Properties

Label 1323.2.i.d.1097.24
Level $1323$
Weight $2$
Character 1323.1097
Analytic conductor $10.564$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1323,2,Mod(521,1323)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1323, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1323.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1097.24
Character \(\chi\) \(=\) 1323.1097
Dual form 1323.2.i.d.521.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.37274i q^{2} -3.62990 q^{4} +(1.71774 + 2.97522i) q^{5} -3.86732i q^{8} +(-7.05942 + 4.07576i) q^{10} +(0.271895 + 0.156979i) q^{11} +(-5.09882 - 2.94381i) q^{13} +1.91636 q^{16} +(0.476712 + 0.825689i) q^{17} +(1.09214 + 0.630546i) q^{19} +(-6.23523 - 10.7997i) q^{20} +(-0.372470 + 0.645137i) q^{22} +(-5.91336 + 3.41408i) q^{23} +(-3.40128 + 5.89118i) q^{25} +(6.98489 - 12.0982i) q^{26} +(-3.43518 + 1.98330i) q^{29} -5.23527i q^{31} -3.18763i q^{32} +(-1.95915 + 1.13111i) q^{34} +(-2.68802 + 4.65579i) q^{37} +(-1.49612 + 2.59136i) q^{38} +(11.5061 - 6.64306i) q^{40} +(-0.0699627 + 0.121179i) q^{41} +(1.44078 + 2.49550i) q^{43} +(-0.986951 - 0.569817i) q^{44} +(-8.10072 - 14.0309i) q^{46} -2.01390 q^{47} +(-13.9783 - 8.07035i) q^{50} +(18.5082 + 10.6857i) q^{52} +(-10.3749 + 5.98997i) q^{53} +1.07860i q^{55} +(-4.70586 - 8.15079i) q^{58} +1.64892 q^{59} +2.97247i q^{61} +12.4219 q^{62} +11.3961 q^{64} -20.2268i q^{65} -1.86812 q^{67} +(-1.73041 - 2.99717i) q^{68} +10.9981i q^{71} +(0.354655 - 0.204760i) q^{73} +(-11.0470 - 6.37798i) q^{74} +(-3.96435 - 2.28882i) q^{76} +10.4665 q^{79} +(3.29181 + 5.70158i) q^{80} +(-0.287526 - 0.166003i) q^{82} +(4.00094 + 6.92984i) q^{83} +(-1.63774 + 2.83664i) q^{85} +(-5.92117 + 3.41859i) q^{86} +(0.607087 - 1.05151i) q^{88} +(-1.05931 + 1.83478i) q^{89} +(21.4649 - 12.3927i) q^{92} -4.77847i q^{94} +4.33246i q^{95} +(10.5054 - 6.06531i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} - 24 q^{11} + 48 q^{16} - 48 q^{23} - 24 q^{25} + 96 q^{44} - 48 q^{50} + 48 q^{53} - 48 q^{64} - 168 q^{74} + 48 q^{79} - 24 q^{85} + 24 q^{86} + 144 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.37274i 1.67778i 0.544300 + 0.838890i \(0.316795\pi\)
−0.544300 + 0.838890i \(0.683205\pi\)
\(3\) 0 0
\(4\) −3.62990 −1.81495
\(5\) 1.71774 + 2.97522i 0.768198 + 1.33056i 0.938539 + 0.345172i \(0.112180\pi\)
−0.170342 + 0.985385i \(0.554487\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 3.86732i 1.36730i
\(9\) 0 0
\(10\) −7.05942 + 4.07576i −2.23238 + 1.28887i
\(11\) 0.271895 + 0.156979i 0.0819795 + 0.0473309i 0.540429 0.841389i \(-0.318262\pi\)
−0.458450 + 0.888720i \(0.651595\pi\)
\(12\) 0 0
\(13\) −5.09882 2.94381i −1.41416 0.816465i −0.418383 0.908271i \(-0.637403\pi\)
−0.995777 + 0.0918054i \(0.970736\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.91636 0.479089
\(17\) 0.476712 + 0.825689i 0.115620 + 0.200259i 0.918027 0.396517i \(-0.129781\pi\)
−0.802408 + 0.596776i \(0.796448\pi\)
\(18\) 0 0
\(19\) 1.09214 + 0.630546i 0.250553 + 0.144657i 0.620018 0.784588i \(-0.287125\pi\)
−0.369464 + 0.929245i \(0.620459\pi\)
\(20\) −6.23523 10.7997i −1.39424 2.41489i
\(21\) 0 0
\(22\) −0.372470 + 0.645137i −0.0794108 + 0.137544i
\(23\) −5.91336 + 3.41408i −1.23302 + 0.711884i −0.967658 0.252265i \(-0.918825\pi\)
−0.265362 + 0.964149i \(0.585491\pi\)
\(24\) 0 0
\(25\) −3.40128 + 5.89118i −0.680255 + 1.17824i
\(26\) 6.98489 12.0982i 1.36985 2.37265i
\(27\) 0 0
\(28\) 0 0
\(29\) −3.43518 + 1.98330i −0.637897 + 0.368290i −0.783804 0.621008i \(-0.786723\pi\)
0.145907 + 0.989298i \(0.453390\pi\)
\(30\) 0 0
\(31\) 5.23527i 0.940283i −0.882591 0.470141i \(-0.844203\pi\)
0.882591 0.470141i \(-0.155797\pi\)
\(32\) 3.18763i 0.563498i
\(33\) 0 0
\(34\) −1.95915 + 1.13111i −0.335991 + 0.193984i
\(35\) 0 0
\(36\) 0 0
\(37\) −2.68802 + 4.65579i −0.441908 + 0.765407i −0.997831 0.0658264i \(-0.979032\pi\)
0.555923 + 0.831234i \(0.312365\pi\)
\(38\) −1.49612 + 2.59136i −0.242703 + 0.420374i
\(39\) 0 0
\(40\) 11.5061 6.64306i 1.81928 1.05036i
\(41\) −0.0699627 + 0.121179i −0.0109263 + 0.0189250i −0.871437 0.490508i \(-0.836811\pi\)
0.860511 + 0.509433i \(0.170145\pi\)
\(42\) 0 0
\(43\) 1.44078 + 2.49550i 0.219716 + 0.380560i 0.954721 0.297502i \(-0.0961535\pi\)
−0.735005 + 0.678062i \(0.762820\pi\)
\(44\) −0.986951 0.569817i −0.148788 0.0859031i
\(45\) 0 0
\(46\) −8.10072 14.0309i −1.19439 2.06874i
\(47\) −2.01390 −0.293758 −0.146879 0.989154i \(-0.546923\pi\)
−0.146879 + 0.989154i \(0.546923\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −13.9783 8.07035i −1.97682 1.14132i
\(51\) 0 0
\(52\) 18.5082 + 10.6857i 2.56663 + 1.48184i
\(53\) −10.3749 + 5.98997i −1.42511 + 0.822786i −0.996729 0.0808132i \(-0.974248\pi\)
−0.428378 + 0.903599i \(0.640915\pi\)
\(54\) 0 0
\(55\) 1.07860i 0.145438i
\(56\) 0 0
\(57\) 0 0
\(58\) −4.70586 8.15079i −0.617910 1.07025i
\(59\) 1.64892 0.214671 0.107335 0.994223i \(-0.465768\pi\)
0.107335 + 0.994223i \(0.465768\pi\)
\(60\) 0 0
\(61\) 2.97247i 0.380585i 0.981727 + 0.190293i \(0.0609437\pi\)
−0.981727 + 0.190293i \(0.939056\pi\)
\(62\) 12.4219 1.57759
\(63\) 0 0
\(64\) 11.3961 1.42452
\(65\) 20.2268i 2.50883i
\(66\) 0 0
\(67\) −1.86812 −0.228227 −0.114113 0.993468i \(-0.536403\pi\)
−0.114113 + 0.993468i \(0.536403\pi\)
\(68\) −1.73041 2.99717i −0.209844 0.363460i
\(69\) 0 0
\(70\) 0 0
\(71\) 10.9981i 1.30524i 0.757686 + 0.652619i \(0.226330\pi\)
−0.757686 + 0.652619i \(0.773670\pi\)
\(72\) 0 0
\(73\) 0.354655 0.204760i 0.0415092 0.0239653i −0.479102 0.877759i \(-0.659038\pi\)
0.520611 + 0.853794i \(0.325704\pi\)
\(74\) −11.0470 6.37798i −1.28419 0.741425i
\(75\) 0 0
