Properties

Label 1305.2.d.c.811.3
Level $1305$
Weight $2$
Character 1305.811
Analytic conductor $10.420$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1305,2,Mod(811,1305)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1305.811"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1305, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,-14,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.281900339052544.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 17x^{8} + 104x^{6} + 273x^{4} + 281x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 435)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 811.3
Root \(-1.78296i\) of defining polynomial
Character \(\chi\) \(=\) 1305.811
Dual form 1305.2.d.c.811.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.78296i q^{2} -1.17894 q^{4} -1.00000 q^{5} +2.60402 q^{7} -1.46391i q^{8} +1.78296i q^{10} +6.61083i q^{11} +4.14692 q^{13} -4.64285i q^{14} -4.96798 q^{16} +3.78904i q^{17} +7.10882i q^{19} +1.17894 q^{20} +11.7868 q^{22} +2.46391 q^{23} +1.00000 q^{25} -7.39379i q^{26} -3.06999 q^{28} +(-4.42581 - 3.06793i) q^{29} +6.39305i q^{31} +5.92988i q^{32} +6.75570 q^{34} -2.60402 q^{35} +4.64491i q^{37} +12.6747 q^{38} +1.46391i q^{40} -0.721109i q^{41} -3.57274i q^{43} -7.79380i q^{44} -4.39305i q^{46} +1.85308i q^{47} -0.219100 q^{49} -1.78296i q^{50} -4.88898 q^{52} -0.644913 q^{53} -6.61083i q^{55} -3.81205i q^{56} +(-5.46999 + 7.89104i) q^{58} +13.2217 q^{59} -5.92380i q^{61} +11.3986 q^{62} +0.636777 q^{64} -4.14692 q^{65} -5.45564 q^{67} -4.46706i q^{68} +4.64285i q^{70} +3.13184 q^{71} -15.7086i q^{73} +8.28169 q^{74} -8.38090i q^{76} +17.2147i q^{77} +1.18502i q^{79} +4.96798 q^{80} -1.28571 q^{82} +10.5236 q^{83} -3.78904i q^{85} -6.37004 q^{86} +9.67767 q^{88} -4.34682i q^{89} +10.7987 q^{91} -2.90481 q^{92} +3.30396 q^{94} -7.10882i q^{95} -6.44090i q^{97} +0.390646i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 14 q^{4} - 10 q^{5} + 8 q^{7} - 4 q^{13} - 2 q^{16} + 14 q^{20} - 26 q^{22} + 10 q^{23} + 10 q^{25} + 34 q^{28} - 16 q^{29} - 6 q^{34} - 8 q^{35} + 36 q^{38} + 14 q^{49} - 14 q^{52} + 38 q^{53} - 6 q^{58}+ \cdots + 14 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.78296i 1.26074i −0.776294 0.630371i \(-0.782903\pi\)
0.776294 0.630371i \(-0.217097\pi\)
\(3\) 0 0
\(4\) −1.17894 −0.589471
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 2.60402 0.984226 0.492113 0.870531i \(-0.336225\pi\)
0.492113 + 0.870531i \(0.336225\pi\)
\(8\) 1.46391i 0.517571i
\(9\) 0 0
\(10\) 1.78296i 0.563821i
\(11\) 6.61083i 1.99324i 0.0821418 + 0.996621i \(0.473824\pi\)
−0.0821418 + 0.996621i \(0.526176\pi\)
\(12\) 0 0
\(13\) 4.14692 1.15015 0.575075 0.818101i \(-0.304973\pi\)
0.575075 + 0.818101i \(0.304973\pi\)
\(14\) 4.64285i 1.24085i
\(15\) 0 0
\(16\) −4.96798 −1.24199
\(17\) 3.78904i 0.918976i 0.888184 + 0.459488i \(0.151967\pi\)
−0.888184 + 0.459488i \(0.848033\pi\)
\(18\) 0 0
\(19\) 7.10882i 1.63088i 0.578844 + 0.815438i \(0.303504\pi\)
−0.578844 + 0.815438i \(0.696496\pi\)
\(20\) 1.17894 0.263620
\(21\) 0 0
\(22\) 11.7868 2.51296
\(23\) 2.46391 0.513761 0.256881 0.966443i \(-0.417305\pi\)
0.256881 + 0.966443i \(0.417305\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 7.39379i 1.45004i
\(27\) 0 0
\(28\) −3.06999 −0.580173
\(29\) −4.42581 3.06793i −0.821853 0.569700i
\(30\) 0 0
\(31\) 6.39305i 1.14823i 0.818776 + 0.574113i \(0.194653\pi\)
−0.818776 + 0.574113i \(0.805347\pi\)
\(32\) 5.92988i 1.04826i
\(33\) 0 0
\(34\) 6.75570 1.15859
\(35\) −2.60402 −0.440159
\(36\) 0 0
\(37\) 4.64491i 0.763619i 0.924241 + 0.381809i \(0.124699\pi\)
−0.924241 + 0.381809i \(0.875301\pi\)
\(38\) 12.6747 2.05611
\(39\) 0 0
\(40\) 1.46391i 0.231465i
\(41\) 0.721109i 0.112618i −0.998413 0.0563092i \(-0.982067\pi\)
0.998413 0.0563092i \(-0.0179333\pi\)
\(42\) 0 0
\(43\) 3.57274i 0.544837i −0.962179 0.272419i \(-0.912176\pi\)
0.962179 0.272419i \(-0.0878235\pi\)
\(44\) 7.79380i 1.17496i
\(45\) 0 0
\(46\) 4.39305i 0.647720i
\(47\) 1.85308i 0.270299i 0.990825 + 0.135150i \(0.0431515\pi\)
−0.990825 + 0.135150i \(0.956849\pi\)
\(48\) 0 0
\(49\) −0.219100 −0.0313000
\(50\) 1.78296i 0.252148i
\(51\) 0 0
\(52\) −4.88898 −0.677980
\(53\) −0.644913 −0.0885856 −0.0442928 0.999019i \(-0.514103\pi\)
−0.0442928 + 0.999019i \(0.514103\pi\)
\(54\) 0 0
\(55\) 6.61083i 0.891405i
\(56\) 3.81205i 0.509406i
\(57\) 0 0
\(58\) −5.46999 + 7.89104i −0.718245 + 1.03614i
\(59\) 13.2217 1.72131 0.860657 0.509185i \(-0.170053\pi\)
0.860657 + 0.509185i \(0.170053\pi\)
\(60\) 0 0
\(61\) 5.92380i 0.758465i −0.925301 0.379233i \(-0.876188\pi\)
0.925301 0.379233i \(-0.123812\pi\)
\(62\) 11.3986 1.44762
\(63\) 0 0
