −4.73609100342162121471543736328, −3.53072746166489108217237558415, −3.26634853653577727539520073599, −1.80772605484671036595949622172,
0.68567420780539477397549194449, 2.24572059500548664970303545371, 3.36720697879973723830358758439, 3.95440559093252370063715521985, 5.30536312778315367400024053551, 6.09537003045511297673827332622, 6.69145304258922861698638320497, 7.78225763221678637116633293999, 8.468449116084071642718215811358, 9.223677021750097775092106973787