\(76\) −3.96435 2.28882i −0.454742 0.262545i
\(77\) 0 0
\(78\) 0 0
\(79\) 10.4665 1.17757 0.588787 0.808288i \(-0.299606\pi\)
0.588787 + 0.808288i \(0.299606\pi\)
\(80\) 3.29181 + 5.70158i 0.368035 + 0.637456i
\(81\) 0 0
\(82\) −0.287526 0.166003i −0.0317519 0.0183320i
\(83\) 4.00094 + 6.92984i 0.439161 + 0.760649i 0.997625 0.0688800i \(-0.0219426\pi\)
−0.558464 + 0.829529i \(0.688609\pi\)
\(84\) 0 0
\(85\) −1.63774 + 2.83664i −0.177637 + 0.307677i
\(86\) −5.92117 + 3.41859i −0.638496 + 0.368636i
\(87\) 0 0
\(88\) 0.607087 1.05151i 0.0647157 0.112091i
\(89\) −1.05931 + 1.83478i −0.112287 + 0.194487i −0.916692 0.399595i \(-0.869151\pi\)
0.804405 + 0.594081i \(0.202484\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 21.4649 12.3927i 2.23787 1.29203i
\(93\) 0 0
\(94\) 4.77847i 0.492862i
\(95\) 4.33246i 0.444501i
\(96\) 0 0
\(97\) 10.5054 6.06531i 1.06666 0.615839i 0.139396 0.990237i \(-0.455484\pi\)
0.927268 + 0.374398i \(0.122150\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 12.3463 21.3844i 1.23463 2.13844i
\(101\) 6.26039 10.8433i 0.622932 1.07895i −0.366005 0.930613i \(-0.619275\pi\)
0.988937 0.148337i \(-0.0473920\pi\)
\(102\) 0 0
\(103\) 15.6040 9.00897i 1.53751 0.887680i 0.538523 0.842611i \(-0.318983\pi\)
0.998984 0.0450689i \(-0.0143507\pi\)
\(104\) −11.3847 + 19.7188i −1.11636 + 1.93359i
\(105\) 0 0
\(106\) −14.2127 24.6170i −1.38046 2.39102i
\(107\) −3.11610 1.79908i −0.301245 0.173924i 0.341757 0.939788i \(-0.388978\pi\)
−0.643002 + 0.765864i \(0.722311\pi\)
\(108\) 0 0
\(109\) 3.28109 + 5.68302i 0.314271 + 0.544334i 0.979282 0.202499i \(-0.0649064\pi\)
−0.665011 + 0.746834i \(0.731573\pi\)
\(110\) −2.55923 −0.244013
\(111\) 0 0
\(112\) 0 0
\(113\) 1.87912 + 1.08491i 0.176773 + 0.102060i 0.585775 0.810473i \(-0.300790\pi\)
−0.409003 + 0.912533i \(0.634123\pi\)
\(114\) 0 0
\(115\) −20.3152 11.7290i −1.89441 1.09374i
\(116\) 12.4694 7.19918i 1.15775 0.668427i
\(117\) 0 0
\(118\) 3.91246i 0.360171i
\(119\) 0 0
\(120\) 0 0
\(121\) −5.45072 9.44092i −0.495520 0.858265i
\(122\) −7.05289 −0.638539
\(123\) 0 0
\(124\) 19.0035i 1.70656i
\(125\) −6.19265 −0.553887
\(126\) 0 0
\(127\) 2.34967 0.208499 0.104250 0.994551i \(-0.466756\pi\)
0.104250 + 0.994551i \(0.466756\pi\)
\(128\) 20.6648i 1.82653i
\(129\) 0 0
\(130\) 47.9930 4.20926
\(131\) −4.74594 8.22021i −0.414655 0.718203i 0.580737 0.814091i \(-0.302764\pi\)
−0.995392 + 0.0958879i \(0.969431\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 4.43256i 0.382915i
\(135\) 0 0
\(136\) 3.19320 1.84360i 0.273815 0.158087i
\(137\) 8.85456 + 5.11218i 0.756496 + 0.436763i 0.828036 0.560674i \(-0.189458\pi\)
−0.0715401 + 0.997438i \(0.522791\pi\)
\(138\) 0 0
\(139\) 4.56556 + 2.63593i 0.387246 + 0.223577i 0.680966 0.732315i \(-0.261560\pi\)
−0.293720 + 0.955891i \(0.594893\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −26.0957 −2.18990
\(143\) −0.924230 1.60081i −0.0772880 0.133867i
\(144\) 0 0
\(145\) −11.8015 6.81361i −0.980062 0.565839i
\(146\) 0.485842 + 0.841504i 0.0402086 + 0.0696433i
\(147\) 0 0
\(148\) 9.75724 16.9000i 0.802040 1.38917i
\(149\) 15.8151 9.13086i 1.29562 0.748029i 0.315979 0.948766i \(-0.397667\pi\)
0.979645 + 0.200737i \(0.0643338\pi\)
\(150\) 0 0
\(151\) −11.5551 + 20.0140i −0.940340 + 1.62872i −0.175517 + 0.984476i \(0.556160\pi\)
−0.764823 + 0.644240i \(0.777174\pi\)
\(152\) 2.43852 4.22365i 0.197790 0.342583i
\(153\) 0 0
\(154\) 0 0
\(155\) 15.5761 8.99285i 1.25110 0.722323i
\(156\) 0 0
\(157\) 6.52936i 0.521100i 0.965460 + 0.260550i \(0.0839038\pi\)
−0.965460 + 0.260550i \(0.916096\pi\)
\(158\) 24.8343i 1.97571i
\(159\) 0 0
\(160\) 9.48388 5.47552i 0.749767 0.432878i
\(161\) 0 0
\(162\) 0 0
\(163\) −12.2623 + 21.2389i −0.960457 + 1.66356i −0.239103 + 0.970994i \(0.576853\pi\)
−0.721354 + 0.692566i \(0.756480\pi\)
\(164\) 0.253957 0.439867i 0.0198307 0.0343478i
\(165\) 0 0
\(166\) −16.4427 + 9.49320i −1.27620 + 0.736815i
\(167\) −6.99871 + 12.1221i −0.541576 + 0.938037i 0.457238 + 0.889345i \(0.348839\pi\)
−0.998814 + 0.0486928i \(0.984494\pi\)
\(168\) 0 0
\(169\) 10.8320 + 18.7616i 0.833232 + 1.44320i
\(170\) −6.73061 3.88592i −0.516214 0.298037i
\(171\) 0 0
\(172\) −5.22987 9.05840i −0.398774 0.690697i
\(173\) −10.8995 −0.828672 −0.414336 0.910124i \(-0.635986\pi\)
−0.414336 + 0.910124i \(0.635986\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.521048 + 0.300827i 0.0392755 + 0.0226757i
\(177\) 0 0
\(178\) −4.35346 2.51347i −0.326306 0.188393i
\(179\) −1.38517 + 0.799726i −0.103532 + 0.0597743i −0.550872 0.834590i \(-0.685705\pi\)
0.447340 + 0.894364i \(0.352371\pi\)
\(180\) 0 0
\(181\) 17.5088i 1.30142i 0.759326 + 0.650710i \(0.225529\pi\)
−0.759326 + 0.650710i \(0.774471\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 13.2033 + 22.8688i 0.973363 + 1.68591i
\(185\) −18.4693 −1.35789
\(186\) 0 0
\(187\) 0.299334i 0.0218895i
\(188\) 7.31027 0.533156
\(189\) 0 0
\(190\) −10.2798 −0.745775
\(191\) 16.0628i 1.16226i 0.813811 + 0.581130i \(0.197389\pi\)
−0.813811 + 0.581130i \(0.802611\pi\)
\(192\) 0 0
\(193\) −10.8839 −0.783441 −0.391721 0.920084i \(-0.628120\pi\)
−0.391721 + 0.920084i \(0.628120\pi\)
\(194\) 14.3914 + 24.9267i 1.03324 + 1.78963i
\(195\) 0 0
\(196\) 0 0
\(197\) 6.50777i 0.463660i −0.972756 0.231830i \(-0.925529\pi\)
0.972756 0.231830i \(-0.0744712\pi\)
\(198\) 0 0
\(199\) −15.4217 + 8.90372i −1.09321 + 0.631168i −0.934431 0.356145i \(-0.884091\pi\)
−0.158784 + 0.987313i \(0.550757\pi\)
\(200\) 22.7831 + 13.1538i 1.61101 + 0.930116i
\(201\) 0 0
\(202\) 25.7284 + 14.8543i 1.81024 + 1.04514i
\(203\) 0 0
\(204\) 0 0
\(205\) −0.480711 −0.0335743