\(64\) 0.636777 0.0795971
\(65\) −4.14692 −0.514362
\(66\) 0 0
\(67\) −5.45564 −0.666513 −0.333256 0.942836i \(-0.608147\pi\)
−0.333256 + 0.942836i \(0.608147\pi\)
\(68\) 4.46706i 0.541710i
\(69\) 0 0
\(70\) 4.64285i 0.554927i
\(71\) 3.13184 0.371681 0.185840 0.982580i \(-0.440499\pi\)
0.185840 + 0.982580i \(0.440499\pi\)
\(72\) 0 0
\(73\) 15.7086i 1.83855i −0.393614 0.919276i \(-0.628775\pi\)
0.393614 0.919276i \(-0.371225\pi\)
\(74\) 8.28169 0.962727
\(75\) 0 0
\(76\) 8.38090i 0.961355i
\(77\) 17.2147i 1.96180i
\(78\) 0 0
\(79\) 1.18502i 0.133325i 0.997776 + 0.0666626i \(0.0212351\pi\)
−0.997776 + 0.0666626i \(0.978765\pi\)
\(80\) 4.96798 0.555437
\(81\) 0 0
\(82\) −1.28571 −0.141983
\(83\) 10.5236 1.15511 0.577556 0.816351i \(-0.304007\pi\)
0.577556 + 0.816351i \(0.304007\pi\)
\(84\) 0 0
\(85\) 3.78904i 0.410979i
\(86\) −6.37004 −0.686899
\(87\) 0 0
\(88\) 9.67767 1.03164
\(89\) 4.34682i 0.460762i −0.973101 0.230381i \(-0.926003\pi\)
0.973101 0.230381i \(-0.0739972\pi\)
\(90\) 0 0
\(91\) 10.7987 1.13201
\(92\) −2.90481 −0.302847
\(93\) 0 0
\(94\) 3.30396 0.340778
\(95\) 7.10882i 0.729350i
\(96\) 0 0
\(97\) 6.44090i 0.653974i −0.945029 0.326987i \(-0.893967\pi\)
0.945029 0.326987i \(-0.106033\pi\)
\(98\) 0.390646i 0.0394612i
\(99\) 0 0
\(100\) −1.17894 −0.117894
\(101\) 17.6420i 1.75544i −0.479171 0.877721i \(-0.659063\pi\)
0.479171 0.877721i \(-0.340937\pi\)
\(102\) 0 0
\(103\) 1.97699 0.194798 0.0973992 0.995245i \(-0.468948\pi\)
0.0973992 + 0.995245i \(0.468948\pi\)
\(104\) 6.07073i 0.595284i
\(105\) 0 0
\(106\) 1.14985i 0.111684i
\(107\) −7.03263 −0.679870 −0.339935 0.940449i \(-0.610405\pi\)
−0.339935 + 0.940449i \(0.610405\pi\)
\(108\) 0 0
\(109\) 18.1357 1.73709 0.868544 0.495613i \(-0.165056\pi\)
0.868544 + 0.495613i \(0.165056\pi\)
\(110\) −11.7868 −1.12383
\(111\) 0 0
\(112\) −12.9367 −1.22240
\(113\) 4.99707i 0.470085i 0.971985 + 0.235042i \(0.0755229\pi\)
−0.971985 + 0.235042i \(0.924477\pi\)
\(114\) 0 0
\(115\) −2.46391 −0.229761
\(116\) 5.21778 + 3.61691i 0.484459 + 0.335822i
\(117\) 0 0
\(118\) 23.5737i 2.17013i
\(119\) 9.86671i 0.904480i
\(120\) 0 0
\(121\) −32.7031 −2.97301
\(122\) −10.5619 −0.956229
\(123\) 0 0
\(124\) 7.53704i 0.676847i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 4.93316i 0.437747i 0.975753 + 0.218874i \(0.0702382\pi\)
−0.975753 + 0.218874i \(0.929762\pi\)
\(128\) 10.7244i 0.947913i
\(129\) 0 0
\(130\) 7.39379i 0.648479i
\(131\) 8.09374i 0.707153i 0.935406 + 0.353577i \(0.115035\pi\)
−0.935406 + 0.353577i \(0.884965\pi\)
\(132\) 0 0
\(133\) 18.5115i 1.60515i
\(134\) 9.72719i 0.840301i
\(135\) 0 0
\(136\) 5.54681 0.475635
\(137\) 9.08581i 0.776253i −0.921606 0.388127i \(-0.873122\pi\)
0.921606 0.388127i \(-0.126878\pi\)
\(138\) 0 0
\(139\) −13.9957 −1.18710 −0.593552 0.804796i \(-0.702275\pi\)
−0.593552 + 0.804796i \(0.702275\pi\)
\(140\) 3.06999 0.259461
\(141\) 0 0
\(142\) 5.58394i 0.468593i
\(143\) 27.4146i 2.29253i
\(144\) 0 0
\(145\) 4.42581 + 3.06793i 0.367544 + 0.254778i
\(146\) −28.0078 −2.31794
\(147\) 0 0
\(148\) 5.47609i 0.450132i
\(149\) 6.57405 0.538568 0.269284 0.963061i \(-0.413213\pi\)
0.269284 + 0.963061i \(0.413213\pi\)
\(150\) 0 0
\(151\) −10.8570 −0.883527 −0.441764 0.897131i \(-0.645647\pi\)
−0.441764 + 0.897131i \(0.645647\pi\)
\(152\) 10.4067 0.844094
\(153\) 0 0
\(154\) 30.6931 2.47332
\(155\) 6.39305i 0.513502i
\(156\) 0 0
\(157\) 13.0637i 1.04259i 0.853375 + 0.521297i \(0.174552\pi\)
−0.853375 + 0.521297i \(0.825448\pi\)
\(158\) 2.11284 0.168089
\(159\) 0 0
\(160\) 5.92988i 0.468798i
\(161\) 6.41606 0.505657
\(162\) 0 0
\(163\) 23.8666i 1.86937i −0.355471 0.934687i \(-0.615679\pi\)
0.355471 0.934687i \(-0.384321\pi\)
\(164\) 0.850147i 0.0663853i
\(165\) 0 0
\(166\) 18.7631i 1.45630i
\(167\) −18.5182 −1.43298 −0.716492 0.697595i \(-0.754253\pi\)
−0.716492 + 0.697595i \(0.754253\pi\)
\(168\) 0 0
\(169\) 4.19696 0.322843
\(170\) −6.75570 −0.518138
\(171\) 0 0
\(172\) 4.21205i 0.321166i
\(173\) −4.07086 −0.309502 −0.154751 0.987954i \(-0.549457\pi\)
−0.154751 + 0.987954i \(0.549457\pi\)
\(174\) 0 0
\(175\) 2.60402 0.196845
\(176\) 32.8425i 2.47560i
\(177\) 0 0
\(178\) −7.75020 −0.580902
\(179\) 17.2677 1.29065 0.645324 0.763909i \(-0.276722\pi\)
0.645324 + 0.763909i \(0.276722\pi\)
\(180\) 0 0
\(181\) −8.86803 −0.659156 −0.329578 0.944128i \(-0.606906\pi\)
−0.329578 + 0.944128i \(0.606906\pi\)
\(182\) 19.2536i 1.42717i
\(183\) 0 0
\(184\) 3.60695i 0.265908i
\(185\) 4.64491i 0.341501i
\(186\) 0 0
\(187\) −25.0487 −1.83174
\(188\) 2.18467i 0.159334i
\(189\) 0 0
\(190\) −12.6747 −0.919522
\(191\) 4.68446i 0.338956i −0.985534 0.169478i \(-0.945792\pi\)
0.985534 0.169478i \(-0.0542081\pi\)
