Properties

Label 2175.2.f.c.724.3
Level $2175$
Weight $2$
Character 2175.724
Analytic conductor $17.367$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2175,2,Mod(724,2175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2175.724"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-2,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.281900339052544.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 17x^{8} + 104x^{6} + 273x^{4} + 281x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 435)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 724.3
Root \(1.78296i\) of defining polynomial
Character \(\chi\) \(=\) 2175.724
Dual form 2175.2.f.c.724.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.78296 q^{2} -1.00000 q^{3} +1.17894 q^{4} +1.78296 q^{6} -2.60402i q^{7} +1.46391 q^{8} +1.00000 q^{9} +6.61083i q^{11} -1.17894 q^{12} +4.14692i q^{13} +4.64285i q^{14} -4.96798 q^{16} +3.78904 q^{17} -1.78296 q^{18} +7.10882i q^{19} +2.60402i q^{21} -11.7868i q^{22} -2.46391i q^{23} -1.46391 q^{24} -7.39379i q^{26} -1.00000 q^{27} -3.06999i q^{28} +(-4.42581 + 3.06793i) q^{29} -6.39305i q^{31} +5.92988 q^{32} -6.61083i q^{33} -6.75570 q^{34} +1.17894 q^{36} -4.64491 q^{37} -12.6747i q^{38} -4.14692i q^{39} -0.721109i q^{41} -4.64285i q^{42} -3.57274 q^{43} +7.79380i q^{44} +4.39305i q^{46} +1.85308 q^{47} +4.96798 q^{48} +0.219100 q^{49} -3.78904 q^{51} +4.88898i q^{52} +0.644913i q^{53} +1.78296 q^{54} -3.81205i q^{56} -7.10882i q^{57} +(7.89104 - 5.46999i) q^{58} +13.2217 q^{59} +5.92380i q^{61} +11.3986i q^{62} -2.60402i q^{63} -0.636777 q^{64} +11.7868i q^{66} +5.45564i q^{67} +4.46706 q^{68} +2.46391i q^{69} -3.13184 q^{71} +1.46391 q^{72} -15.7086 q^{73} +8.28169 q^{74} +8.38090i q^{76} +17.2147 q^{77} +7.39379i q^{78} +1.18502i q^{79} +1.00000 q^{81} +1.28571i q^{82} -10.5236i q^{83} +3.06999i q^{84} +6.37004 q^{86} +(4.42581 - 3.06793i) q^{87} +9.67767i q^{88} +4.34682i q^{89} +10.7987 q^{91} -2.90481i q^{92} +6.39305i q^{93} -3.30396 q^{94} -5.92988 q^{96} +6.44090 q^{97} -0.390646 q^{98} +6.61083i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{2} - 10 q^{3} + 14 q^{4} + 2 q^{6} + 10 q^{9} - 14 q^{12} - 2 q^{16} - 12 q^{17} - 2 q^{18} - 10 q^{27} - 16 q^{29} - 2 q^{32} + 6 q^{34} + 14 q^{36} - 2 q^{37} + 38 q^{43} + 64 q^{47} + 2 q^{48}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1451\) \(2002\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.78296 −1.26074 −0.630371 0.776294i \(-0.717097\pi\)
−0.630371 + 0.776294i \(0.717097\pi\)
\(3\) −1.00000 −0.577350
\(4\) 1.17894 0.589471
\(5\) 0 0
\(6\) 1.78296 0.727890
\(7\) 2.60402i 0.984226i −0.870531 0.492113i \(-0.836225\pi\)
0.870531 0.492113i \(-0.163775\pi\)
\(8\) 1.46391 0.517571
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 6.61083i 1.99324i 0.0821418 + 0.996621i \(0.473824\pi\)
−0.0821418 + 0.996621i \(0.526176\pi\)
\(12\) −1.17894 −0.340331
\(13\) 4.14692i 1.15015i 0.818101 + 0.575075i \(0.195027\pi\)
−0.818101 + 0.575075i \(0.804973\pi\)
\(14\) 4.64285i 1.24085i
\(15\) 0 0
\(16\) −4.96798 −1.24199
\(17\) 3.78904 0.918976 0.459488 0.888184i \(-0.348033\pi\)
0.459488 + 0.888184i \(0.348033\pi\)
\(18\) −1.78296 −0.420247
\(19\) 7.10882i 1.63088i 0.578844 + 0.815438i \(0.303504\pi\)
−0.578844 + 0.815438i \(0.696496\pi\)
\(20\) 0 0
\(21\) 2.60402i 0.568243i
\(22\) 11.7868i 2.51296i
\(23\) 2.46391i 0.513761i −0.966443 0.256881i \(-0.917305\pi\)
0.966443 0.256881i \(-0.0826947\pi\)
\(24\) −1.46391 −0.298820
\(25\) 0 0
\(26\) 7.39379i 1.45004i
\(27\) −1.00000 −0.192450
\(28\) 3.06999i 0.580173i
\(29\) −4.42581 + 3.06793i −0.821853 + 0.569700i
\(30\) 0 0
\(31\) 6.39305i 1.14823i −0.818776 0.574113i \(-0.805347\pi\)
0.818776 0.574113i \(-0.194653\pi\)
\(32\) 5.92988 1.04826
\(33\) 6.61083i 1.15080i
\(34\) −6.75570 −1.15859
\(35\) 0 0
\(36\) 1.17894 0.196490
\(37\) −4.64491 −0.763619 −0.381809 0.924241i \(-0.624699\pi\)
−0.381809 + 0.924241i \(0.624699\pi\)
\(38\) 12.6747i 2.05611i
\(39\) 4.14692i 0.664039i
\(40\) 0 0
\(41\) 0.721109i 0.112618i −0.998413 0.0563092i \(-0.982067\pi\)
0.998413 0.0563092i \(-0.0179333\pi\)
\(42\) 4.64285i 0.716408i