\(206\) 21.3759 + 37.0242i 1.48933 + 2.57960i
\(207\) 0 0
\(208\) −9.77117 5.64139i −0.677508 0.391160i
\(209\) 0.197965 + 0.342885i 0.0136935 + 0.0237178i
\(210\) 0 0
\(211\) −0.282402 + 0.489135i −0.0194414 + 0.0336735i −0.875582 0.483069i \(-0.839522\pi\)
0.856141 + 0.516742i \(0.172855\pi\)
\(212\) 37.6600 21.7430i 2.58650 1.49331i
\(213\) 0 0
\(214\) 4.26875 7.39370i 0.291806 0.505423i
\(215\) −4.94977 + 8.57325i −0.337571 + 0.584691i
\(216\) 0 0
\(217\) 0 0
\(218\) −13.4843 + 7.78518i −0.913273 + 0.527279i
\(219\) 0 0
\(220\) 3.91519i 0.263962i
\(221\) 5.61339i 0.377598i
\(222\) 0 0
\(223\) −7.61261 + 4.39514i −0.509778 + 0.294321i −0.732742 0.680506i \(-0.761760\pi\)
0.222964 + 0.974827i \(0.428427\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −2.57421 + 4.45866i −0.171234 + 0.296586i
\(227\) 8.45329 14.6415i 0.561065 0.971793i −0.436339 0.899782i \(-0.643725\pi\)
0.997404 0.0720104i \(-0.0229415\pi\)
\(228\) 0 0
\(229\) −16.9410 + 9.78088i −1.11949 + 0.646339i −0.941271 0.337652i \(-0.890367\pi\)
−0.178221 + 0.983991i \(0.557034\pi\)
\(230\) 27.8299 48.2028i 1.83505 3.17840i
\(231\) 0 0
\(232\) 7.67007 + 13.2849i 0.503565 + 0.872200i
\(233\) −17.0926 9.86840i −1.11977 0.646500i −0.178428 0.983953i \(-0.557101\pi\)
−0.941342 + 0.337453i \(0.890435\pi\)
\(234\) 0 0
\(235\) −3.45937 5.99180i −0.225664 0.390862i
\(236\) −5.98541 −0.389617
\(237\) 0 0
\(238\) 0 0
\(239\) 16.9761 + 9.80118i 1.09809 + 0.633985i 0.935720 0.352744i \(-0.114751\pi\)
0.162375 + 0.986729i \(0.448085\pi\)
\(240\) 0 0
\(241\) 13.8166 + 7.97702i 0.890006 + 0.513845i 0.873945 0.486026i \(-0.161554\pi\)
0.0160617 + 0.999871i \(0.494887\pi\)
\(242\) 22.4008 12.9331i 1.43998 0.831373i
\(243\) 0 0
\(244\) 10.7897i 0.690743i
\(245\) 0 0
\(246\) 0 0
\(247\) −3.71241 6.43008i −0.236215 0.409136i
\(248\) −20.2465 −1.28565
\(249\) 0 0
\(250\) 14.6935i 0.929301i
\(251\) −0.976065 −0.0616087 −0.0308044 0.999525i \(-0.509807\pi\)
−0.0308044 + 0.999525i \(0.509807\pi\)
\(252\) 0 0
\(253\) −2.14375 −0.134776
\(254\) 5.57515i 0.349816i
\(255\) 0 0
\(256\) −26.2399 −1.64000
\(257\) −6.11947 10.5992i −0.381722 0.661162i 0.609587 0.792720i \(-0.291335\pi\)
−0.991309 + 0.131558i \(0.958002\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 73.4212i 4.55339i
\(261\) 0 0
\(262\) 19.5044 11.2609i 1.20499 0.695700i
\(263\) −3.64436 2.10407i −0.224721 0.129743i 0.383413 0.923577i \(-0.374748\pi\)
−0.608134 + 0.793834i \(0.708082\pi\)
\(264\) 0 0
\(265\) −35.6429 20.5785i −2.18953 1.26413i
\(266\) 0 0
\(267\) 0 0
\(268\) 6.78107 0.414220
\(269\) −10.8299 18.7579i −0.660309 1.14369i −0.980534 0.196348i \(-0.937092\pi\)
0.320225 0.947341i \(-0.396241\pi\)
\(270\) 0 0
\(271\) 17.8987 + 10.3338i 1.08727 + 0.627736i 0.932849 0.360268i \(-0.117315\pi\)
0.154423 + 0.988005i \(0.450648\pi\)
\(272\) 0.913549 + 1.58231i 0.0553921 + 0.0959419i
\(273\) 0 0
\(274\) −12.1299 + 21.0096i −0.732793 + 1.26923i
\(275\) −1.84958 + 1.06786i −0.111534 + 0.0643942i
\(276\) 0 0
\(277\) 13.9448 24.1532i 0.837864 1.45122i −0.0538127 0.998551i \(-0.517137\pi\)
0.891677 0.452672i \(-0.149529\pi\)
\(278\) −6.25437 + 10.8329i −0.375112 + 0.649714i
\(279\) 0 0
\(280\) 0 0
\(281\) −16.7176 + 9.65190i −0.997287 + 0.575784i −0.907444 0.420172i \(-0.861970\pi\)
−0.0898425 + 0.995956i \(0.528636\pi\)
\(282\) 0 0
\(283\) 17.6326i 1.04815i 0.851672 + 0.524075i \(0.175589\pi\)
−0.851672 + 0.524075i \(0.824411\pi\)
\(284\) 39.9221i 2.36894i
\(285\) 0 0
\(286\) 3.79832 2.19296i 0.224599 0.129672i
\(287\) 0 0
\(288\) 0 0
\(289\) 8.04549 13.9352i 0.473264 0.819718i
\(290\) 16.1669 28.0019i 0.949354 1.64433i
\(291\) 0 0
\(292\) −1.28736 + 0.743258i −0.0753371 + 0.0434959i
\(293\) −14.1138 + 24.4458i −0.824536 + 1.42814i 0.0777369 + 0.996974i \(0.475231\pi\)
−0.902273 + 0.431165i \(0.858103\pi\)
\(294\) 0 0
\(295\) 2.83242 + 4.90589i 0.164910 + 0.285632i
\(296\) 18.0054 + 10.3954i 1.04655 + 0.604223i
\(297\) 0 0
\(298\) 21.6651 + 37.5251i 1.25503 + 2.17377i
\(299\) 40.2015 2.32492
\(300\) 0 0
\(301\) 0 0
\(302\) −47.4880 27.4172i −2.73263 1.57768i
\(303\) 0 0
\(304\) 2.09292 + 1.20835i 0.120037 + 0.0693036i
\(305\) −8.84374 + 5.10593i −0.506391 + 0.292365i
\(306\) 0 0
\(307\) 8.56651i 0.488917i 0.969660 + 0.244458i \(0.0786102\pi\)
−0.969660 + 0.244458i \(0.921390\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 21.3377 + 36.9580i 1.21190 + 2.09907i
\(311\) 19.3583 1.09771 0.548854 0.835918i \(-0.315064\pi\)
0.548854 + 0.835918i \(0.315064\pi\)
\(312\) 0 0
\(313\) 26.5012i 1.49793i −0.662608 0.748967i \(-0.730550\pi\)
0.662608 0.748967i \(-0.269450\pi\)
\(314\) −15.4925 −0.874291
\(315\) 0 0
\(316\) −37.9923 −2.13724
\(317\) 8.66555i 0.486706i 0.969938 + 0.243353i \(0.0782473\pi\)
−0.969938 + 0.243353i \(0.921753\pi\)
\(318\) 0 0
\(319\) −1.24535 −0.0697260
\(320\) 19.5756 + 33.9059i 1.09431 + 1.89540i
\(321\) 0 0
\(322\) 0 0
\(323\) 1.20235i 0.0669008i
\(324\) 0 0
\(325\) 34.6850 20.0254i 1.92398 1.11081i
\(326\) −50.3944 29.0952i −2.79109 1.61144i
\(327\) 0 0
\(328\) 0.468638 + 0.270568i 0.0258762 + 0.0149396i
\(329\) 0 0
\(330\) 0 0
\(331\) 19.3382 1.06293 0.531463 0.847081i \(-0.321642\pi\)
0.531463 + 0.847081i \(0.321642\pi\)
\(332\) −14.5230 25.1546i −0.797054 1.38054i
\(333\) 0 0
\(334\) −28.7626 16.6061i −1.57382 0.908646i
\(335\) −3.20894 5.55805i −0.175323 0.303669i
\(336\) 0 0
\(337\) −12.4451 + 21.5556i −0.677930 + 1.17421i 0.297673 + 0.954668i \(0.403790\pi\)
−0.975603 + 0.219542i \(0.929544\pi\)
\(338\) −44.5164 + 25.7015i −2.42137 + 1.39798i
\(339\) 0 0
\(340\) 5.94481 10.2967i 0.322403 0.558418i
\(341\) 0.821826 1.42345i 0.0445044 0.0770839i