\(192\) 0 0
\(193\) 19.5479i 1.40709i 0.710651 + 0.703544i \(0.248400\pi\)
−0.710651 + 0.703544i \(0.751600\pi\)
\(194\) −11.4839 −0.824493
\(195\) 0 0
\(196\) 0.258306 0.0184504
\(197\) 25.5128 1.81771 0.908856 0.417109i \(-0.136957\pi\)
0.908856 + 0.417109i \(0.136957\pi\)
\(198\) 0 0
\(199\) −1.36177 −0.0965335 −0.0482667 0.998834i \(-0.515370\pi\)
−0.0482667 + 0.998834i \(0.515370\pi\)
\(200\) 1.46391i 0.103514i
\(201\) 0 0
\(202\) −31.4549 −2.21316
\(203\) −11.5249 7.98893i −0.808889 0.560713i
\(204\) 0 0
\(205\) 0.721109i 0.0503645i
\(206\) 3.52489i 0.245591i
\(207\) 0 0
\(208\) −20.6018 −1.42848
\(209\) −46.9953 −3.25073
\(210\) 0 0
\(211\) 0.904811i 0.0622897i 0.999515 + 0.0311449i \(0.00991532\pi\)
−0.999515 + 0.0311449i \(0.990085\pi\)
\(212\) 0.760316 0.0522187
\(213\) 0 0
\(214\) 12.5389i 0.857141i
\(215\) 3.57274i 0.243659i
\(216\) 0 0
\(217\) 16.6476i 1.13011i
\(218\) 32.3352i 2.19002i
\(219\) 0 0
\(220\) 7.79380i 0.525458i
\(221\) 15.7128i 1.05696i
\(222\) 0 0
\(223\) 26.9575 1.80521 0.902605 0.430471i \(-0.141652\pi\)
0.902605 + 0.430471i \(0.141652\pi\)
\(224\) 15.4415i 1.03173i
\(225\) 0 0
\(226\) 8.90957 0.592656
\(227\) 3.33208 0.221158 0.110579 0.993867i \(-0.464730\pi\)
0.110579 + 0.993867i \(0.464730\pi\)
\(228\) 0 0
\(229\) 3.07218i 0.203015i −0.994835 0.101508i \(-0.967633\pi\)
0.994835 0.101508i \(-0.0323666\pi\)
\(230\) 4.39305i 0.289669i
\(231\) 0 0
\(232\) −4.49117 + 6.47900i −0.294860 + 0.425367i
\(233\) −18.6744 −1.22340 −0.611700 0.791090i \(-0.709514\pi\)
−0.611700 + 0.791090i \(0.709514\pi\)
\(234\) 0 0
\(235\) 1.85308i 0.120881i
\(236\) −15.5876 −1.01467
\(237\) 0 0
\(238\) 17.5919 1.14032
\(239\) −13.5155 −0.874246 −0.437123 0.899402i \(-0.644003\pi\)
−0.437123 + 0.899402i \(0.644003\pi\)
\(240\) 0 0
\(241\) 9.28996 0.598419 0.299209 0.954187i \(-0.403277\pi\)
0.299209 + 0.954187i \(0.403277\pi\)
\(242\) 58.3083i 3.74820i
\(243\) 0 0
\(244\) 6.98383i 0.447094i
\(245\) 0.219100 0.0139978
\(246\) 0 0
\(247\) 29.4797i 1.87575i
\(248\) 9.35886 0.594288
\(249\) 0 0
\(250\) 1.78296i 0.112764i
\(251\) 7.79989i 0.492325i 0.969229 + 0.246162i \(0.0791697\pi\)
−0.969229 + 0.246162i \(0.920830\pi\)
\(252\) 0 0
\(253\) 16.2885i 1.02405i
\(254\) 8.79562 0.551886
\(255\) 0 0
\(256\) 20.3947 1.27467
\(257\) −3.42838 −0.213856 −0.106928 0.994267i \(-0.534102\pi\)
−0.106928 + 0.994267i \(0.534102\pi\)
\(258\) 0 0
\(259\) 12.0954i 0.751573i
\(260\) 4.88898 0.303202
\(261\) 0 0
\(262\) 14.4308 0.891538
\(263\) 15.1455i 0.933910i −0.884281 0.466955i \(-0.845351\pi\)
0.884281 0.466955i \(-0.154649\pi\)
\(264\) 0 0
\(265\) 0.644913 0.0396167
\(266\) 33.0052 2.02368
\(267\) 0 0
\(268\) 6.43189 0.392890
\(269\) 25.6963i 1.56673i −0.621561 0.783366i \(-0.713501\pi\)
0.621561 0.783366i \(-0.286499\pi\)
\(270\) 0 0
\(271\) 5.24468i 0.318592i 0.987231 + 0.159296i \(0.0509224\pi\)
−0.987231 + 0.159296i \(0.949078\pi\)
\(272\) 18.8239i 1.14136i
\(273\) 0 0
\(274\) −16.1996 −0.978656
\(275\) 6.61083i 0.398648i
\(276\) 0 0
\(277\) 15.4448 0.927987 0.463994 0.885839i \(-0.346416\pi\)
0.463994 + 0.885839i \(0.346416\pi\)
\(278\) 24.9538i 1.49663i
\(279\) 0 0
\(280\) 3.81205i 0.227813i
\(281\) 22.1658 1.32230 0.661149 0.750254i \(-0.270069\pi\)
0.661149 + 0.750254i \(0.270069\pi\)
\(282\) 0 0
\(283\) −13.1225 −0.780049 −0.390025 0.920804i \(-0.627534\pi\)
−0.390025 + 0.920804i \(0.627534\pi\)
\(284\) −3.69226 −0.219095
\(285\) 0 0
\(286\) 48.8791 2.89028
\(287\) 1.87778i 0.110842i
\(288\) 0 0
\(289\) 2.64320 0.155482
\(290\) 5.46999 7.89104i 0.321209 0.463378i
\(291\) 0 0
\(292\) 18.5195i 1.08377i
\(293\) 17.1631i 1.00268i 0.865251 + 0.501339i \(0.167159\pi\)
−0.865251 + 0.501339i \(0.832841\pi\)
\(294\) 0 0
\(295\) −13.2217 −0.769795
\(296\) 6.79974 0.395227
\(297\) 0 0
\(298\) 11.7213i 0.678995i
\(299\) 10.2176 0.590902
\(300\) 0 0
\(301\) 9.30346i 0.536243i
\(302\) 19.3575i 1.11390i
\(303\) 0 0
\(304\) 35.3165i 2.02554i
\(305\) 5.92380i 0.339196i
\(306\) 0 0
\(307\) 8.04069i 0.458906i 0.973320 + 0.229453i \(0.0736938\pi\)
−0.973320 + 0.229453i \(0.926306\pi\)
\(308\) 20.2952i 1.15642i
\(309\) 0 0
\(310\) −11.3986 −0.647394
\(311\) 3.67741i 0.208527i 0.994550 + 0.104263i \(0.0332485\pi\)
−0.994550 + 0.104263i \(0.966751\pi\)
\(312\) 0 0
\(313\) 17.6267 0.996318 0.498159 0.867086i \(-0.334010\pi\)
0.498159 + 0.867086i \(0.334010\pi\)
\(314\) 23.2920 1.31444
\(315\) 0 0
\(316\) 1.39707i 0.0785914i
\(317\) 17.4787i 0.981699i 0.871244 + 0.490850i \(0.163314\pi\)
−0.871244 + 0.490850i \(0.836686\pi\)
\(318\) 0 0
\(319\) 20.2816 29.2583i 1.13555 1.63815i
\(320\) −0.636777 −0.0355969
\(321\) 0 0
\(322\) 11.4396i 0.637503i
\(323\) −26.9356 −1.49874