\(43\) −3.57274 −0.544837 −0.272419 0.962179i \(-0.587824\pi\)
−0.272419 + 0.962179i \(0.587824\pi\)
\(44\) 7.79380i 1.17496i
\(45\) 0 0
\(46\) 4.39305i 0.647720i
\(47\) 1.85308 0.270299 0.135150 0.990825i \(-0.456849\pi\)
0.135150 + 0.990825i \(0.456849\pi\)
\(48\) 4.96798 0.717066
\(49\) 0.219100 0.0313000
\(50\) 0 0
\(51\) −3.78904 −0.530571
\(52\) 4.88898i 0.677980i
\(53\) 0.644913i 0.0885856i 0.999019 + 0.0442928i \(0.0141035\pi\)
−0.999019 + 0.0442928i \(0.985897\pi\)
\(54\) 1.78296 0.242630
\(55\) 0 0
\(56\) 3.81205i 0.509406i
\(57\) 7.10882i 0.941587i
\(58\) 7.89104 5.46999i 1.03614 0.718245i
\(59\) 13.2217 1.72131 0.860657 0.509185i \(-0.170053\pi\)
0.860657 + 0.509185i \(0.170053\pi\)
\(60\) 0 0
\(61\) 5.92380i 0.758465i 0.925301 + 0.379233i \(0.123812\pi\)
−0.925301 + 0.379233i \(0.876188\pi\)
\(62\) 11.3986i 1.44762i
\(63\) 2.60402i 0.328075i
\(64\) −0.636777 −0.0795971
\(65\) 0 0
\(66\) 11.7868i 1.45086i
\(67\) 5.45564i 0.666513i 0.942836 + 0.333256i \(0.108147\pi\)
−0.942836 + 0.333256i \(0.891853\pi\)
\(68\) 4.46706 0.541710
\(69\) 2.46391i 0.296620i
\(70\) 0 0
\(71\) −3.13184 −0.371681 −0.185840 0.982580i \(-0.559501\pi\)
−0.185840 + 0.982580i \(0.559501\pi\)
\(72\) 1.46391 0.172524
\(73\) −15.7086 −1.83855 −0.919276 0.393614i \(-0.871225\pi\)
−0.919276 + 0.393614i \(0.871225\pi\)
\(74\) 8.28169 0.962727
\(75\) 0 0
\(76\) 8.38090i 0.961355i
\(77\) 17.2147 1.96180
\(78\) 7.39379i 0.837182i
\(79\) 1.18502i 0.133325i 0.997776 + 0.0666626i \(0.0212351\pi\)
−0.997776 + 0.0666626i \(0.978765\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 1.28571i 0.141983i
\(83\) 10.5236i 1.15511i −0.816351 0.577556i \(-0.804007\pi\)
0.816351 0.577556i \(-0.195993\pi\)
\(84\) 3.06999i 0.334963i
\(85\) 0 0
\(86\) 6.37004 0.686899
\(87\) 4.42581 3.06793i 0.474497 0.328916i
\(88\) 9.67767i 1.03164i
\(89\) 4.34682i 0.460762i 0.973101 + 0.230381i \(0.0739972\pi\)
−0.973101 + 0.230381i \(0.926003\pi\)
\(90\) 0 0
\(91\) 10.7987 1.13201
\(92\) 2.90481i 0.302847i
\(93\) 6.39305i 0.662929i
\(94\) −3.30396 −0.340778
\(95\) 0 0
\(96\) −5.92988 −0.605216
\(97\) 6.44090 0.653974 0.326987 0.945029i \(-0.393967\pi\)
0.326987 + 0.945029i \(0.393967\pi\)
\(98\) −0.390646 −0.0394612
\(99\) 6.61083i 0.664414i
\(100\) 0 0
\(101\) 17.6420i 1.75544i −0.479171 0.877721i \(-0.659063\pi\)
0.479171 0.877721i \(-0.340937\pi\)
\(102\) 6.75570 0.668914
\(103\) 1.97699i 0.194798i 0.995245 + 0.0973992i \(0.0310524\pi\)
−0.995245 + 0.0973992i \(0.968948\pi\)
\(104\) 6.07073i 0.595284i
\(105\) 0 0
\(106\) 1.14985i 0.111684i
\(107\) 7.03263i 0.679870i −0.940449 0.339935i \(-0.889595\pi\)
0.940449 0.339935i \(-0.110405\pi\)
\(108\) −1.17894 −0.113444
\(109\) −18.1357 −1.73709 −0.868544 0.495613i \(-0.834944\pi\)
−0.868544 + 0.495613i \(0.834944\pi\)
\(110\) 0 0
\(111\) 4.64491 0.440876
\(112\) 12.9367i 1.22240i
\(113\) −4.99707 −0.470085 −0.235042 0.971985i \(-0.575523\pi\)
−0.235042 + 0.971985i \(0.575523\pi\)
\(114\) 12.6747i 1.18710i
\(115\) 0 0
\(116\) −5.21778 + 3.61691i −0.484459 + 0.335822i
\(117\) 4.14692i 0.383383i
\(118\) −23.5737 −2.17013
\(119\) 9.86671i 0.904480i
\(120\) 0 0
\(121\) −32.7031 −2.97301
\(122\) 10.5619i 0.956229i
\(123\) 0.721109i 0.0650202i
\(124\) 7.53704i 0.676847i
\(125\) 0 0
\(126\) 4.64285i 0.413618i
\(127\) −4.93316 −0.437747 −0.218874 0.975753i \(-0.570238\pi\)
−0.218874 + 0.975753i \(0.570238\pi\)
\(128\) −10.7244 −0.947913
\(129\) 3.57274 0.314562
\(130\) 0 0
\(131\) 8.09374i 0.707153i 0.935406 + 0.353577i \(0.115035\pi\)
−0.935406 + 0.353577i \(0.884965\pi\)
\(132\) 7.79380i 0.678363i
\(133\) 18.5115 1.60515
\(134\) 9.72719i 0.840301i
\(135\) 0 0
\(136\) 5.54681 0.475635
\(137\) −9.08581 −0.776253 −0.388127 0.921606i \(-0.626878\pi\)
−0.388127 + 0.921606i \(0.626878\pi\)
\(138\) 4.39305i 0.373961i
\(139\) 13.9957 1.18710 0.593552 0.804796i \(-0.297725\pi\)
0.593552 + 0.804796i \(0.297725\pi\)
\(140\) 0 0
\(141\) −1.85308 −0.156057
\(142\) 5.58394 0.468593
\(143\) −27.4146 −2.29253
\(144\) −4.96798 −0.413998
\(145\) 0 0
\(146\) 28.0078 2.31794
\(147\) −0.219100 −0.0180711
\(148\) −5.47609 −0.450132
\(149\) 6.57405 0.538568 0.269284 0.963061i \(-0.413213\pi\)