\(342\) 0 0
\(343\) 0 0
\(344\) 9.65090 5.57195i 0.520341 0.300419i
\(345\) 0 0
\(346\) 25.8616i 1.39033i
\(347\) 5.79346i 0.311009i 0.987835 + 0.155505i \(0.0497003\pi\)
−0.987835 + 0.155505i \(0.950300\pi\)
\(348\) 0 0
\(349\) −13.3430 + 7.70360i −0.714236 + 0.412364i −0.812627 0.582784i \(-0.801963\pi\)
0.0983918 + 0.995148i \(0.468630\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.500390 0.866700i 0.0266709 0.0461953i
\(353\) −8.87263 + 15.3679i −0.472243 + 0.817948i −0.999496 0.0317602i \(-0.989889\pi\)
0.527253 + 0.849708i \(0.323222\pi\)
\(354\) 0 0
\(355\) −32.7218 + 18.8920i −1.73669 + 1.00268i
\(356\) 3.84519 6.66007i 0.203795 0.352983i
\(357\) 0 0
\(358\) −1.89754 3.28664i −0.100288 0.173704i
\(359\) 19.8490 + 11.4599i 1.04759 + 0.604828i 0.921974 0.387251i \(-0.126575\pi\)
0.125618 + 0.992079i \(0.459909\pi\)
\(360\) 0 0
\(361\) −8.70482 15.0772i −0.458149 0.793537i
\(362\) −41.5439 −2.18350
\(363\) 0 0
\(364\) 0 0
\(365\) 1.21841 + 0.703450i 0.0637745 + 0.0368203i
\(366\) 0 0
\(367\) −4.33253 2.50139i −0.226156 0.130571i 0.382641 0.923897i \(-0.375014\pi\)
−0.608797 + 0.793326i \(0.708348\pi\)
\(368\) −11.3321 + 6.54259i −0.590726 + 0.341056i
\(369\) 0 0
\(370\) 43.8229i 2.27824i
\(371\) 0 0
\(372\) 0 0
\(373\) −4.76280 8.24941i −0.246608 0.427138i 0.715974 0.698127i \(-0.245983\pi\)
−0.962583 + 0.270988i \(0.912649\pi\)
\(374\) −0.710243 −0.0367258
\(375\) 0 0
\(376\) 7.78842i 0.401657i
\(377\) 23.3538 1.20278
\(378\) 0 0
\(379\) −13.8369 −0.710756 −0.355378 0.934723i \(-0.615648\pi\)
−0.355378 + 0.934723i \(0.615648\pi\)
\(380\) 15.7264i 0.806746i
\(381\) 0 0
\(382\) −38.1127 −1.95002
\(383\) −10.6160 18.3874i −0.542452 0.939554i −0.998763 0.0497336i \(-0.984163\pi\)
0.456311 0.889821i \(-0.349171\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 25.8247i 1.31444i
\(387\) 0 0
\(388\) −38.1336 + 22.0165i −1.93594 + 1.11772i
\(389\) −3.91419 2.25986i −0.198457 0.114579i 0.397478 0.917612i \(-0.369885\pi\)
−0.595936 + 0.803032i \(0.703219\pi\)
\(390\) 0 0
\(391\) −5.63793 3.25506i −0.285122 0.164616i
\(392\) 0 0
\(393\) 0 0
\(394\) 15.4413 0.777919
\(395\) 17.9788 + 31.1401i 0.904610 + 1.56683i
\(396\) 0 0
\(397\) 13.5830 + 7.84214i 0.681710 + 0.393586i 0.800499 0.599334i \(-0.204568\pi\)
−0.118789 + 0.992920i \(0.537901\pi\)
\(398\) −21.1262 36.5917i −1.05896 1.83417i
\(399\) 0 0
\(400\) −6.51806 + 11.2896i −0.325903 + 0.564480i
\(401\) 9.34292 5.39414i 0.466563 0.269370i −0.248237 0.968699i \(-0.579851\pi\)
0.714800 + 0.699329i \(0.246518\pi\)
\(402\) 0 0
\(403\) −15.4116 + 26.6937i −0.767708 + 1.32971i
\(404\) −22.7246 + 39.3601i −1.13059 + 1.95824i
\(405\) 0 0
\(406\) 0 0
\(407\) −1.46172 + 0.843925i −0.0724548 + 0.0418318i
\(408\) 0 0
\(409\) 19.6138i 0.969839i 0.874559 + 0.484920i \(0.161151\pi\)
−0.874559 + 0.484920i \(0.838849\pi\)
\(410\) 1.14060i 0.0563304i
\(411\) 0 0
\(412\) −56.6409 + 32.7016i −2.79050 + 1.61109i
\(413\) 0 0
\(414\) 0 0
\(415\) −13.7452 + 23.8074i −0.674724 + 1.16866i
\(416\) −9.38376 + 16.2532i −0.460077 + 0.796876i
\(417\) 0 0
\(418\) −0.813576 + 0.469718i −0.0397933 + 0.0229747i
\(419\) 8.83829 15.3084i 0.431779 0.747862i −0.565248 0.824921i \(-0.691220\pi\)
0.997027 + 0.0770586i \(0.0245528\pi\)
\(420\) 0 0
\(421\) −16.9507 29.3594i −0.826124 1.43089i −0.901057 0.433701i \(-0.857208\pi\)
0.0749327 0.997189i \(-0.476126\pi\)
\(422\) −1.16059 0.670068i −0.0564967 0.0326184i
\(423\) 0 0
\(424\) 23.1652 + 40.1232i 1.12500 + 1.94856i
\(425\) −6.48571 −0.314603
\(426\) 0 0
\(427\) 0 0
\(428\) 11.3111 + 6.53048i 0.546744 + 0.315663i
\(429\) 0 0
\(430\) −20.3421 11.7445i −0.980983 0.566371i
\(431\) 12.2317 7.06195i 0.589178 0.340162i −0.175594 0.984463i \(-0.556185\pi\)
0.764772 + 0.644300i \(0.222851\pi\)
\(432\) 0 0
\(433\) 9.10088i 0.437360i −0.975797 0.218680i \(-0.929825\pi\)
0.975797 0.218680i \(-0.0701752\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −11.9100 20.6288i −0.570387 0.987938i
\(437\) −8.61093 −0.411917
\(438\) 0 0
\(439\) 11.7225i 0.559486i −0.960075 0.279743i \(-0.909751\pi\)
0.960075 0.279743i \(-0.0902492\pi\)
\(440\) 4.17128 0.198858
\(441\) 0 0
\(442\) 13.3191 0.633526
\(443\) 7.13370i 0.338932i 0.985536 + 0.169466i \(0.0542043\pi\)
−0.985536 + 0.169466i \(0.945796\pi\)
\(444\) 0 0
\(445\) −7.27850 −0.345034
\(446\) −10.4285 18.0628i −0.493805 0.855296i
\(447\) 0 0
\(448\) 0 0
\(449\) 3.17445i 0.149811i 0.997191 + 0.0749057i \(0.0238656\pi\)
−0.997191 + 0.0749057i \(0.976134\pi\)
\(450\) 0 0
\(451\) −0.0380450 + 0.0219653i −0.00179147 + 0.00103431i
\(452\) −6.82100 3.93811i −0.320833 0.185233i
\(453\) 0 0
\(454\) 34.7406 + 20.0575i 1.63045 + 0.941344i
\(455\) 0 0
\(456\) 0 0
\(457\) 24.1490 1.12964 0.564821 0.825213i \(-0.308945\pi\)
0.564821 + 0.825213i \(0.308945\pi\)
\(458\) −23.2075 40.1966i −1.08442 1.87826i
\(459\) 0 0
\(460\) 73.7422 + 42.5751i 3.43825 + 1.98507i
\(461\) −6.87281 11.9041i −0.320099 0.554427i 0.660409 0.750906i \(-0.270383\pi\)
−0.980508 + 0.196478i \(0.937049\pi\)
\(462\) 0 0
\(463\) 10.3157 17.8673i 0.479411 0.830364i −0.520310 0.853977i \(-0.674184\pi\)
0.999721 + 0.0236135i \(0.00751711\pi\)
\(464\) −6.58303 + 3.80071i −0.305610 + 0.176444i
\(465\) 0 0
\(466\) 23.4151 40.5562i 1.08469 1.87873i
\(467\) −0.465894 + 0.806952i −0.0215590 + 0.0373413i −0.876604 0.481213i \(-0.840196\pi\)
0.855045 + 0.518554i \(0.173530\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 14.2170 8.20819i 0.655781 0.378615i
\(471\) 0 0
\(472\) 6.37690i 0.293521i
\(473\) 0.904685i 0.0415975i
\(474\) 0 0
\(475\) −7.42932 + 4.28932i −0.340881 + 0.196808i
\(476\) 0 0
\(477\) 0 0