\(324\) 0 0
\(325\) 4.14692 0.230030
\(326\) −42.5531 −2.35680
\(327\) 0 0
\(328\) −1.05564 −0.0582880
\(329\) 4.82544i 0.266035i
\(330\) 0 0
\(331\) 22.9479i 1.26133i −0.776054 0.630666i \(-0.782782\pi\)
0.776054 0.630666i \(-0.217218\pi\)
\(332\) −12.4067 −0.680905
\(333\) 0 0
\(334\) 33.0172i 1.80662i
\(335\) 5.45564 0.298074
\(336\) 0 0
\(337\) 25.2051i 1.37301i 0.727125 + 0.686505i \(0.240856\pi\)
−0.727125 + 0.686505i \(0.759144\pi\)
\(338\) 7.48302i 0.407022i
\(339\) 0 0
\(340\) 4.46706i 0.242260i
\(341\) −42.2634 −2.28869
\(342\) 0 0
\(343\) −18.7987 −1.01503
\(344\) −5.23017 −0.281992
\(345\) 0 0
\(346\) 7.25817i 0.390202i
\(347\) 21.1875 1.13740 0.568701 0.822544i \(-0.307446\pi\)
0.568701 + 0.822544i \(0.307446\pi\)
\(348\) 0 0
\(349\) 30.9222 1.65523 0.827614 0.561297i \(-0.189698\pi\)
0.827614 + 0.561297i \(0.189698\pi\)
\(350\) 4.64285i 0.248171i
\(351\) 0 0
\(352\) −39.2015 −2.08944
\(353\) −27.0800 −1.44132 −0.720660 0.693288i \(-0.756161\pi\)
−0.720660 + 0.693288i \(0.756161\pi\)
\(354\) 0 0
\(355\) −3.13184 −0.166221
\(356\) 5.12465i 0.271606i
\(357\) 0 0
\(358\) 30.7876i 1.62717i
\(359\) 4.10164i 0.216476i 0.994125 + 0.108238i \(0.0345209\pi\)
−0.994125 + 0.108238i \(0.965479\pi\)
\(360\) 0 0
\(361\) −31.5354 −1.65976
\(362\) 15.8113i 0.831025i
\(363\) 0 0
\(364\) −12.7310 −0.667285
\(365\) 15.7086i 0.822225i
\(366\) 0 0
\(367\) 3.44492i 0.179823i −0.995950 0.0899116i \(-0.971342\pi\)
0.995950 0.0899116i \(-0.0286585\pi\)
\(368\) −12.2407 −0.638089
\(369\) 0 0
\(370\) −8.28169 −0.430545
\(371\) −1.67936 −0.0871882
\(372\) 0 0
\(373\) −1.89363 −0.0980485 −0.0490243 0.998798i \(-0.515611\pi\)
−0.0490243 + 0.998798i \(0.515611\pi\)
\(374\) 44.6608i 2.30935i
\(375\) 0 0
\(376\) 2.71274 0.139899
\(377\) −18.3535 12.7225i −0.945254 0.655240i
\(378\) 0 0
\(379\) 19.0161i 0.976791i −0.872622 0.488395i \(-0.837582\pi\)
0.872622 0.488395i \(-0.162418\pi\)
\(380\) 8.38090i 0.429931i
\(381\) 0 0
\(382\) −8.35220 −0.427336
\(383\) 33.6337 1.71860 0.859301 0.511471i \(-0.170899\pi\)
0.859301 + 0.511471i \(0.170899\pi\)
\(384\) 0 0
\(385\) 17.2147i 0.877343i
\(386\) 34.8531 1.77398
\(387\) 0 0
\(388\) 7.59345i 0.385499i
\(389\) 23.2259i 1.17760i −0.808278 0.588800i \(-0.799600\pi\)
0.808278 0.588800i \(-0.200400\pi\)
\(390\) 0 0
\(391\) 9.33585i 0.472134i
\(392\) 0.320743i 0.0162000i
\(393\) 0 0
\(394\) 45.4883i 2.29167i
\(395\) 1.18502i 0.0596248i
\(396\) 0 0
\(397\) 4.93046 0.247453 0.123726 0.992316i \(-0.460515\pi\)
0.123726 + 0.992316i \(0.460515\pi\)
\(398\) 2.42798i 0.121704i
\(399\) 0 0
\(400\) −4.96798 −0.248399
\(401\) −21.8391 −1.09059 −0.545296 0.838243i \(-0.683583\pi\)
−0.545296 + 0.838243i \(0.683583\pi\)
\(402\) 0 0
\(403\) 26.5115i 1.32063i
\(404\) 20.7989i 1.03478i
\(405\) 0 0
\(406\) −14.2439 + 20.5484i −0.706915 + 1.01980i
\(407\) −30.7067 −1.52208
\(408\) 0 0
\(409\) 14.0163i 0.693060i −0.938039 0.346530i \(-0.887360\pi\)
0.938039 0.346530i \(-0.112640\pi\)
\(410\) 1.28571 0.0634966
\(411\) 0 0
\(412\) −2.33076 −0.114828
\(413\) 34.4294 1.69416
\(414\) 0 0
\(415\) −10.5236 −0.516582
\(416\) 24.5908i 1.20566i
\(417\) 0 0
\(418\) 83.7906i 4.09833i
\(419\) −12.0925 −0.590756 −0.295378 0.955381i \(-0.595446\pi\)
−0.295378 + 0.955381i \(0.595446\pi\)
\(420\) 0 0
\(421\) 32.3671i 1.57748i 0.614728 + 0.788739i \(0.289266\pi\)
−0.614728 + 0.788739i \(0.710734\pi\)
\(422\) 1.61324 0.0785313
\(423\) 0 0
\(424\) 0.944095i 0.0458493i
\(425\) 3.78904i 0.183795i
\(426\) 0 0
\(427\) 15.4257i 0.746501i
\(428\) 8.29107 0.400764
\(429\) 0 0
\(430\) 6.37004 0.307191
\(431\) 19.3797 0.933485 0.466743 0.884393i \(-0.345427\pi\)
0.466743 + 0.884393i \(0.345427\pi\)
\(432\) 0 0
\(433\) 20.3511i 0.978010i −0.872281 0.489005i \(-0.837360\pi\)
0.872281 0.489005i \(-0.162640\pi\)
\(434\) 29.6820 1.42478
\(435\) 0 0
\(436\) −21.3810 −1.02396
\(437\) 17.5155i 0.837881i
\(438\) 0 0
\(439\) −8.42565 −0.402134 −0.201067 0.979577i \(-0.564441\pi\)
−0.201067 + 0.979577i \(0.564441\pi\)
\(440\) −9.67767 −0.461365
\(441\) 0 0
\(442\) 28.0154 1.33255
\(443\) 7.52948i 0.357736i 0.983873 + 0.178868i \(0.0572436\pi\)
−0.983873 + 0.178868i \(0.942756\pi\)
\(444\) 0 0
\(445\) 4.34682i 0.206059i
\(446\) 48.0642i 2.27590i
\(447\) 0 0
\(448\) 1.65818 0.0783415
\(449\) 31.1439i 1.46977i −0.678192 0.734885i \(-0.737236\pi\)
0.678192 0.734885i \(-0.262764\pi\)
\(450\) 0 0
\(451\) 4.76713 0.224476
\(452\) 5.89126i 0.277102i
\(453\) 0 0
\(454\) 5.94095i 0.278823i
\(455\) −10.7987 −0.506249
\(456\) 0 0
\(457\) −5.96504 −0.279033 −0.139516 0.990220i \(-0.544555\pi\)
−0.139516 + 0.990220i \(0.544555\pi\)
\(458\) −5.47757 −0.255950
\(459\) 0 0
\(460\) 2.90481 0.135437