0.269284 + 0.963061i \(0.413213\pi\)
\(150\) 0 0
\(151\) −10.8570 −0.883527 −0.441764 0.897131i \(-0.645647\pi\)
−0.441764 + 0.897131i \(0.645647\pi\)
\(152\) 10.4067i 0.844094i
\(153\) 3.78904 0.306325
\(154\) −30.6931 −2.47332
\(155\) 0 0
\(156\) 4.88898i 0.391432i
\(157\) −13.0637 −1.04259 −0.521297 0.853375i \(-0.674552\pi\)
−0.521297 + 0.853375i \(0.674552\pi\)
\(158\) 2.11284i 0.168089i
\(159\) 0.644913i 0.0511449i
\(160\) 0 0
\(161\) −6.41606 −0.505657
\(162\) −1.78296 −0.140082
\(163\) −23.8666 −1.86937 −0.934687 0.355471i \(-0.884321\pi\)
−0.934687 + 0.355471i \(0.884321\pi\)
\(164\) 0.850147i 0.0663853i
\(165\) 0 0
\(166\) 18.7631i 1.45630i
\(167\) 18.5182i 1.43298i −0.697595 0.716492i \(-0.745747\pi\)
0.697595 0.716492i \(-0.254253\pi\)
\(168\) 3.81205i 0.294106i
\(169\) −4.19696 −0.322843
\(170\) 0 0
\(171\) 7.10882i 0.543625i
\(172\) −4.21205 −0.321166
\(173\) 4.07086i 0.309502i 0.987954 + 0.154751i \(0.0494575\pi\)
−0.987954 + 0.154751i \(0.950543\pi\)
\(174\) −7.89104 + 5.46999i −0.598218 + 0.414679i
\(175\) 0 0
\(176\) 32.8425i 2.47560i
\(177\) −13.2217 −0.993801
\(178\) 7.75020i 0.580902i
\(179\) 17.2677 1.29065 0.645324 0.763909i \(-0.276722\pi\)
0.645324 + 0.763909i \(0.276722\pi\)
\(180\) 0 0
\(181\) −8.86803 −0.659156 −0.329578 0.944128i \(-0.606906\pi\)
−0.329578 + 0.944128i \(0.606906\pi\)
\(182\) −19.2536 −1.42717
\(183\) 5.92380i 0.437900i
\(184\) 3.60695i 0.265908i
\(185\) 0 0
\(186\) 11.3986i 0.835782i
\(187\) 25.0487i 1.83174i
\(188\) 2.18467 0.159334
\(189\) 2.60402i 0.189414i
\(190\) 0 0
\(191\) 4.68446i 0.338956i −0.985534 0.169478i \(-0.945792\pi\)
0.985534 0.169478i \(-0.0542081\pi\)
\(192\) 0.636777 0.0459554
\(193\) 19.5479 1.40709 0.703544 0.710651i \(-0.251600\pi\)
0.703544 + 0.710651i \(0.251600\pi\)
\(194\) −11.4839 −0.824493
\(195\) 0 0
\(196\) 0.258306 0.0184504
\(197\) 25.5128i 1.81771i 0.417109 + 0.908856i \(0.363043\pi\)
−0.417109 + 0.908856i \(0.636957\pi\)
\(198\) 11.7868i 0.837655i
\(199\) 1.36177 0.0965335 0.0482667 0.998834i \(-0.484630\pi\)
0.0482667 + 0.998834i \(0.484630\pi\)
\(200\) 0 0
\(201\) 5.45564i 0.384811i
\(202\) 31.4549i 2.21316i
\(203\) 7.98893 + 11.5249i 0.560713 + 0.808889i
\(204\) −4.46706 −0.312757
\(205\) 0 0
\(206\) 3.52489i 0.245591i
\(207\) 2.46391i 0.171254i
\(208\) 20.6018i 1.42848i
\(209\) −46.9953 −3.25073
\(210\) 0 0
\(211\) 0.904811i 0.0622897i −0.999515 0.0311449i \(-0.990085\pi\)
0.999515 0.0311449i \(-0.00991532\pi\)
\(212\) 0.760316i 0.0522187i
\(213\) 3.13184 0.214590
\(214\) 12.5389i 0.857141i
\(215\) 0 0
\(216\) −1.46391 −0.0996065
\(217\) −16.6476 −1.13011
\(218\) 32.3352 2.19002
\(219\) 15.7086 1.06149
\(220\) 0 0
\(221\) 15.7128i 1.05696i
\(222\) −8.28169 −0.555831
\(223\) 26.9575i 1.80521i 0.430471 + 0.902605i \(0.358348\pi\)
−0.430471 + 0.902605i \(0.641652\pi\)
\(224\) 15.4415i 1.03173i
\(225\) 0 0
\(226\) 8.90957 0.592656
\(227\) 3.33208i 0.221158i 0.993867 + 0.110579i \(0.0352705\pi\)
−0.993867 + 0.110579i \(0.964730\pi\)
\(228\) 8.38090i 0.555039i
\(229\) 3.07218i 0.203015i −0.994835 0.101508i \(-0.967633\pi\)
0.994835 0.101508i \(-0.0323666\pi\)
\(230\) 0 0
\(231\) −17.2147 −1.13265
\(232\) −6.47900 + 4.49117i −0.425367 + 0.294860i
\(233\) 18.6744i 1.22340i 0.791090 + 0.611700i \(0.209514\pi\)
−0.791090 + 0.611700i \(0.790486\pi\)
\(234\) 7.39379i 0.483347i
\(235\) 0 0
\(236\) 15.5876 1.01467
\(237\) 1.18502i 0.0769753i
\(238\) 17.5919i 1.14032i
\(239\) −13.5155 −0.874246 −0.437123 0.899402i \(-0.644003\pi\)
−0.437123 + 0.899402i \(0.644003\pi\)
\(240\) 0 0
\(241\) 9.28996 0.598419 0.299209 0.954187i \(-0.403277\pi\)
0.299209 + 0.954187i \(0.403277\pi\)
\(242\) 58.3083 3.74820
\(243\) −1.00000 −0.0641500
\(244\) 6.98383i 0.447094i
\(245\) 0 0
\(246\) 1.28571i 0.0819738i
\(247\) −29.4797 −1.87575
\(248\) 9.35886i 0.594288i
\(249\) 10.5236i 0.666904i
\(250\) 0 0
\(251\) 7.79989i 0.492325i 0.969229 + 0.246162i \(0.0791697\pi\)
−0.969229 + 0.246162i \(0.920830\pi\)
\(252\) 3.06999i 0.193391i
\(253\) 16.2885 1.02405
\(254\) 8.79562 0.551886
\(255\) 0 0
\(256\) 20.3947 1.27467
\(257\) 3.42838i 0.213856i −0.994267 0.106928i \(-0.965898\pi\)