\(478\) −23.2556 + 40.2800i −1.06369 + 1.84236i
\(479\) −16.2031 + 28.0647i −0.740340 + 1.28231i 0.212000 + 0.977270i \(0.432002\pi\)
−0.952340 + 0.305037i \(0.901331\pi\)
\(480\) 0 0
\(481\) 27.4115 15.8260i 1.24986 0.721605i
\(482\) −18.9274 + 32.7832i −0.862120 + 1.49324i
\(483\) 0 0
\(484\) 19.7855 + 34.2695i 0.899342 + 1.55771i
\(485\) 36.0912 + 20.8373i 1.63882 + 0.946172i
\(486\) 0 0
\(487\) 17.1867 + 29.7682i 0.778802 + 1.34892i 0.932633 + 0.360828i \(0.117506\pi\)
−0.153830 + 0.988097i \(0.549161\pi\)
\(488\) 11.4955 0.520376
\(489\) 0 0
\(490\) 0 0
\(491\) 7.31048 + 4.22071i 0.329917 + 0.190478i 0.655804 0.754931i \(-0.272330\pi\)
−0.325887 + 0.945409i \(0.605663\pi\)
\(492\) 0 0
\(493\) −3.27518 1.89093i −0.147507 0.0851631i
\(494\) 15.2569 8.80859i 0.686441 0.396317i
\(495\) 0 0
\(496\) 10.0326i 0.450479i
\(497\) 0 0
\(498\) 0 0
\(499\) 5.70400 + 9.87961i 0.255346 + 0.442272i 0.964989 0.262289i \(-0.0844773\pi\)
−0.709643 + 0.704561i \(0.751144\pi\)
\(500\) 22.4787 1.00528
\(501\) 0 0
\(502\) 2.31595i 0.103366i
\(503\) 32.8028 1.46261 0.731303 0.682053i \(-0.238913\pi\)
0.731303 + 0.682053i \(0.238913\pi\)
\(504\) 0 0
\(505\) 43.0149 1.91414
\(506\) 5.08656i 0.226125i
\(507\) 0 0
\(508\) −8.52905 −0.378415
\(509\) 9.75828 + 16.9018i 0.432528 + 0.749160i 0.997090 0.0762300i \(-0.0242883\pi\)
−0.564562 + 0.825390i \(0.690955\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 20.9310i 0.925027i
\(513\) 0 0
\(514\) 25.1492 14.5199i 1.10928 0.640446i
\(515\) 53.6073 + 30.9502i 2.36222 + 1.36383i
\(516\) 0 0
\(517\) −0.547571 0.316140i −0.0240821 0.0139038i
\(518\) 0 0
\(519\) 0 0
\(520\) −78.2236 −3.43033
\(521\) 9.93108 + 17.2011i 0.435088 + 0.753595i 0.997303 0.0733964i \(-0.0233838\pi\)
−0.562215 + 0.826991i \(0.690050\pi\)
\(522\) 0 0
\(523\) 6.71478 + 3.87678i 0.293617 + 0.169520i 0.639572 0.768731i \(-0.279112\pi\)
−0.345955 + 0.938251i \(0.612445\pi\)
\(524\) 17.2273 + 29.8385i 0.752577 + 1.30350i
\(525\) 0 0
\(526\) 4.99242 8.64713i 0.217680 0.377033i
\(527\) 4.32271 2.49572i 0.188300 0.108715i
\(528\) 0 0
\(529\) 11.8118 20.4587i 0.513559 0.889509i
\(530\) 48.8274 84.5715i 2.12092 3.67355i
\(531\) 0 0
\(532\) 0 0
\(533\) 0.713455 0.411913i 0.0309032 0.0178419i
\(534\) 0 0
\(535\) 12.3614i 0.534432i
\(536\) 7.22461i 0.312056i
\(537\) 0 0
\(538\) 44.5076 25.6965i 1.91886 1.10785i
\(539\) 0 0
\(540\) 0 0
\(541\) 9.04616 15.6684i 0.388925 0.673638i −0.603380 0.797454i \(-0.706180\pi\)
0.992305 + 0.123816i \(0.0395133\pi\)
\(542\) −24.5195 + 42.4691i −1.05320 + 1.82420i
\(543\) 0 0
\(544\) 2.63199 1.51958i 0.112846 0.0651514i
\(545\) −11.2721 + 19.5239i −0.482845 + 0.836313i
\(546\) 0 0
\(547\) 3.46839 + 6.00743i 0.148298 + 0.256859i 0.930598 0.366042i \(-0.119287\pi\)
−0.782301 + 0.622901i \(0.785954\pi\)
\(548\) −32.1411 18.5567i −1.37300 0.792703i
\(549\) 0 0
\(550\) −2.53375 4.38858i −0.108039 0.187130i
\(551\) −5.00225 −0.213103
\(552\) 0 0
\(553\) 0 0
\(554\) 57.3092 + 33.0875i 2.43483 + 1.40575i
\(555\) 0 0
\(556\) −16.5725 9.56815i −0.702831 0.405780i
\(557\) −13.6993 + 7.90931i −0.580459 + 0.335128i −0.761316 0.648381i \(-0.775446\pi\)
0.180857 + 0.983509i \(0.442113\pi\)
\(558\) 0 0
\(559\) 16.9655i 0.717563i
\(560\) 0 0
\(561\) 0 0
\(562\) −22.9014 39.6665i −0.966039 1.67323i
\(563\) −32.1123 −1.35337 −0.676686 0.736272i \(-0.736584\pi\)
−0.676686 + 0.736272i \(0.736584\pi\)
\(564\) 0 0
\(565\) 7.45438i 0.313608i
\(566\) −41.8376 −1.75857
\(567\) 0 0
\(568\) 42.5333 1.78466
\(569\) 36.1545i 1.51567i −0.652444 0.757837i \(-0.726256\pi\)
0.652444 0.757837i \(-0.273744\pi\)
\(570\) 0 0
\(571\) 28.3583 1.18676 0.593380 0.804923i \(-0.297793\pi\)
0.593380 + 0.804923i \(0.297793\pi\)
\(572\) 3.35486 + 5.81079i 0.140274 + 0.242961i
\(573\) 0 0
\(574\) 0 0
\(575\) 46.4489i 1.93705i
\(576\) 0 0
\(577\) 36.3589 20.9918i 1.51364 0.873901i 0.513768 0.857929i \(-0.328249\pi\)
0.999872 0.0159713i \(-0.00508404\pi\)
\(578\) 33.0646 + 19.0899i 1.37531 + 0.794034i
\(579\) 0 0
\(580\) 42.8383 + 24.7327i 1.77876 + 1.02697i
\(581\) 0 0
\(582\) 0 0
\(583\) −3.76119 −0.155773
\(584\) −0.791873 1.37156i −0.0327679 0.0567557i
\(585\) 0 0
\(586\) −58.0035 33.4884i −2.39610 1.38339i
\(587\) −9.79227 16.9607i −0.404170 0.700043i 0.590054 0.807364i \(-0.299106\pi\)
−0.994225 + 0.107320i \(0.965773\pi\)
\(588\) 0 0
\(589\) 3.30108 5.71764i 0.136019 0.235591i
\(590\) −11.6404 + 6.72059i −0.479228 + 0.276682i
\(591\) 0 0
\(592\) −5.15121 + 8.92216i −0.211713 + 0.366698i
\(593\) 9.96374 17.2577i 0.409162 0.708689i −0.585634 0.810575i \(-0.699154\pi\)
0.994796 + 0.101886i \(0.0324878\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −57.4072 + 33.1441i −2.35149 + 1.35763i
\(597\) 0 0
\(598\) 95.3878i 3.90070i
\(599\) 0.0309043i 0.00126271i 1.00000 0.000631357i \(0.000200967\pi\)
−1.00000 0.000631357i \(0.999799\pi\)
\(600\) 0 0
\(601\) 25.8633 14.9322i 1.05499 0.609097i 0.130945 0.991390i \(-0.458199\pi\)
0.924041 + 0.382293i \(0.124865\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 41.9438 72.6488i 1.70667 2.95604i
\(605\) 18.7258 32.4341i 0.761314 1.31863i
\(606\) 0 0
\(607\) −27.1898 + 15.6980i −1.10360 + 0.637163i −0.937164 0.348889i \(-0.886559\pi\)
−0.166435 + 0.986052i \(0.553226\pi\)
\(608\) 2.00994 3.48133i 0.0815140 0.141186i
\(609\) 0 0
\(610\) −12.1151 20.9839i −0.490524 0.849613i
\(611\) 10.2685 + 5.92855i 0.415421 + 0.239843i
\(612\) 0 0
\(613\) 2.23146 + 3.86500i 0.0901278 + 0.156106i 0.907565 0.419912i \(-0.137939\pi\)
−0.817437 + 0.576018i \(0.804606\pi\)
\(614\) −20.3261 −0.820295
\(615\) 0 0
\(616\) 0 0
\(617\) −26.9685 15.5703i −1.08571 0.626835i −0.153279 0.988183i \(-0.548983\pi\)