\(461\) 22.3287i 1.03995i 0.854182 + 0.519975i \(0.174059\pi\)
−0.854182 + 0.519975i \(0.825941\pi\)
\(462\) 0 0
\(463\) 12.1195 0.563242 0.281621 0.959526i \(-0.409128\pi\)
0.281621 + 0.959526i \(0.409128\pi\)
\(464\) 21.9873 + 15.2414i 1.02074 + 0.707564i
\(465\) 0 0
\(466\) 33.2957i 1.54239i
\(467\) 35.8252i 1.65779i −0.559402 0.828896i \(-0.688969\pi\)
0.559402 0.828896i \(-0.311031\pi\)
\(468\) 0 0
\(469\) −14.2066 −0.655999
\(470\) −3.30396 −0.152400
\(471\) 0 0
\(472\) 19.3553i 0.890902i
\(473\) 23.6188 1.08599
\(474\) 0 0
\(475\) 7.10882i 0.326175i
\(476\) 11.6323i 0.533165i
\(477\) 0 0
\(478\) 24.0976i 1.10220i
\(479\) 26.7495i 1.22222i 0.791547 + 0.611108i \(0.209276\pi\)
−0.791547 + 0.611108i \(0.790724\pi\)
\(480\) 0 0
\(481\) 19.2621i 0.878276i
\(482\) 16.5636i 0.754452i
\(483\) 0 0
\(484\) 38.5551 1.75251
\(485\) 6.44090i 0.292466i
\(486\) 0 0
\(487\) −0.382377 −0.0173272 −0.00866358 0.999962i \(-0.502758\pi\)
−0.00866358 + 0.999962i \(0.502758\pi\)
\(488\) −8.67192 −0.392560
\(489\) 0 0
\(490\) 0.390646i 0.0176476i
\(491\) 25.6067i 1.15561i 0.816174 + 0.577807i \(0.196091\pi\)
−0.816174 + 0.577807i \(0.803909\pi\)
\(492\) 0 0
\(493\) 11.6245 16.7696i 0.523541 0.755263i
\(494\) 52.5612 2.36484
\(495\) 0 0
\(496\) 31.7606i 1.42609i
\(497\) 8.15535 0.365818
\(498\) 0 0
\(499\) −20.2051 −0.904505 −0.452252 0.891890i \(-0.649379\pi\)
−0.452252 + 0.891890i \(0.649379\pi\)
\(500\) 1.17894 0.0527239
\(501\) 0 0
\(502\) 13.9069 0.620695
\(503\) 6.63918i 0.296027i 0.988985 + 0.148013i \(0.0472878\pi\)
−0.988985 + 0.148013i \(0.952712\pi\)
\(504\) 0 0
\(505\) 17.6420i 0.785058i
\(506\) 29.0417 1.29106
\(507\) 0 0
\(508\) 5.81591i 0.258039i
\(509\) 6.71577 0.297671 0.148836 0.988862i \(-0.452447\pi\)
0.148836 + 0.988862i \(0.452447\pi\)
\(510\) 0 0
\(511\) 40.9054i 1.80955i
\(512\) 14.9142i 0.659119i
\(513\) 0 0
\(514\) 6.11266i 0.269618i
\(515\) −1.97699 −0.0871165
\(516\) 0 0
\(517\) −12.2504 −0.538771
\(518\) 21.5657 0.947540
\(519\) 0 0
\(520\) 6.07073i 0.266219i
\(521\) −43.7273 −1.91573 −0.957864 0.287223i \(-0.907268\pi\)
−0.957864 + 0.287223i \(0.907268\pi\)
\(522\) 0 0
\(523\) 24.1412 1.05562 0.527811 0.849362i \(-0.323013\pi\)
0.527811 + 0.849362i \(0.323013\pi\)
\(524\) 9.54205i 0.416847i
\(525\) 0 0
\(526\) −27.0038 −1.17742
\(527\) −24.2235 −1.05519
\(528\) 0 0
\(529\) −16.9291 −0.736050
\(530\) 1.14985i 0.0499464i
\(531\) 0 0
\(532\) 21.8240i 0.946190i
\(533\) 2.99038i 0.129528i
\(534\) 0 0
\(535\) 7.03263 0.304047
\(536\) 7.98658i 0.344968i
\(537\) 0 0
\(538\) −45.8155 −1.97524
\(539\) 1.44843i 0.0623884i
\(540\) 0 0
\(541\) 12.6252i 0.542800i 0.962467 + 0.271400i \(0.0874867\pi\)
−0.962467 + 0.271400i \(0.912513\pi\)
\(542\) 9.35105 0.401662
\(543\) 0 0
\(544\) −22.4685 −0.963331
\(545\) −18.1357 −0.776849
\(546\) 0 0
\(547\) 12.2476 0.523670 0.261835 0.965113i \(-0.415672\pi\)
0.261835 + 0.965113i \(0.415672\pi\)
\(548\) 10.7117i 0.457579i
\(549\) 0 0
\(550\) 11.7868 0.502593
\(551\) 21.8094 31.4623i 0.929110 1.34034i
\(552\) 0 0
\(553\) 3.08581i 0.131222i
\(554\) 27.5374i 1.16995i
\(555\) 0 0
\(556\) 16.5002 0.699764
\(557\) −21.9729 −0.931024 −0.465512 0.885042i \(-0.654130\pi\)
−0.465512 + 0.885042i \(0.654130\pi\)
\(558\) 0 0
\(559\) 14.8159i 0.626644i
\(560\) 12.9367 0.546675
\(561\) 0 0
\(562\) 39.5206i 1.66708i
\(563\) 32.5545i 1.37201i −0.727598 0.686004i \(-0.759363\pi\)
0.727598 0.686004i \(-0.240637\pi\)
\(564\) 0 0
\(565\) 4.99707i 0.210228i
\(566\) 23.3968i 0.983441i
\(567\) 0 0
\(568\) 4.58473i 0.192371i
\(569\) 33.2040i 1.39199i −0.718049 0.695993i \(-0.754964\pi\)
0.718049 0.695993i \(-0.245036\pi\)
\(570\) 0 0
\(571\) 17.3794 0.727305 0.363653 0.931535i \(-0.381530\pi\)
0.363653 + 0.931535i \(0.381530\pi\)
\(572\) 32.3203i 1.35138i
\(573\) 0 0
\(574\) −3.34800 −0.139743
\(575\) 2.46391 0.102752
\(576\) 0 0
\(577\) 38.4323i 1.59996i −0.600027 0.799980i \(-0.704844\pi\)
0.600027 0.799980i \(-0.295156\pi\)
\(578\) 4.71272i 0.196023i
\(579\) 0 0
\(580\) −5.21778 3.61691i −0.216657 0.150184i
\(581\) 27.4035 1.13689
\(582\) 0 0
\(583\) 4.26341i 0.176573i
\(584\) −22.9960 −0.951580
\(585\) 0 0
\(586\) 30.6011 1.26412
\(587\) −16.8853 −0.696931 −0.348466 0.937322i \(-0.613297\pi\)
−0.348466 + 0.937322i \(0.613297\pi\)
\(588\) 0 0
\(589\) −45.4471 −1.87261
\(590\) 23.5737i 0.970513i
\(591\) 0 0
\(592\) 23.0758i 0.948411i
\(593\) −12.1712 −0.499811 −0.249906 0.968270i \(-0.580400\pi\)
−0.249906 + 0.968270i \(0.580400\pi\)
\(594\) 0 0
\(595\) 9.86671i 0.404496i
\(596\) −7.75043 −0.317470
\(597\) 0 0
\(598\) 18.2176i 0.744975i
\(599\) 18.4881i 0.755403i −0.925927 0.377701i \(-0.876715\pi\)
0.925927 0.377701i \(-0.123285\pi\)
\(600\) 0 0