0.994267 0.106928i \(-0.0341015\pi\)
\(258\) −6.37004 −0.396581
\(259\) 12.0954i 0.751573i
\(260\) 0 0
\(261\) −4.42581 + 3.06793i −0.273951 + 0.189900i
\(262\) 14.4308i 0.891538i
\(263\) 15.1455 0.933910 0.466955 0.884281i \(-0.345351\pi\)
0.466955 + 0.884281i \(0.345351\pi\)
\(264\) 9.67767i 0.595620i
\(265\) 0 0
\(266\) −33.0052 −2.02368
\(267\) 4.34682i 0.266021i
\(268\) 6.43189i 0.392890i
\(269\) 25.6963i 1.56673i 0.621561 + 0.783366i \(0.286499\pi\)
−0.621561 + 0.783366i \(0.713501\pi\)
\(270\) 0 0
\(271\) 5.24468i 0.318592i −0.987231 0.159296i \(-0.949078\pi\)
0.987231 0.159296i \(-0.0509224\pi\)
\(272\) −18.8239 −1.14136
\(273\) −10.7987 −0.653564
\(274\) 16.1996 0.978656
\(275\) 0 0
\(276\) 2.90481i 0.174849i
\(277\) 15.4448i 0.927987i −0.885839 0.463994i \(-0.846416\pi\)
0.885839 0.463994i \(-0.153584\pi\)
\(278\) −24.9538 −1.49663
\(279\) 6.39305i 0.382742i
\(280\) 0 0
\(281\) −22.1658 −1.32230 −0.661149 0.750254i \(-0.729931\pi\)
−0.661149 + 0.750254i \(0.729931\pi\)
\(282\) 3.30396 0.196748
\(283\) 13.1225i 0.780049i −0.920804 0.390025i \(-0.872466\pi\)
0.920804 0.390025i \(-0.127534\pi\)
\(284\) −3.69226 −0.219095
\(285\) 0 0
\(286\) 48.8791 2.89028
\(287\) −1.87778 −0.110842
\(288\) 5.92988 0.349422
\(289\) −2.64320 −0.155482
\(290\) 0 0
\(291\) −6.44090 −0.377572
\(292\) −18.5195 −1.08377
\(293\) −17.1631 −1.00268 −0.501339 0.865251i \(-0.667159\pi\)
−0.501339 + 0.865251i \(0.667159\pi\)
\(294\) 0.390646 0.0227829
\(295\) 0 0
\(296\) −6.79974 −0.395227
\(297\) 6.61083i 0.383599i
\(298\) −11.7213 −0.678995
\(299\) 10.2176 0.590902
\(300\) 0 0
\(301\) 9.30346i 0.536243i
\(302\) 19.3575 1.11390
\(303\) 17.6420i 1.01351i
\(304\) 35.3165i 2.02554i
\(305\) 0 0
\(306\) −6.75570 −0.386197
\(307\) −8.04069 −0.458906 −0.229453 0.973320i \(-0.573694\pi\)
−0.229453 + 0.973320i \(0.573694\pi\)
\(308\) 20.2952 1.15642
\(309\) 1.97699i 0.112467i
\(310\) 0 0
\(311\) 3.67741i 0.208527i 0.994550 + 0.104263i \(0.0332485\pi\)
−0.994550 + 0.104263i \(0.966751\pi\)
\(312\) 6.07073i 0.343687i
\(313\) 17.6267i 0.996318i 0.867086 + 0.498159i \(0.165990\pi\)
−0.867086 + 0.498159i \(0.834010\pi\)
\(314\) 23.2920 1.31444
\(315\) 0 0
\(316\) 1.39707i 0.0785914i
\(317\) 17.4787 0.981699 0.490850 0.871244i \(-0.336686\pi\)
0.490850 + 0.871244i \(0.336686\pi\)
\(318\) 1.14985i 0.0644806i
\(319\) −20.2816 29.2583i −1.13555 1.63815i
\(320\) 0 0
\(321\) 7.03263i 0.392523i
\(322\) 11.4396 0.637503
\(323\) 26.9356i 1.49874i
\(324\) 1.17894 0.0654968
\(325\) 0 0
\(326\) 42.5531 2.35680
\(327\) 18.1357 1.00291
\(328\) 1.05564i 0.0582880i
\(329\) 4.82544i 0.266035i
\(330\) 0 0
\(331\) 22.9479i 1.26133i 0.776054 + 0.630666i \(0.217218\pi\)
−0.776054 + 0.630666i \(0.782782\pi\)
\(332\) 12.4067i 0.680905i
\(333\) −4.64491 −0.254540
\(334\) 33.0172i 1.80662i
\(335\) 0 0
\(336\) 12.9367i 0.705755i
\(337\) −25.2051 −1.37301 −0.686505 0.727125i \(-0.740856\pi\)
−0.686505 + 0.727125i \(0.740856\pi\)
\(338\) 7.48302 0.407022
\(339\) 4.99707 0.271404
\(340\) 0 0
\(341\) 42.2634 2.28869
\(342\) 12.6747i 0.685372i
\(343\) 18.7987i 1.01503i
\(344\) −5.23017 −0.281992
\(345\) 0 0
\(346\) 7.25817i 0.390202i
\(347\) 21.1875i 1.13740i 0.822544 + 0.568701i \(0.192554\pi\)
−0.822544 + 0.568701i \(0.807446\pi\)
\(348\) 5.21778 3.61691i 0.279702 0.193887i
\(349\) −30.9222 −1.65523 −0.827614 0.561297i \(-0.810302\pi\)
−0.827614 + 0.561297i \(0.810302\pi\)
\(350\) 0 0
\(351\) 4.14692i 0.221346i
\(352\) 39.2015i 2.08944i
\(353\) 27.0800i 1.44132i 0.693288 + 0.720660i \(0.256161\pi\)
−0.693288 + 0.720660i \(0.743839\pi\)
\(354\) 23.5737 1.25293
\(355\) 0 0
\(356\) 5.12465i 0.271606i
\(357\) 9.86671i 0.522202i
\(358\) −30.7876 −1.62717
\(359\) 4.10164i 0.216476i −0.994125 0.108238i \(-0.965479\pi\)
0.994125 0.108238i \(-0.0345209\pi\)
\(360\) 0 0
\(361\) −31.5354 −1.65976
\(362\) 15.8113 0.831025
\(363\) 32.7031 1.71647
\(364\) 12.7310 0.667285
\(365\) 0 0
\(366\) 10.5619i 0.552079i
\(367\) 3.44492 0.179823 0.0899116 0.995950i \(-0.471342\pi\)
0.0899116 + 0.995950i \(0.471342\pi\)
\(368\) 12.2407i 0.638089i
\(369\) 0.721109i 0.0375394i
\(370\) 0 0
\(371\) 1.67936 0.0871882
\(372\) 7.53704i 0.390778i