−0.932431 + 0.361348i \(0.882317\pi\)
\(618\) 0 0
\(619\) −1.13493 0.655252i −0.0456167 0.0263368i 0.477018 0.878893i \(-0.341718\pi\)
−0.522635 + 0.852557i \(0.675051\pi\)
\(620\) −56.5395 + 32.6431i −2.27068 + 1.31098i
\(621\) 0 0
\(622\) 45.9322i 1.84171i
\(623\) 0 0
\(624\) 0 0
\(625\) 6.36901 + 11.0315i 0.254761 + 0.441258i
\(626\) 62.8803 2.51320
\(627\) 0 0
\(628\) 23.7009i 0.945769i
\(629\) −5.12565 −0.204373
\(630\) 0 0
\(631\) −28.8892 −1.15006 −0.575030 0.818132i \(-0.695010\pi\)
−0.575030 + 0.818132i \(0.695010\pi\)
\(632\) 40.4773i 1.61010i
\(633\) 0 0
\(634\) −20.5611 −0.816585
\(635\) 4.03612 + 6.99077i 0.160169 + 0.277420i
\(636\) 0 0
\(637\) 0 0
\(638\) 2.95488i 0.116985i
\(639\) 0 0
\(640\) −61.4822 + 35.4968i −2.43030 + 1.40313i
\(641\) 2.41325 + 1.39329i 0.0953176 + 0.0550316i 0.546901 0.837197i \(-0.315807\pi\)
−0.451584 + 0.892229i \(0.649141\pi\)
\(642\) 0 0
\(643\) −0.324584 0.187399i −0.0128004 0.00739029i 0.493586 0.869697i \(-0.335686\pi\)
−0.506387 + 0.862307i \(0.669019\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.85287 −0.112245
\(647\) 25.1608 + 43.5798i 0.989172 + 1.71330i 0.621682 + 0.783270i \(0.286450\pi\)
0.367490 + 0.930027i \(0.380217\pi\)
\(648\) 0 0
\(649\) 0.448333 + 0.258845i 0.0175986 + 0.0101606i
\(650\) 47.5151 + 82.2986i 1.86370 + 3.22802i
\(651\) 0 0
\(652\) 44.5109 77.0951i 1.74318 3.01928i
\(653\) −25.0515 + 14.4635i −0.980342 + 0.566000i −0.902373 0.430955i \(-0.858177\pi\)
−0.0779684 + 0.996956i \(0.524843\pi\)
\(654\) 0 0
\(655\) 16.3046 28.2404i 0.637074 1.10344i
\(656\) −0.134073 + 0.232222i −0.00523469 + 0.00906674i
\(657\) 0 0
\(658\) 0 0
\(659\) 22.8449 13.1895i 0.889910 0.513790i 0.0159971 0.999872i \(-0.494908\pi\)
0.873913 + 0.486082i \(0.161574\pi\)
\(660\) 0 0
\(661\) 11.6086i 0.451521i −0.974183 0.225760i \(-0.927513\pi\)
0.974183 0.225760i \(-0.0724866\pi\)
\(662\) 45.8846i 1.78336i
\(663\) 0 0
\(664\) 26.7999 15.4729i 1.04004 0.600466i
\(665\) 0 0
\(666\) 0 0
\(667\) 13.5423 23.4559i 0.524360 0.908218i
\(668\) 25.4046 44.0020i 0.982933 1.70249i
\(669\) 0 0
\(670\) 13.1878 7.61399i 0.509490 0.294154i
\(671\) −0.466614 + 0.808199i −0.0180134 + 0.0312002i
\(672\) 0 0
\(673\) −13.7692 23.8490i −0.530764 0.919310i −0.999356 0.0358949i \(-0.988572\pi\)
0.468592 0.883415i \(-0.344761\pi\)
\(674\) −51.1459 29.5291i −1.97007 1.13742i
\(675\) 0 0
\(676\) −39.3191 68.1026i −1.51227 2.61933i
\(677\) 4.63127 0.177994 0.0889970 0.996032i \(-0.471634\pi\)
0.0889970 + 0.996032i \(0.471634\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 10.9702 + 6.33365i 0.420688 + 0.242884i
\(681\) 0 0
\(682\) 3.37747 + 1.94998i 0.129330 + 0.0746686i
\(683\) −12.0197 + 6.93959i −0.459922 + 0.265536i −0.712012 0.702168i \(-0.752216\pi\)
0.252089 + 0.967704i \(0.418882\pi\)
\(684\) 0 0
\(685\) 35.1257i 1.34208i
\(686\) 0 0
\(687\) 0 0
\(688\) 2.76104 + 4.78227i 0.105264 + 0.182322i
\(689\) 70.5333 2.68711
\(690\) 0 0
\(691\) 22.6515i 0.861704i −0.902423 0.430852i \(-0.858213\pi\)
0.902423 0.430852i \(-0.141787\pi\)
\(692\) 39.5640 1.50400
\(693\) 0 0
\(694\) −13.7464 −0.521805
\(695\) 18.1114i 0.687004i
\(696\) 0 0
\(697\) −0.133408 −0.00505319
\(698\) −18.2786 31.6595i −0.691856 1.19833i
\(699\) 0 0
\(700\) 0 0
\(701\) 16.3485i 0.617474i −0.951147 0.308737i \(-0.900094\pi\)
0.951147 0.308737i \(-0.0999063\pi\)
\(702\) 0 0
\(703\) −5.87138 + 3.38984i −0.221443 + 0.127850i
\(704\) 3.09855 + 1.78895i 0.116781 + 0.0674236i
\(705\) 0 0
\(706\) −36.4639 21.0525i −1.37234 0.792320i
\(707\) 0 0
\(708\) 0 0
\(709\) 15.3071 0.574871 0.287435 0.957800i \(-0.407197\pi\)
0.287435 + 0.957800i \(0.407197\pi\)
\(710\) −44.8257 77.6404i −1.68228 2.91379i
\(711\) 0 0
\(712\) 7.09569 + 4.09670i 0.265922 + 0.153530i
\(713\) 17.8736 + 30.9580i 0.669372 + 1.15939i
\(714\) 0 0
\(715\) 3.17518 5.49957i 0.118745 0.205672i
\(716\) 5.02801 2.90292i 0.187906 0.108487i
\(717\) 0 0
\(718\) −27.1913 + 47.0966i −1.01477 + 1.75763i
\(719\) −7.46359 + 12.9273i −0.278345 + 0.482108i −0.970974 0.239187i \(-0.923119\pi\)
0.692629 + 0.721294i \(0.256453\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 35.7743 20.6543i 1.33138 0.768673i
\(723\) 0 0
\(724\) 63.5552i 2.36201i
\(725\) 26.9830i 1.00213i
\(726\) 0 0
\(727\) −4.62968 + 2.67295i −0.171705 + 0.0991341i −0.583390 0.812192i \(-0.698274\pi\)
0.411684 + 0.911326i \(0.364941\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −1.66910 + 2.89097i −0.0617763 + 0.107000i
\(731\) −1.37367 + 2.37927i −0.0508070 + 0.0880004i
\(732\) 0 0
\(733\) −16.4099 + 9.47428i −0.606115 + 0.349941i −0.771443 0.636298i \(-0.780465\pi\)
0.165328 + 0.986239i \(0.447132\pi\)
\(734\) 5.93514 10.2800i 0.219070 0.379440i
\(735\) 0 0
\(736\) 10.8828 + 18.8496i 0.401145 + 0.694804i
\(737\) −0.507932 0.293255i −0.0187099 0.0108022i
\(738\) 0 0
\(739\) −22.8430 39.5653i −0.840295 1.45543i −0.889646 0.456651i \(-0.849049\pi\)
0.0493510 0.998781i \(-0.484285\pi\)
\(740\) 67.0417 2.46450
\(741\) 0 0
\(742\) 0 0
\(743\) 25.0448 + 14.4596i 0.918804 + 0.530472i 0.883253 0.468896i \(-0.155348\pi\)
0.0355508 + 0.999368i \(0.488681\pi\)
\(744\) 0 0
\(745\) 54.3326 + 31.3689i 1.99059 + 1.14927i
\(746\) 19.5737 11.3009i 0.716644 0.413755i
\(747\) 0 0
\(748\) 1.08655i 0.0397283i
\(749\) 0 0
\(750\) 0 0
\(751\) −22.1007 38.2795i −0.806465 1.39684i −0.915297 0.402779i \(-0.868044\pi\)
0.108832 0.994060i \(-0.465289\pi\)
\(752\) −3.85936 −0.140736
\(753\) 0 0
\(754\) 55.4126i 2.01801i
\(755\) −79.3947 −2.88947
\(756\) 0 0
\(757\) −27.5029 −0.999611 −0.499805 0.866138i \(-0.666595\pi\)
−0.499805 + 0.866138i \(0.666595\pi\)