\(601\) 25.7139i 1.04889i −0.851443 0.524446i \(-0.824272\pi\)
0.851443 0.524446i \(-0.175728\pi\)
\(602\) −16.5877 −0.676064
\(603\) 0 0
\(604\) 12.7997 0.520814
\(605\) 32.7031 1.32957
\(606\) 0 0
\(607\) 24.3863i 0.989810i −0.868947 0.494905i \(-0.835203\pi\)
0.868947 0.494905i \(-0.164797\pi\)
\(608\) −42.1545 −1.70959
\(609\) 0 0
\(610\) 10.5619 0.427639
\(611\) 7.68457i 0.310884i
\(612\) 0 0
\(613\) −13.4750 −0.544248 −0.272124 0.962262i \(-0.587726\pi\)
−0.272124 + 0.962262i \(0.587726\pi\)
\(614\) 14.3362 0.578562
\(615\) 0 0
\(616\) 25.2008 1.01537
\(617\) 1.36560i 0.0549770i −0.999622 0.0274885i \(-0.991249\pi\)
0.999622 0.0274885i \(-0.00875096\pi\)
\(618\) 0 0
\(619\) 22.6187i 0.909124i −0.890715 0.454562i \(-0.849796\pi\)
0.890715 0.454562i \(-0.150204\pi\)
\(620\) 7.53704i 0.302695i
\(621\) 0 0
\(622\) 6.55668 0.262899
\(623\) 11.3192i 0.453494i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 31.4276i 1.25610i
\(627\) 0 0
\(628\) 15.4013i 0.614580i
\(629\) −17.5997 −0.701748
\(630\) 0 0
\(631\) 10.6701 0.424772 0.212386 0.977186i \(-0.431877\pi\)
0.212386 + 0.977186i \(0.431877\pi\)
\(632\) 1.73476 0.0690052
\(633\) 0 0
\(634\) 31.1637 1.23767
\(635\) 4.93316i 0.195766i
\(636\) 0 0
\(637\) −0.908590 −0.0359997
\(638\) −52.1664 36.1612i −2.06529 1.43164i
\(639\) 0 0
\(640\) 10.7244i 0.423920i
\(641\) 11.7428i 0.463811i 0.972738 + 0.231905i \(0.0744960\pi\)
−0.972738 + 0.231905i \(0.925504\pi\)
\(642\) 0 0
\(643\) 37.2947 1.47076 0.735381 0.677654i \(-0.237003\pi\)
0.735381 + 0.677654i \(0.237003\pi\)
\(644\) −7.56417 −0.298070
\(645\) 0 0
\(646\) 48.0251i 1.88952i
\(647\) −14.6160 −0.574616 −0.287308 0.957838i \(-0.592760\pi\)
−0.287308 + 0.957838i \(0.592760\pi\)
\(648\) 0 0
\(649\) 87.4062i 3.43100i
\(650\) 7.39379i 0.290008i
\(651\) 0 0
\(652\) 28.1373i 1.10194i
\(653\) 20.8225i 0.814849i 0.913239 + 0.407425i \(0.133573\pi\)
−0.913239 + 0.407425i \(0.866427\pi\)
\(654\) 0 0
\(655\) 8.09374i 0.316249i
\(656\) 3.58246i 0.139871i
\(657\) 0 0
\(658\) 8.60357 0.335402
\(659\) 5.84686i 0.227761i 0.993494 + 0.113881i \(0.0363282\pi\)
−0.993494 + 0.113881i \(0.963672\pi\)
\(660\) 0 0
\(661\) −16.9767 −0.660316 −0.330158 0.943926i \(-0.607102\pi\)
−0.330158 + 0.943926i \(0.607102\pi\)
\(662\) −40.9152 −1.59022
\(663\) 0 0
\(664\) 15.4056i 0.597852i
\(665\) 18.5115i 0.717845i
\(666\) 0 0
\(667\) −10.9048 7.55910i −0.422236 0.292690i
\(668\) 21.8319 0.844703
\(669\) 0 0
\(670\) 9.72719i 0.375794i
\(671\) 39.1613 1.51180
\(672\) 0 0
\(673\) 18.2039 0.701710 0.350855 0.936430i \(-0.385891\pi\)
0.350855 + 0.936430i \(0.385891\pi\)
\(674\) 44.9397 1.73101
\(675\) 0 0
\(676\) −4.94798 −0.190307
\(677\) 16.5888i 0.637558i −0.947829 0.318779i \(-0.896727\pi\)
0.947829 0.318779i \(-0.103273\pi\)
\(678\) 0 0
\(679\) 16.7722i 0.643658i
\(680\) −5.54681 −0.212711
\(681\) 0 0
\(682\) 75.3539i 2.88545i
\(683\) 36.6485 1.40232 0.701158 0.713006i \(-0.252667\pi\)
0.701158 + 0.713006i \(0.252667\pi\)
\(684\) 0 0
\(685\) 9.08581i 0.347151i
\(686\) 33.5172i 1.27969i
\(687\) 0 0
\(688\) 17.7493i 0.676685i
\(689\) −2.67440 −0.101887
\(690\) 0 0
\(691\) 20.4746 0.778892 0.389446 0.921049i \(-0.372667\pi\)
0.389446 + 0.921049i \(0.372667\pi\)
\(692\) 4.79931 0.182442
\(693\) 0 0
\(694\) 37.7764i 1.43397i
\(695\) 13.9957 0.530889
\(696\) 0 0
\(697\) 2.73231 0.103494
\(698\) 55.1331i 2.08682i
\(699\) 0 0
\(700\) −3.06999 −0.116035
\(701\) 31.8417 1.20265 0.601323 0.799006i \(-0.294640\pi\)
0.601323 + 0.799006i \(0.294640\pi\)
\(702\) 0 0
\(703\) −33.0199 −1.24537
\(704\) 4.20962i 0.158656i
\(705\) 0 0
\(706\) 48.2824i 1.81713i
\(707\) 45.9400i 1.72775i
\(708\) 0 0
\(709\) −14.0789 −0.528744 −0.264372 0.964421i \(-0.585165\pi\)
−0.264372 + 0.964421i \(0.585165\pi\)
\(710\) 5.58394i 0.209561i
\(711\) 0 0
\(712\) −6.36336 −0.238477
\(713\) 15.7519i 0.589914i
\(714\) 0 0
\(715\) 27.4146i 1.02525i
\(716\) −20.3576 −0.760800
\(717\) 0 0
\(718\) 7.31306 0.272921
\(719\) −5.94838 −0.221837 −0.110919 0.993830i \(-0.535379\pi\)
−0.110919 + 0.993830i \(0.535379\pi\)
\(720\) 0 0
\(721\) 5.14811 0.191726
\(722\) 56.2263i 2.09253i
\(723\) 0 0
\(724\) 10.4549 0.388553
\(725\) −4.42581 3.06793i −0.164371 0.113940i
\(726\) 0 0
\(727\) 12.3620i 0.458481i −0.973370 0.229241i \(-0.926376\pi\)
0.973370 0.229241i \(-0.0736243\pi\)
\(728\) 15.8083i 0.585893i
\(729\) 0 0
\(730\) 28.0078 1.03661
\(731\) 13.5372 0.500692
\(732\) 0 0
\(733\) 49.3006i 1.82096i −0.413556 0.910479i \(-0.635713\pi\)
0.413556 0.910479i \(-0.364287\pi\)
\(734\) −6.14215 −0.226711
\(735\) 0 0
\(736\) 14.6107i 0.538558i
\(737\) 36.0663i 1.32852i
\(738\) 0 0
\(739\) 8.72784i 0.321059i −0.987031 0.160529i \(-0.948680\pi\)