\(373\) 1.89363i 0.0980485i −0.998798 0.0490243i \(-0.984389\pi\)
0.998798 0.0490243i \(-0.0156112\pi\)
\(374\) 44.6608i 2.30935i
\(375\) 0 0
\(376\) 2.71274 0.139899
\(377\) −12.7225 18.3535i −0.655240 0.945254i
\(378\) 4.64285i 0.238803i
\(379\) 19.0161i 0.976791i −0.872622 0.488395i \(-0.837582\pi\)
0.872622 0.488395i \(-0.162418\pi\)
\(380\) 0 0
\(381\) 4.93316 0.252733
\(382\) 8.35220i 0.427336i
\(383\) 33.6337i 1.71860i −0.511471 0.859301i \(-0.670899\pi\)
0.511471 0.859301i \(-0.329101\pi\)
\(384\) 10.7244 0.547278
\(385\) 0 0
\(386\) −34.8531 −1.77398
\(387\) −3.57274 −0.181612
\(388\) 7.59345 0.385499
\(389\) 23.2259i 1.17760i 0.808278 + 0.588800i \(0.200400\pi\)
−0.808278 + 0.588800i \(0.799600\pi\)
\(390\) 0 0
\(391\) 9.33585i 0.472134i
\(392\) 0.320743 0.0162000
\(393\) 8.09374i 0.408275i
\(394\) 45.4883i 2.29167i
\(395\) 0 0
\(396\) 7.79380i 0.391653i
\(397\) 4.93046i 0.247453i −0.992316 0.123726i \(-0.960515\pi\)
0.992316 0.123726i \(-0.0394845\pi\)
\(398\) −2.42798 −0.121704
\(399\) −18.5115 −0.926734
\(400\) 0 0
\(401\) 21.8391 1.09059 0.545296 0.838243i \(-0.316417\pi\)
0.545296 + 0.838243i \(0.316417\pi\)
\(402\) 9.72719i 0.485148i
\(403\) 26.5115 1.32063
\(404\) 20.7989i 1.03478i
\(405\) 0 0
\(406\) −14.2439 20.5484i −0.706915 1.01980i
\(407\) 30.7067i 1.52208i
\(408\) −5.54681 −0.274608
\(409\) 14.0163i 0.693060i −0.938039 0.346530i \(-0.887360\pi\)
0.938039 0.346530i \(-0.112640\pi\)
\(410\) 0 0
\(411\) 9.08581 0.448170
\(412\) 2.33076i 0.114828i
\(413\) 34.4294i 1.69416i
\(414\) 4.39305i 0.215907i
\(415\) 0 0
\(416\) 24.5908i 1.20566i
\(417\) −13.9957 −0.685375
\(418\) 83.7906 4.09833
\(419\) −12.0925 −0.590756 −0.295378 0.955381i \(-0.595446\pi\)
−0.295378 + 0.955381i \(0.595446\pi\)
\(420\) 0 0
\(421\) 32.3671i 1.57748i −0.614728 0.788739i \(-0.710734\pi\)
0.614728 0.788739i \(-0.289266\pi\)
\(422\) 1.61324i 0.0785313i
\(423\) 1.85308 0.0900997
\(424\) 0.944095i 0.0458493i
\(425\) 0 0
\(426\) −5.58394 −0.270543
\(427\) 15.4257 0.746501
\(428\) 8.29107i 0.400764i
\(429\) 27.4146 1.32359
\(430\) 0 0
\(431\) −19.3797 −0.933485 −0.466743 0.884393i \(-0.654573\pi\)
−0.466743 + 0.884393i \(0.654573\pi\)
\(432\) 4.96798 0.239022
\(433\) −20.3511 −0.978010 −0.489005 0.872281i \(-0.662640\pi\)
−0.489005 + 0.872281i \(0.662640\pi\)
\(434\) 29.6820 1.42478
\(435\) 0 0
\(436\) −21.3810 −1.02396
\(437\) 17.5155 0.837881
\(438\) −28.0078 −1.33826
\(439\) 8.42565 0.402134 0.201067 0.979577i \(-0.435559\pi\)
0.201067 + 0.979577i \(0.435559\pi\)
\(440\) 0 0
\(441\) 0.219100 0.0104333
\(442\) 28.0154i 1.33255i
\(443\) −7.52948 −0.357736 −0.178868 0.983873i \(-0.557244\pi\)
−0.178868 + 0.983873i \(0.557244\pi\)
\(444\) 5.47609 0.259884
\(445\) 0 0
\(446\) 48.0642i 2.27590i
\(447\) −6.57405 −0.310942
\(448\) 1.65818i 0.0783415i
\(449\) 31.1439i 1.46977i 0.678192 + 0.734885i \(0.262764\pi\)
−0.678192 + 0.734885i \(0.737236\pi\)
\(450\) 0 0
\(451\) 4.76713 0.224476
\(452\) −5.89126 −0.277102
\(453\) 10.8570 0.510105
\(454\) 5.94095i 0.278823i
\(455\) 0 0
\(456\) 10.4067i 0.487338i
\(457\) 5.96504i 0.279033i 0.990220 + 0.139516i \(0.0445548\pi\)
−0.990220 + 0.139516i \(0.955445\pi\)
\(458\) 5.47757i 0.255950i
\(459\) −3.78904 −0.176857
\(460\) 0 0
\(461\) 22.3287i 1.03995i 0.854182 + 0.519975i \(0.174059\pi\)
−0.854182 + 0.519975i \(0.825941\pi\)
\(462\) 30.6931 1.42797
\(463\) 12.1195i 0.563242i 0.959526 + 0.281621i \(0.0908721\pi\)
−0.959526 + 0.281621i \(0.909128\pi\)
\(464\) 21.9873 15.2414i 1.02074 0.707564i
\(465\) 0 0
\(466\) 33.2957i 1.54239i
\(467\) −35.8252 −1.65779 −0.828896 0.559402i \(-0.811031\pi\)
−0.828896 + 0.559402i \(0.811031\pi\)
\(468\) 4.88898i 0.225993i
\(469\) 14.2066 0.655999
\(470\) 0 0
\(471\) 13.0637 0.601942
\(472\) 19.3553 0.890902
\(473\) 23.6188i 1.08599i
\(474\) 2.11284i 0.0970461i
\(475\) 0 0
\(476\) 11.6323i 0.533165i
\(477\) 0.644913i 0.0295285i
\(478\) 24.0976 1.10220
\(479\) 26.7495i 1.22222i −0.791547 0.611108i \(-0.790724\pi\)
0.791547 0.611108i \(-0.209276\pi\)
\(480\) 0 0
\(481\) 19.2621i 0.878276i
\(482\) −16.5636 −0.754452
\(483\) 6.41606 0.291941
\(484\) −38.5551 −1.75251
\(485\) 0 0
\(486\) 1.78296 0.0808767