\(758\) 32.8315i 1.19249i
\(759\) 0 0
\(760\) 16.7550 0.607768
\(761\) −2.54651 4.41069i −0.0923109 0.159887i 0.816172 0.577809i \(-0.196092\pi\)
−0.908483 + 0.417921i \(0.862759\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 58.3061i 2.10944i
\(765\) 0 0
\(766\) 43.6286 25.1890i 1.57637 0.910115i
\(767\) −8.40755 4.85410i −0.303579 0.175271i
\(768\) 0 0
\(769\) 33.4505 + 19.3126i 1.20626 + 0.696432i 0.961939 0.273264i \(-0.0881031\pi\)
0.244316 + 0.969696i \(0.421436\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 39.5075 1.42191
\(773\) −17.1754 29.7486i −0.617754 1.06998i −0.989895 0.141806i \(-0.954709\pi\)
0.372140 0.928177i \(-0.378624\pi\)
\(774\) 0 0
\(775\) 30.8420 + 17.8066i 1.10788 + 0.639632i
\(776\) −23.4565 40.6279i −0.842040 1.45846i
\(777\) 0 0
\(778\) 5.36206 9.28736i 0.192239 0.332968i
\(779\) −0.152818 + 0.0882293i −0.00547526 + 0.00316114i
\(780\) 0 0
\(781\) −1.72647 + 2.99034i −0.0617781 + 0.107003i
\(782\) 7.72341 13.3773i 0.276189 0.478373i
\(783\) 0 0
\(784\) 0 0
\(785\) −19.4263 + 11.2158i −0.693353 + 0.400308i
\(786\) 0 0
\(787\) 23.4800i 0.836972i 0.908223 + 0.418486i \(0.137439\pi\)
−0.908223 + 0.418486i \(0.862561\pi\)
\(788\) 23.6225i 0.841518i
\(789\) 0 0
\(790\) −73.8874 + 42.6589i −2.62880 + 1.51774i
\(791\) 0 0
\(792\) 0 0
\(793\) 8.75037 15.1561i 0.310735 0.538209i
\(794\) −18.6074 + 32.2289i −0.660350 + 1.14376i
\(795\) 0 0
\(796\) 55.9791 32.3196i 1.98413 1.14554i
\(797\) 5.82399 10.0875i 0.206296 0.357316i −0.744249 0.667903i \(-0.767192\pi\)
0.950545 + 0.310587i \(0.100526\pi\)
\(798\) 0 0
\(799\) −0.960052 1.66286i −0.0339642 0.0588277i
\(800\) 18.7789 + 10.8420i 0.663934 + 0.383323i
\(801\) 0 0
\(802\) 12.7989 + 22.1683i 0.451945 + 0.782791i
\(803\) 0.128572 0.00453720
\(804\) 0 0
\(805\) 0 0
\(806\) −63.3373 36.5678i −2.23096 1.28805i
\(807\) 0 0
\(808\) −41.9346 24.2109i −1.47525 0.851738i
\(809\) 13.7723 7.95147i 0.484210 0.279559i −0.237959 0.971275i \(-0.576479\pi\)
0.722169 + 0.691716i \(0.243145\pi\)
\(810\) 0 0
\(811\) 3.56109i 0.125047i −0.998044 0.0625233i \(-0.980085\pi\)
0.998044 0.0625233i \(-0.0199148\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −2.00241 3.46828i −0.0701846 0.121563i
\(815\) −84.2539 −2.95128
\(816\) 0 0
\(817\) 3.63390i 0.127134i
\(818\) −46.5384 −1.62718
\(819\) 0 0
\(820\) 1.74493 0.0609357
\(821\) 0.130990i 0.00457157i 0.999997 + 0.00228579i \(0.000727589\pi\)
−0.999997 + 0.00228579i \(0.999272\pi\)
\(822\) 0 0
\(823\) 46.0287 1.60446 0.802231 0.597014i \(-0.203646\pi\)
0.802231 + 0.597014i \(0.203646\pi\)
\(824\) −34.8406 60.3456i −1.21373 2.10224i
\(825\) 0 0
\(826\) 0 0
\(827\) 40.5836i 1.41123i 0.708595 + 0.705615i \(0.249329\pi\)
−0.708595 + 0.705615i \(0.750671\pi\)
\(828\) 0 0
\(829\) −26.0930 + 15.0648i −0.906248 + 0.523223i −0.879222 0.476412i \(-0.841937\pi\)
−0.0270260 + 0.999635i \(0.508604\pi\)
\(830\) −56.4887 32.6137i −1.96075 1.13204i
\(831\) 0 0
\(832\) −58.1068 33.5480i −2.01449 1.16307i
\(833\) 0 0
\(834\) 0 0
\(835\) −48.0879 −1.66415
\(836\) −0.718591 1.24464i −0.0248530 0.0430466i
\(837\) 0 0
\(838\) 36.3228 + 20.9710i 1.25475 + 0.724430i
\(839\) −5.81551 10.0728i −0.200774 0.347750i 0.748004 0.663694i \(-0.231012\pi\)
−0.948778 + 0.315944i \(0.897679\pi\)
\(840\) 0 0
\(841\) −6.63302 + 11.4887i −0.228725 + 0.396163i
\(842\) 69.6622 40.2195i 2.40072 1.38606i
\(843\) 0 0
\(844\) 1.02509 1.77551i 0.0352851 0.0611156i
\(845\) −37.2132 + 64.4552i −1.28017 + 2.21732i
\(846\) 0 0
\(847\) 0 0
\(848\) −19.8821 + 11.4789i −0.682754 + 0.394188i
\(849\) 0 0
\(850\) 15.3889i 0.527835i
\(851\) 36.7085i 1.25835i
\(852\) 0 0
\(853\) 20.6854 11.9427i 0.708254 0.408911i −0.102160 0.994768i \(-0.532575\pi\)
0.810414 + 0.585857i \(0.199242\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −6.95763 + 12.0510i −0.237807 + 0.411894i
\(857\) 17.3362 30.0271i 0.592193 1.02571i −0.401744 0.915752i \(-0.631596\pi\)
0.993936 0.109956i \(-0.0350709\pi\)
\(858\) 0 0
\(859\) 26.3932 15.2381i 0.900525 0.519918i 0.0231546 0.999732i \(-0.492629\pi\)
0.877371 + 0.479813i \(0.159296\pi\)
\(860\) 17.9671 31.1200i 0.612674 1.06118i
\(861\) 0 0
\(862\) 16.7562 + 29.0225i 0.570717 + 0.988512i
\(863\) −28.9298 16.7026i −0.984781 0.568564i −0.0810708 0.996708i \(-0.525834\pi\)
−0.903710 + 0.428145i \(0.859167\pi\)
\(864\) 0 0
\(865\) −18.7225 32.4283i −0.636584 1.10260i
\(866\) 21.5940 0.733795
\(867\) 0 0
\(868\) 0 0
\(869\) 2.84579 + 1.64302i 0.0965369 + 0.0557356i
\(870\) 0 0
\(871\) 9.52520 + 5.49938i 0.322749 + 0.186339i
\(872\) 21.9780 12.6890i 0.744271 0.429705i
\(873\) 0 0
\(874\) 20.4315i 0.691106i
\(875\) 0 0
\(876\) 0 0
\(877\) 27.7600 + 48.0817i 0.937389 + 1.62360i 0.770318 + 0.637660i \(0.220097\pi\)
0.167070 + 0.985945i \(0.446569\pi\)
\(878\) 27.8145 0.938694
\(879\) 0 0
\(880\) 2.06697i 0.0696777i
\(881\) 19.9850 0.673313 0.336656 0.941628i \(-0.390704\pi\)
0.336656 + 0.941628i \(0.390704\pi\)
\(882\) 0 0
\(883\) 35.5837 1.19749 0.598743 0.800941i \(-0.295667\pi\)
0.598743 + 0.800941i \(0.295667\pi\)
\(884\) 20.3760i 0.685320i
\(885\) 0 0
\(886\) −16.9264 −0.568654
\(887\) −17.8317 30.8853i −0.598729 1.03703i −0.993009 0.118038i \(-0.962339\pi\)
0.394280 0.918990i \(-0.370994\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 17.2700i 0.578892i
\(891\) 0 0
\(892\) 27.6330 15.9539i 0.925221 0.534177i
\(893\) −2.19946 1.26986i −0.0736021 0.0424942i
\(894\) 0 0
\(895\) −4.75872 2.74745i −0.159066 0.0918370i
\(896\) 0 0
\(897\) 0 0
\(898\) −7.53214 −0.251351
\(899\) 10.3831 + 17.9841i 0.346297 + 0.599804i
\(900\) 0 0
\(901\) −9.89171 5.71098i −0.329541 0.190260i