0.987031 0.160529i \(-0.0513202\pi\)
\(740\) 5.47609i 0.201305i
\(741\) 0 0
\(742\) 2.99424i 0.109922i
\(743\) 41.6374i 1.52753i −0.645496 0.763764i \(-0.723349\pi\)
0.645496 0.763764i \(-0.276651\pi\)
\(744\) 0 0
\(745\) −6.57405 −0.240855
\(746\) 3.37627i 0.123614i
\(747\) 0 0
\(748\) 29.5310 1.07976
\(749\) −18.3131 −0.669145
\(750\) 0 0
\(751\) 14.9756i 0.546468i 0.961948 + 0.273234i \(0.0880933\pi\)
−0.961948 + 0.273234i \(0.911907\pi\)
\(752\) 9.20605i 0.335710i
\(753\) 0 0
\(754\) −22.6836 + 32.7235i −0.826089 + 1.19172i
\(755\) 10.8570 0.395125
\(756\) 0 0
\(757\) 7.16735i 0.260502i 0.991481 + 0.130251i \(0.0415783\pi\)
−0.991481 + 0.130251i \(0.958422\pi\)
\(758\) −33.9049 −1.23148
\(759\) 0 0
\(760\) −10.4067 −0.377490
\(761\) 8.16312 0.295913 0.147957 0.988994i \(-0.452730\pi\)
0.147957 + 0.988994i \(0.452730\pi\)
\(762\) 0 0
\(763\) 47.2257 1.70969
\(764\) 5.52271i 0.199805i
\(765\) 0 0
\(766\) 59.9675i 2.16671i
\(767\) 54.8292 1.97977
\(768\) 0 0
\(769\) 9.40091i 0.339005i 0.985530 + 0.169503i \(0.0542161\pi\)
−0.985530 + 0.169503i \(0.945784\pi\)
\(770\) −30.6931 −1.10610
\(771\) 0 0
\(772\) 23.0459i 0.829439i
\(773\) 14.0490i 0.505307i 0.967557 + 0.252653i \(0.0813032\pi\)
−0.967557 + 0.252653i \(0.918697\pi\)
\(774\) 0 0
\(775\) 6.39305i 0.229645i
\(776\) −9.42890 −0.338478
\(777\) 0 0
\(778\) −41.4109 −1.48465
\(779\) 5.12624 0.183667
\(780\) 0 0
\(781\) 20.7040i 0.740849i
\(782\) 16.6454 0.595240
\(783\) 0 0
\(784\) 1.08848 0.0388744
\(785\) 13.0637i 0.466263i
\(786\) 0 0
\(787\) 28.6760 1.02219 0.511094 0.859525i \(-0.329240\pi\)
0.511094 + 0.859525i \(0.329240\pi\)
\(788\) −30.0781 −1.07149
\(789\) 0 0
\(790\) −2.11284 −0.0751716
\(791\) 13.0124i 0.462669i
\(792\) 0 0
\(793\) 24.5656i 0.872348i
\(794\) 8.79081i 0.311974i
\(795\) 0 0
\(796\) 1.60545 0.0569037
\(797\) 17.0067i 0.602409i 0.953560 + 0.301204i \(0.0973886\pi\)
−0.953560 + 0.301204i \(0.902611\pi\)
\(798\) 0 0
\(799\) −7.02138 −0.248399
\(800\) 5.92988i 0.209653i
\(801\) 0 0
\(802\) 38.9382i 1.37496i
\(803\) 103.847 3.66468
\(804\) 0 0
\(805\) −6.41606 −0.226137
\(806\) 47.2689 1.66498
\(807\) 0 0
\(808\) −25.8263 −0.908566
\(809\) 37.8813i 1.33184i 0.746025 + 0.665918i \(0.231960\pi\)
−0.746025 + 0.665918i \(0.768040\pi\)
\(810\) 0 0
\(811\) −53.0728 −1.86364 −0.931819 0.362923i \(-0.881779\pi\)
−0.931819 + 0.362923i \(0.881779\pi\)
\(812\) 13.5872 + 9.41849i 0.476817 + 0.330524i
\(813\) 0 0
\(814\) 54.7489i 1.91895i
\(815\) 23.8666i 0.836010i
\(816\) 0 0
\(817\) 25.3979 0.888562
\(818\) −24.9904 −0.873770
\(819\) 0 0
\(820\) 0.850147i 0.0296884i
\(821\) −23.5402 −0.821558 −0.410779 0.911735i \(-0.634743\pi\)
−0.410779 + 0.911735i \(0.634743\pi\)
\(822\) 0 0
\(823\) 5.33654i 0.186020i 0.995665 + 0.0930100i \(0.0296488\pi\)
−0.995665 + 0.0930100i \(0.970351\pi\)
\(824\) 2.89414i 0.100822i
\(825\) 0 0
\(826\) 61.3863i 2.13590i
\(827\) 16.3727i 0.569334i −0.958626 0.284667i \(-0.908117\pi\)
0.958626 0.284667i \(-0.0918830\pi\)
\(828\) 0 0
\(829\) 4.76206i 0.165393i −0.996575 0.0826966i \(-0.973647\pi\)
0.996575 0.0826966i \(-0.0263532\pi\)
\(830\) 18.7631i 0.651276i
\(831\) 0 0
\(832\) 2.64066 0.0915485
\(833\) 0.830177i 0.0287639i
\(834\) 0 0
\(835\) 18.5182 0.640850
\(836\) 55.4047 1.91621
\(837\) 0 0
\(838\) 21.5604i 0.744791i
\(839\) 1.38600i 0.0478502i 0.999714 + 0.0239251i \(0.00761632\pi\)
−0.999714 + 0.0239251i \(0.992384\pi\)
\(840\) 0 0
\(841\) 10.1756 + 27.1561i 0.350884 + 0.936419i
\(842\) 57.7093 1.98879
\(843\) 0 0
\(844\) 1.06672i 0.0367180i
\(845\) −4.19696 −0.144380
\(846\) 0 0
\(847\) −85.1595 −2.92611
\(848\) 3.20391 0.110023
\(849\) 0 0
\(850\) 6.75570 0.231718
\(851\) 11.4447i 0.392318i
\(852\) 0 0
\(853\) 36.3453i 1.24444i −0.782843 0.622219i \(-0.786231\pi\)
0.782843 0.622219i \(-0.213769\pi\)
\(854\) −27.5034 −0.941145
\(855\) 0 0
\(856\) 10.2951i 0.351881i
\(857\) −42.3964 −1.44823 −0.724116 0.689678i \(-0.757752\pi\)
−0.724116 + 0.689678i \(0.757752\pi\)
\(858\) 0 0
\(859\) 14.1971i 0.484398i −0.970227 0.242199i \(-0.922131\pi\)
0.970227 0.242199i \(-0.0778687\pi\)
\(860\) 4.21205i 0.143630i
\(861\) 0 0
\(862\) 34.5531i 1.17688i
\(863\) 23.0565 0.784853 0.392426 0.919783i \(-0.371636\pi\)
0.392426 + 0.919783i \(0.371636\pi\)
\(864\) 0 0
\(865\) 4.07086 0.138413
\(866\) −36.2851 −1.23302
\(867\) 0 0
\(868\) 19.6266i 0.666170i
\(869\) −7.83397 −0.265749
\(870\) 0 0
\(871\) −22.6241 −0.766589
\(872\) 26.5491i 0.899066i
\(873\) 0 0
\(874\) 31.2294 1.05635
\(875\) −2.60402 −0.0880318
\(876\) 0 0
\(877\) −31.7600 −1.07246 −0.536229 0.844073i \(-0.680152\pi\)
−0.536229 + 0.844073i \(0.680152\pi\)
\(878\) 15.0226i 0.506988i
\(879\) 0 0
\(880\) 32.8425i 1.10712i