\(487\) 0.382377i 0.0173272i 0.999962 + 0.00866358i \(0.00275774\pi\)
−0.999962 + 0.00866358i \(0.997242\pi\)
\(488\) 8.67192i 0.392560i
\(489\) 23.8666 1.07928
\(490\) 0 0
\(491\) 25.6067i 1.15561i 0.816174 + 0.577807i \(0.196091\pi\)
−0.816174 + 0.577807i \(0.803909\pi\)
\(492\) 0.850147i 0.0383276i
\(493\) −16.7696 + 11.6245i −0.755263 + 0.523541i
\(494\) 52.5612 2.36484
\(495\) 0 0
\(496\) 31.7606i 1.42609i
\(497\) 8.15535i 0.365818i
\(498\) 18.7631i 0.840794i
\(499\) 20.2051 0.904505 0.452252 0.891890i \(-0.350621\pi\)
0.452252 + 0.891890i \(0.350621\pi\)
\(500\) 0 0
\(501\) 18.5182i 0.827334i
\(502\) 13.9069i 0.620695i
\(503\) −6.63918 −0.296027 −0.148013 0.988985i \(-0.547288\pi\)
−0.148013 + 0.988985i \(0.547288\pi\)
\(504\) 3.81205i 0.169802i
\(505\) 0 0
\(506\) −29.0417 −1.29106
\(507\) 4.19696 0.186394
\(508\) −5.81591 −0.258039
\(509\) 6.71577 0.297671 0.148836 0.988862i \(-0.452447\pi\)
0.148836 + 0.988862i \(0.452447\pi\)
\(510\) 0 0
\(511\) 40.9054i 1.80955i
\(512\) −14.9142 −0.659119
\(513\) 7.10882i 0.313862i
\(514\) 6.11266i 0.269618i
\(515\) 0 0
\(516\) 4.21205 0.185425
\(517\) 12.2504i 0.538771i
\(518\) 21.5657i 0.947540i
\(519\) 4.07086i 0.178691i
\(520\) 0 0
\(521\) 43.7273 1.91573 0.957864 0.287223i \(-0.0927320\pi\)
0.957864 + 0.287223i \(0.0927320\pi\)
\(522\) 7.89104 5.46999i 0.345382 0.239415i
\(523\) 24.1412i 1.05562i 0.849362 + 0.527811i \(0.176987\pi\)
−0.849362 + 0.527811i \(0.823013\pi\)
\(524\) 9.54205i 0.416847i
\(525\) 0 0
\(526\) −27.0038 −1.17742
\(527\) 24.2235i 1.05519i
\(528\) 32.8425i 1.42929i
\(529\) 16.9291 0.736050
\(530\) 0 0
\(531\) 13.2217 0.573771
\(532\) 21.8240 0.946190
\(533\) 2.99038 0.129528
\(534\) 7.75020i 0.335384i
\(535\) 0 0
\(536\) 7.98658i 0.344968i
\(537\) −17.2677 −0.745156
\(538\) 45.8155i 1.97524i
\(539\) 1.44843i 0.0623884i
\(540\) 0 0
\(541\) 12.6252i 0.542800i −0.962467 0.271400i \(-0.912513\pi\)
0.962467 0.271400i \(-0.0874867\pi\)
\(542\) 9.35105i 0.401662i
\(543\) 8.86803 0.380564
\(544\) 22.4685 0.963331
\(545\) 0 0
\(546\) 19.2536 0.823976
\(547\) 12.2476i 0.523670i −0.965113 0.261835i \(-0.915672\pi\)
0.965113 0.261835i \(-0.0843276\pi\)
\(548\) −10.7117 −0.457579
\(549\) 5.92380i 0.252822i
\(550\) 0 0
\(551\) −21.8094 31.4623i −0.929110 1.34034i
\(552\) 3.60695i 0.153522i
\(553\) 3.08581 0.131222
\(554\) 27.5374i 1.16995i
\(555\) 0 0
\(556\) 16.5002 0.699764
\(557\) 21.9729i 0.931024i −0.885042 0.465512i \(-0.845870\pi\)
0.885042 0.465512i \(-0.154130\pi\)
\(558\) 11.3986i 0.482539i
\(559\) 14.8159i 0.626644i
\(560\) 0 0
\(561\) 25.0487i 1.05756i
\(562\) 39.5206 1.66708
\(563\) 32.5545 1.37201 0.686004 0.727598i \(-0.259363\pi\)
0.686004 + 0.727598i \(0.259363\pi\)
\(564\) −2.18467 −0.0919913
\(565\) 0 0
\(566\) 23.3968i 0.983441i
\(567\) 2.60402i 0.109358i
\(568\) −4.58473 −0.192371
\(569\) 33.2040i 1.39199i 0.718049 + 0.695993i \(0.245036\pi\)
−0.718049 + 0.695993i \(0.754964\pi\)
\(570\) 0 0
\(571\) 17.3794 0.727305 0.363653 0.931535i \(-0.381530\pi\)
0.363653 + 0.931535i \(0.381530\pi\)
\(572\) −32.3203 −1.35138
\(573\) 4.68446i 0.195696i
\(574\) 3.34800 0.139743
\(575\) 0 0
\(576\) −0.636777 −0.0265324
\(577\) 38.4323 1.59996 0.799980 0.600027i \(-0.204844\pi\)
0.799980 + 0.600027i \(0.204844\pi\)
\(578\) 4.71272 0.196023
\(579\) −19.5479 −0.812383
\(580\) 0 0
\(581\) −27.4035 −1.13689
\(582\) 11.4839 0.476021
\(583\) −4.26341 −0.176573
\(584\) −22.9960 −0.951580
\(585\) 0 0
\(586\) 30.6011 1.26412
\(587\) 16.8853i 0.696931i −0.937322 0.348466i \(-0.886703\pi\)
0.937322 0.348466i \(-0.113297\pi\)
\(588\) −0.258306 −0.0106524
\(589\) 45.4471 1.87261
\(590\) 0 0
\(591\) 25.5128i 1.04946i
\(592\) 23.0758 0.948411
\(593\) 12.1712i 0.499811i 0.968270 + 0.249906i \(0.0803996\pi\)
−0.968270 + 0.249906i \(0.919600\pi\)
\(594\) 11.7868i 0.483620i
\(595\) 0 0
\(596\) 7.75043 0.317470
\(597\) −1.36177 −0.0557336
\(598\) −18.2176 −0.744975
\(599\) 18.4881i 0.755403i 0.925927 + 0.377701i \(0.123285\pi\)
−0.925927 + 0.377701i \(0.876715\pi\)
\(600\) 0 0
\(601\) 25.7139i 1.04889i 0.851443 + 0.524446i \(0.175728\pi\)
−0.851443 + 0.524446i \(0.824272\pi\)
\(602\) 16.5877i 0.676064i