\(902\) −0.0521180 0.0902710i −0.00173534 0.00300569i
\(903\) 0 0
\(904\) 4.19569 7.26715i 0.139547 0.241702i
\(905\) −52.0925 + 30.0756i −1.73161 + 0.999748i
\(906\) 0 0
\(907\) −18.6215 + 32.2533i −0.618315 + 1.07095i 0.371478 + 0.928442i \(0.378851\pi\)
−0.989793 + 0.142512i \(0.954482\pi\)
\(908\) −30.6846 + 53.1472i −1.01830 + 1.76375i
\(909\) 0 0
\(910\) 0 0
\(911\) 18.8068 10.8581i 0.623098 0.359746i −0.154976 0.987918i \(-0.549530\pi\)
0.778074 + 0.628172i \(0.216197\pi\)
\(912\) 0 0
\(913\) 2.51225i 0.0831434i
\(914\) 57.2993i 1.89529i
\(915\) 0 0
\(916\) 61.4940 35.5036i 2.03182 1.17307i
\(917\) 0 0
\(918\) 0 0
\(919\) −17.1023 + 29.6220i −0.564153 + 0.977141i 0.432975 + 0.901406i \(0.357464\pi\)
−0.997128 + 0.0757353i \(0.975870\pi\)
\(920\) −45.3598 + 78.5656i −1.49547 + 2.59023i
\(921\) 0 0
\(922\) 28.2452 16.3074i 0.930208 0.537056i
\(923\) 32.3764 56.0776i 1.06568 1.84582i
\(924\) 0 0
\(925\) −18.2854 31.6713i −0.601221 1.04135i
\(926\) 42.3945 + 24.4764i 1.39317 + 0.804346i
\(927\) 0 0
\(928\) 6.32203 + 10.9501i 0.207531 + 0.359454i
\(929\) 46.9514 1.54043 0.770213 0.637786i \(-0.220150\pi\)
0.770213 + 0.637786i \(0.220150\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 62.0442 + 35.8213i 2.03233 + 1.17336i
\(933\) 0 0
\(934\) −1.91469 1.10545i −0.0626505 0.0361713i
\(935\) −0.890585 + 0.514179i −0.0291252 + 0.0168155i
\(936\) 0 0
\(937\) 28.8826i 0.943555i 0.881718 + 0.471777i \(0.156387\pi\)
−0.881718 + 0.471777i \(0.843613\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 12.5572 + 21.7496i 0.409569 + 0.709395i
\(941\) 1.45409 0.0474019 0.0237009 0.999719i \(-0.492455\pi\)
0.0237009 + 0.999719i \(0.492455\pi\)
\(942\) 0 0
\(943\) 0.955432i 0.0311131i
\(944\) 3.15992 0.102847
\(945\) 0 0
\(946\) −2.14658 −0.0697914
\(947\) 42.6772i 1.38682i 0.720542 + 0.693412i \(0.243893\pi\)
−0.720542 + 0.693412i \(0.756107\pi\)
\(948\) 0 0
\(949\) −2.41110 −0.0782675
\(950\) −10.1774 17.6279i −0.330200 0.571923i
\(951\) 0 0
\(952\) 0 0
\(953\) 10.8171i 0.350401i 0.984533 + 0.175200i \(0.0560574\pi\)
−0.984533 + 0.175200i \(0.943943\pi\)
\(954\) 0 0
\(955\) −47.7902 + 27.5917i −1.54645 + 0.892845i
\(956\) −61.6216 35.5773i −1.99299 1.15065i
\(957\) 0 0
\(958\) −66.5902 38.4458i −2.15143 1.24213i
\(959\) 0 0
\(960\) 0 0
\(961\) 3.59192 0.115868
\(962\) 37.5511 + 65.0404i 1.21070 + 2.09699i
\(963\) 0 0
\(964\) −50.1529 28.9558i −1.61532 0.932603i
\(965\) −18.6958 32.3820i −0.601838 1.04241i
\(966\) 0 0
\(967\) −22.4942 + 38.9611i −0.723365 + 1.25290i 0.236279 + 0.971685i \(0.424072\pi\)
−0.959643 + 0.281219i \(0.909261\pi\)
\(968\) −36.5111 + 21.0797i −1.17351 + 0.677526i
\(969\) 0 0
\(970\) −49.4415 + 85.6351i −1.58747 + 2.74958i
\(971\) 3.40171 5.89194i 0.109166 0.189081i −0.806267 0.591552i \(-0.798515\pi\)
0.915433 + 0.402471i \(0.131849\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −70.6321 + 40.7795i −2.26320 + 1.30666i
\(975\) 0 0
\(976\) 5.69631i 0.182334i
\(977\) 33.7917i 1.08109i −0.841314 0.540546i \(-0.818218\pi\)
0.841314 0.540546i \(-0.181782\pi\)
\(978\) 0 0
\(979\) −0.576044 + 0.332579i −0.0184104 + 0.0106293i
\(980\) 0 0
\(981\) 0 0
\(982\) −10.0146 + 17.3459i −0.319580 + 0.553529i
\(983\) −23.4913 + 40.6881i −0.749256 + 1.29775i 0.198923 + 0.980015i \(0.436256\pi\)
−0.948180 + 0.317735i \(0.897078\pi\)
\(984\) 0 0
\(985\) 19.3620 11.1787i 0.616926 0.356182i
\(986\) 4.48668 7.77116i 0.142885 0.247484i
\(987\) 0 0
\(988\) 13.4757 + 23.3405i 0.428718 + 0.742562i
\(989\) −17.0397 9.83785i −0.541829 0.312825i
\(990\) 0 0
\(991\) −0.300449 0.520392i −0.00954406 0.0165308i 0.861214 0.508243i \(-0.169705\pi\)
−0.870758 + 0.491712i \(0.836371\pi\)
\(992\) −16.6881 −0.529848
\(993\) 0 0
\(994\) 0 0
\(995\) −52.9810 30.5886i −1.67961 0.969723i
\(996\) 0 0
\(997\) −41.9387 24.2133i −1.32821 0.766844i −0.343189 0.939266i \(-0.611507\pi\)
−0.985023 + 0.172423i \(0.944841\pi\)
\(998\) −23.4418 + 13.5341i −0.742036 + 0.428415i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.i.d.1097.24 48
3.2 odd 2 441.2.i.d.68.4 48
7.2 even 3 1323.2.o.e.881.21 48
7.3 odd 6 1323.2.s.d.962.4 48
7.4 even 3 1323.2.s.d.962.3 48
7.5 odd 6 1323.2.o.e.881.22 48
7.6 odd 2 inner 1323.2.i.d.1097.4 48
9.2 odd 6 1323.2.s.d.656.4 48
9.7 even 3 441.2.s.d.362.22 48
21.2 odd 6 441.2.o.e.293.3 yes 48
21.5 even 6 441.2.o.e.293.4 yes 48
21.11 odd 6 441.2.s.d.374.21 48
21.17 even 6 441.2.s.d.374.22 48
21.20 even 2 441.2.i.d.68.3 48
63.2 odd 6 1323.2.o.e.440.22 48
63.11 odd 6 inner 1323.2.i.d.521.4 48
63.16 even 3 441.2.o.e.146.4 yes 48
63.20 even 6 1323.2.s.d.656.3 48
63.25 even 3 441.2.i.d.227.21 48
63.34 odd 6 441.2.s.d.362.21 48
63.38 even 6 inner 1323.2.i.d.521.24 48
63.47 even 6 1323.2.o.e.440.21 48
63.52 odd 6 441.2.i.d.227.22 48
63.61 odd 6 441.2.o.e.146.3 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.3 48 21.20 even 2
441.2.i.d.68.4 48 3.2 odd 2
441.2.i.d.227.21 48 63.25 even 3
441.2.i.d.227.22 48 63.52 odd 6
441.2.o.e.146.3 48 63.61 odd 6
441.2.o.e.146.4 yes 48 63.16 even 3
441.2.o.e.293.3 yes 48 21.2 odd 6
441.2.o.e.293.4 yes 48 21.5 even 6
441.2.s.d.362.21 48 63.34 odd 6
441.2.s.d.362.22 48 9.7 even 3
441.2.s.d.374.21 48 21.11 odd 6
441.2.s.d.374.22 48 21.17 even 6
1323.2.i.d.521.4 48 63.11 odd 6 inner
1323.2.i.d.521.24 48 63.38 even 6 inner
1323.2.i.d.1097.4 48 7.6 odd 2 inner
1323.2.i.d.1097.24 48 1.1 even 1 trivial
1323.2.o.e.440.21 48 63.47 even 6
1323.2.o.e.440.22 48 63.2 odd 6
1323.2.o.e.881.21 48 7.2 even 3
1323.2.o.e.881.22 48 7.5 odd 6
1323.2.s.d.656.3 48 63.20 even 6
1323.2.s.d.656.4 48 9.2 odd 6
1323.2.s.d.962.3 48 7.4 even 3
1323.2.s.d.962.4 48 7.3 odd 6