\(881\) 12.5647i 0.423316i 0.977344 + 0.211658i \(0.0678864\pi\)
−0.977344 + 0.211658i \(0.932114\pi\)
\(882\) 0 0
\(883\) 39.7039 1.33614 0.668071 0.744098i \(-0.267120\pi\)
0.668071 + 0.744098i \(0.267120\pi\)
\(884\) 18.5245i 0.623048i
\(885\) 0 0
\(886\) 13.4248 0.451014
\(887\) 19.0472i 0.639543i 0.947495 + 0.319771i \(0.103606\pi\)
−0.947495 + 0.319771i \(0.896394\pi\)
\(888\) 0 0
\(889\) 12.8460i 0.430842i
\(890\) 7.75020 0.259787
\(891\) 0 0
\(892\) −31.7814 −1.06412
\(893\) −13.1732 −0.440824
\(894\) 0 0
\(895\) −17.2677 −0.577195
\(896\) 27.9266i 0.932961i
\(897\) 0 0
\(898\) −55.5282 −1.85300
\(899\) 19.6134 28.2945i 0.654144 0.943673i
\(900\) 0 0
\(901\) 2.44360i 0.0814081i
\(902\) 8.49960i 0.283006i
\(903\) 0 0
\(904\) 7.31527 0.243302
\(905\) 8.86803 0.294783
\(906\) 0 0
\(907\) 9.30880i 0.309094i 0.987985 + 0.154547i \(0.0493917\pi\)
−0.987985 + 0.154547i \(0.950608\pi\)
\(908\) −3.92833 −0.130366
\(909\) 0 0
\(910\) 19.2536i 0.638249i
\(911\) 15.8924i 0.526539i −0.964722 0.263270i \(-0.915199\pi\)
0.964722 0.263270i \(-0.0848009\pi\)
\(912\) 0 0
\(913\) 69.5696i 2.30242i
\(914\) 10.6354i 0.351789i
\(915\) 0 0
\(916\) 3.62192i 0.119672i
\(917\) 21.0762i 0.695998i
\(918\) 0 0
\(919\) 26.1892 0.863904 0.431952 0.901897i \(-0.357825\pi\)
0.431952 + 0.901897i \(0.357825\pi\)
\(920\) 3.60695i 0.118918i
\(921\) 0 0
\(922\) 39.8111 1.31111
\(923\) 12.9875 0.427488
\(924\) 0 0
\(925\) 4.64491i 0.152724i
\(926\) 21.6086i 0.710103i
\(927\) 0 0
\(928\) 18.1924 26.2445i 0.597196 0.861519i
\(929\) −44.7041 −1.46669 −0.733347 0.679854i \(-0.762043\pi\)
−0.733347 + 0.679854i \(0.762043\pi\)
\(930\) 0 0
\(931\) 1.55754i 0.0510464i
\(932\) 22.0160 0.721160
\(933\) 0 0
\(934\) −63.8749 −2.09005
\(935\) 25.0487 0.819180
\(936\) 0 0
\(937\) 28.9245 0.944923 0.472462 0.881351i \(-0.343366\pi\)
0.472462 + 0.881351i \(0.343366\pi\)
\(938\) 25.3298i 0.827046i
\(939\) 0 0
\(940\) 2.18467i 0.0712562i
\(941\) −1.16465 −0.0379664 −0.0189832 0.999820i \(-0.506043\pi\)
−0.0189832 + 0.999820i \(0.506043\pi\)
\(942\) 0 0
\(943\) 1.77675i 0.0578589i
\(944\) −65.6850 −2.13786
\(945\) 0 0
\(946\) 42.1113i 1.36916i
\(947\) 12.4430i 0.404343i 0.979350 + 0.202171i \(0.0647998\pi\)
−0.979350 + 0.202171i \(0.935200\pi\)
\(948\) 0 0
\(949\) 65.1423i 2.11461i
\(950\) 12.6747 0.411223
\(951\) 0 0
\(952\) 14.4440 0.468132
\(953\) −15.1160 −0.489655 −0.244827 0.969567i \(-0.578731\pi\)
−0.244827 + 0.969567i \(0.578731\pi\)
\(954\) 0 0
\(955\) 4.68446i 0.151586i
\(956\) 15.9340 0.515343
\(957\) 0 0
\(958\) 47.6933 1.54090
\(959\) 23.6596i 0.764008i
\(960\) 0 0
\(961\) −9.87112 −0.318423
\(962\) 34.3435 1.10728
\(963\) 0 0
\(964\) −10.9523 −0.352751
\(965\) 19.5479i 0.629269i
\(966\) 0 0
\(967\) 51.6458i 1.66082i 0.557156 + 0.830408i \(0.311893\pi\)
−0.557156 + 0.830408i \(0.688107\pi\)
\(968\) 47.8745i 1.53874i
\(969\) 0 0
\(970\) 11.4839 0.368725
\(971\) 7.30486i 0.234424i −0.993107 0.117212i \(-0.962604\pi\)
0.993107 0.117212i \(-0.0373957\pi\)
\(972\) 0 0
\(973\) −36.4452 −1.16838
\(974\) 0.681763i 0.0218451i
\(975\) 0 0
\(976\) 29.4293i 0.942010i
\(977\) 13.5367 0.433077 0.216539 0.976274i \(-0.430523\pi\)
0.216539 + 0.976274i \(0.430523\pi\)
\(978\) 0 0
\(979\) 28.7361 0.918409
\(980\) −0.258306 −0.00825129
\(981\) 0 0
\(982\) 45.6557 1.45693
\(983\) 17.1481i 0.546940i 0.961881 + 0.273470i \(0.0881714\pi\)
−0.961881 + 0.273470i \(0.911829\pi\)
\(984\) 0 0
\(985\) −25.5128 −0.812906
\(986\) −29.8995 20.7260i −0.952193 0.660050i
\(987\) 0 0
\(988\) 34.7549i 1.10570i
\(989\) 8.80290i 0.279916i
\(990\) 0 0
\(991\) 62.2864 1.97859 0.989296 0.145923i \(-0.0466153\pi\)
0.989296 + 0.145923i \(0.0466153\pi\)
\(992\) −37.9100 −1.20365
\(993\) 0 0
\(994\) 14.5407i 0.461202i
\(995\) 1.36177 0.0431711
\(996\) 0 0
\(997\) 17.0038i 0.538516i −0.963068 0.269258i \(-0.913222\pi\)
0.963068 0.269258i \(-0.0867785\pi\)
\(998\) 36.0249i 1.14035i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.d.c.811.3 10
3.2 odd 2 435.2.d.b.376.8 yes 10
15.2 even 4 2175.2.f.c.724.4 10
15.8 even 4 2175.2.f.f.724.7 10
15.14 odd 2 2175.2.d.g.376.3 10
29.28 even 2 inner 1305.2.d.c.811.8 10
87.86 odd 2 435.2.d.b.376.3 10
435.173 even 4 2175.2.f.c.724.3 10
435.347 even 4 2175.2.f.f.724.8 10
435.434 odd 2 2175.2.d.g.376.8 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.d.b.376.3 10 87.86 odd 2
435.2.d.b.376.8 yes 10 3.2 odd 2
1305.2.d.c.811.3 10 1.1 even 1 trivial
1305.2.d.c.811.8 10 29.28 even 2 inner
2175.2.d.g.376.3 10 15.14 odd 2
2175.2.d.g.376.8 10 435.434 odd 2
2175.2.f.c.724.3 10 435.173 even 4
2175.2.f.c.724.4 10 15.2 even 4
2175.2.f.f.724.7 10 15.8 even 4
2175.2.f.f.724.8 10 435.347 even 4