\(603\) 5.45564i 0.222171i
\(604\) −12.7997 −0.520814
\(605\) 0 0
\(606\) 31.4549i 1.27777i
\(607\) 24.3863 0.989810 0.494905 0.868947i \(-0.335203\pi\)
0.494905 + 0.868947i \(0.335203\pi\)
\(608\) 42.1545i 1.70959i
\(609\) −7.98893 11.5249i −0.323728 0.467012i
\(610\) 0 0
\(611\) 7.68457i 0.310884i
\(612\) 4.46706 0.180570
\(613\) 13.4750i 0.544248i −0.962262 0.272124i \(-0.912274\pi\)
0.962262 0.272124i \(-0.0877262\pi\)
\(614\) 14.3362 0.578562
\(615\) 0 0
\(616\) 25.2008 1.01537
\(617\) −1.36560 −0.0549770 −0.0274885 0.999622i \(-0.508751\pi\)
−0.0274885 + 0.999622i \(0.508751\pi\)
\(618\) 3.52489i 0.141792i
\(619\) 22.6187i 0.909124i −0.890715 0.454562i \(-0.849796\pi\)
0.890715 0.454562i \(-0.150204\pi\)
\(620\) 0 0
\(621\) 2.46391i 0.0988734i
\(622\) 6.55668i 0.262899i
\(623\) 11.3192 0.453494
\(624\) 20.6018i 0.824733i
\(625\) 0 0
\(626\) 31.4276i 1.25610i
\(627\) 46.9953 1.87681
\(628\) −15.4013 −0.614580
\(629\) −17.5997 −0.701748
\(630\) 0 0
\(631\) 10.6701 0.424772 0.212386 0.977186i \(-0.431877\pi\)
0.212386 + 0.977186i \(0.431877\pi\)
\(632\) 1.73476i 0.0690052i
\(633\) 0.904811i 0.0359630i
\(634\) −31.1637 −1.23767
\(635\) 0 0
\(636\) 0.760316i 0.0301485i
\(637\) 0.908590i 0.0359997i
\(638\) 36.1612 + 52.1664i 1.43164 + 2.06529i
\(639\) −3.13184 −0.123894
\(640\) 0 0
\(641\) 11.7428i 0.463811i 0.972738 + 0.231905i \(0.0744960\pi\)
−0.972738 + 0.231905i \(0.925504\pi\)
\(642\) 12.5389i 0.494870i
\(643\) 37.2947i 1.47076i 0.677654 + 0.735381i \(0.262997\pi\)
−0.677654 + 0.735381i \(0.737003\pi\)
\(644\) −7.56417 −0.298070
\(645\) 0 0
\(646\) 48.0251i 1.88952i
\(647\) 14.6160i 0.574616i −0.957838 0.287308i \(-0.907240\pi\)
0.957838 0.287308i \(-0.0927603\pi\)
\(648\) 1.46391 0.0575079
\(649\) 87.4062i 3.43100i
\(650\) 0 0
\(651\) 16.6476 0.652471
\(652\) −28.1373 −1.10194
\(653\) −20.8225 −0.814849 −0.407425 0.913239i \(-0.633573\pi\)
−0.407425 + 0.913239i \(0.633573\pi\)
\(654\) −32.3352 −1.26441
\(655\) 0 0
\(656\) 3.58246i 0.139871i
\(657\) −15.7086 −0.612850
\(658\) 8.60357i 0.335402i
\(659\) 5.84686i 0.227761i −0.993494 0.113881i \(-0.963672\pi\)
0.993494 0.113881i \(-0.0363282\pi\)
\(660\) 0 0
\(661\) −16.9767 −0.660316 −0.330158 0.943926i \(-0.607102\pi\)
−0.330158 + 0.943926i \(0.607102\pi\)
\(662\) 40.9152i 1.59022i
\(663\) 15.7128i 0.610236i
\(664\) 15.4056i 0.597852i
\(665\) 0 0
\(666\) 8.28169 0.320909
\(667\) 7.55910 + 10.9048i 0.292690 + 0.422236i
\(668\) 21.8319i 0.844703i
\(669\) 26.9575i 1.04224i
\(670\) 0 0
\(671\) −39.1613 −1.51180
\(672\) 15.4415i 0.595669i
\(673\) 18.2039i 0.701710i 0.936430 + 0.350855i \(0.114109\pi\)
−0.936430 + 0.350855i \(0.885891\pi\)
\(674\) 44.9397 1.73101
\(675\) 0 0
\(676\) −4.94798 −0.190307
\(677\) −16.5888 −0.637558 −0.318779 0.947829i \(-0.603273\pi\)
−0.318779 + 0.947829i \(0.603273\pi\)
\(678\) −8.90957 −0.342170
\(679\) 16.7722i 0.643658i
\(680\) 0 0
\(681\) 3.33208i 0.127685i
\(682\) −75.3539 −2.88545
\(683\) 36.6485i 1.40232i −0.713006 0.701158i \(-0.752667\pi\)
0.713006 0.701158i \(-0.247333\pi\)
\(684\) 8.38090i 0.320452i
\(685\) 0 0
\(686\) 33.5172i 1.27969i
\(687\) 3.07218i 0.117211i
\(688\) 17.7493 0.676685
\(689\) −2.67440 −0.101887
\(690\) 0 0
\(691\) 20.4746 0.778892 0.389446 0.921049i \(-0.372667\pi\)
0.389446 + 0.921049i \(0.372667\pi\)
\(692\) 4.79931i 0.182442i
\(693\) 17.2147 0.653933
\(694\) 37.7764i 1.43397i
\(695\) 0 0
\(696\) 6.47900 4.49117i 0.245586 0.170237i
\(697\) 2.73231i 0.103494i
\(698\) 55.1331 2.08682
\(699\) 18.6744i 0.706331i
\(700\) 0 0
\(701\) −31.8417 −1.20265 −0.601323 0.799006i \(-0.705360\pi\)
−0.601323 + 0.799006i \(0.705360\pi\)
\(702\) 7.39379i 0.279061i
\(703\) 33.0199i 1.24537i
\(704\) 4.20962i 0.158656i
\(705\) 0 0
\(706\) 48.2824i 1.81713i
\(707\) −45.9400 −1.72775
\(708\) −15.5876 −0.585818
\(709\) 14.0789 0.528744 0.264372 0.964421i \(-0.414835\pi\)
0.264372 + 0.964421i \(0.414835\pi\)
\(710\) 0 0
\(711\) 1.18502i 0.0444417i
\(712\) 6.36336i 0.238477i
\(713\) −15.7519 −0.589914
\(714\) 17.5919i 0.658362i
\(715\) 0 0
\(716\) 20.3576 0.760800
\(717\) 13.5155 0.504746
\(718\) 7.31306i 0.272921i
\(719\) −5.94838 −0.221837 −0.110919 0.993830i \(-0.535379\pi\)
−0.110919 + 0.993830i \(0.535379\pi\)
\(720\) 0 0
\(721\) 5.14811 0.191726
\(722\) 56.2263 2.09253
\(723\) −9.28996 −0.345497
\(724\) −10.4549 −0.388553
\(725\) 0 0
\(726\) −58.3083 −2.16402
\(727\) 12.3620 0.458481 0.229241 0.973370i \(-0.426376\pi\)
0.229241 + 0.973370i \(0.426376\pi\)
\(728\) 15.8083 0.585893
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −13.5372 −0.500692
\(732\) 6.98383i 0.258130i
\(733\) −49.3006 −1.82096 −0.910479 0.413556i \(-0.864287\pi\)
−0.910479 + 0.413556i \(0.864287\pi\)
\(734\) −6.14215 −0.226711
\(735\) 0 0
\(736\) 14.6107i 0.538558i
\(737\) −36.0663 −1.32852
\(738\) 1.28571i 0.0473276i
\(739\) 8.72784i 0.321059i −0.987031 0.160529i \(-0.948680\pi\)
0.987031 0.160529i \(-0.0513202\pi\)
\(740\) 0 0
\(741\) 29.4797 1.08297
\(742\) −2.99424 −0.109922
\(743\) 41.6374 1.52753 0.763764 0.645496i \(-0.223349\pi\)
0.763764 + 0.645496i \(0.223349\pi\)
\(744\) 9.35886i 0.343113i
\(745\) 0 0
\(746\) 3.37627i 0.123614i
\(747\) 10.5236i 0.385037i
\(748\) 29.5310i 1.07976i
\(749\) −18.3131 −0.669145
\(750\) 0 0
\(751\) 14.9756i 0.546468i −0.961948 0.273234i \(-0.911907\pi\)
0.961948 0.273234i \(-0.0880933\pi\)
\(752\) −9.20605 −0.335710
\(753\) 7.79989i 0.284244i
\(754\) 22.6836 + 32.7235i 0.826089 + 1.19172i
\(755\) 0 0
\(756\) 3.06999i 0.111654i
\(757\) −7.16735 −0.260502 −0.130251 0.991481i \(-0.541578\pi\)
−0.130251 + 0.991481i \(0.541578\pi\)
\(758\) 33.9049i 1.23148i
\(759\) −16.2885 −0.591235
\(760\) 0 0
\(761\) −8.16312 −0.295913 −0.147957 0.988994i \(-0.547270\pi\)
−0.147957 + 0.988994i \(0.547270\pi\)
\(762\) −8.79562 −0.318632
\(763\) 47.2257i 1.70969i
\(764\) 5.52271i 0.199805i
\(765\) 0 0
\(766\) 59.9675i 2.16671i
\(767\) 54.8292i 1.97977i
\(768\) −20.3947 −0.735932
\(769\) 9.40091i 0.339005i 0.985530 + 0.169503i \(0.0542161\pi\)
−0.985530 + 0.169503i \(0.945784\pi\)
\(770\) 0 0
\(771\) 3.42838i 0.123470i
\(772\) 23.0459 0.829439
\(773\) −14.0490 −0.505307 −0.252653 0.967557i \(-0.581303\pi\)
−0.252653 + 0.967557i \(0.581303\pi\)
\(774\) 6.37004 0.228966
\(775\) 0 0
\(776\) 9.42890 0.338478
\(777\) 12.0954i 0.433921i
\(778\) 41.4109i 1.48465i
\(779\) 5.12624 0.183667
\(780\) 0 0
\(781\) 20.7040i 0.740849i
\(782\) 16.6454i 0.595240i
\(783\) 4.42581 3.06793i 0.158166 0.109639i
\(784\) −1.08848 −0.0388744
\(785\) 0 0
\(786\) 14.4308i 0.514730i
\(787\) 28.6760i 1.02219i −0.859525 0.511094i \(-0.829240\pi\)
0.859525 0.511094i \(-0.170760\pi\)
\(788\) 30.0781i 1.07149i
\(789\) −15.1455 −0.539193
\(790\) 0 0
\(791\) 13.0124i 0.462669i
\(792\) 9.67767i 0.343881i
\(793\) −24.5656 −0.872348
\(794\) 8.79081i 0.311974i
\(795\) 0 0
\(796\) 1.60545 0.0569037
\(797\) 17.0067 0.602409 0.301204 0.953560i \(-0.402611\pi\)
0.301204 + 0.953560i \(0.402611\pi\)
\(798\) 33.0052 1.16837
\(799\) 7.02138 0.248399
\(800\) 0 0
\(801\) 4.34682i 0.153587i
\(802\) −38.9382 −1.37496
\(803\) 103.847i 3.66468i
\(804\) 6.43189i 0.226835i
\(805\) 0 0
\(806\) −47.2689 −1.66498
\(807\) 25.6963i 0.904553i
\(808\) 25.8263i 0.908566i
\(809\) 37.8813i 1.33184i −0.746025 0.665918i \(-0.768040\pi\)
0.746025 0.665918i \(-0.231960\pi\)
\(810\) 0 0
\(811\) −53.0728 −1.86364 −0.931819 0.362923i \(-0.881779\pi\)
−0.931819 + 0.362923i \(0.881779\pi\)
\(812\) 9.41849 + 13.5872i 0.330524 + 0.476817i
\(813\) 5.24468i 0.183939i
\(814\) 54.7489i 1.91895i
\(815\) 0 0
\(816\) 18.8239 0.658967
\(817\) 25.3979i 0.888562i
\(818\) 24.9904i 0.873770i
\(819\) 10.7987 0.377335
\(820\) 0 0
\(821\) 23.5402 0.821558 0.410779 0.911735i \(-0.365257\pi\)
0.410779 + 0.911735i \(0.365257\pi\)
\(822\) −16.1996 −0.565027
\(823\) 5.33654 0.186020 0.0930100 0.995665i \(-0.470351\pi\)
0.0930100 + 0.995665i \(0.470351\pi\)
\(824\) 2.89414i 0.100822i
\(825\) 0 0
\(826\) 61.3863i 2.13590i
\(827\) −16.3727 −0.569334 −0.284667 0.958626i \(-0.591883\pi\)
−0.284667 + 0.958626i \(0.591883\pi\)
\(828\) 2.90481i 0.100949i
\(829\) 4.76206i 0.165393i −0.996575 0.0826966i \(-0.973647\pi\)
0.996575 0.0826966i \(-0.0263532\pi\)
\(830\) 0 0
\(831\) 15.4448i 0.535774i
\(832\) 2.64066i 0.0915485i
\(833\) 0.830177 0.0287639
\(834\) 24.9538 0.864081
\(835\) 0 0
\(836\) −55.4047 −1.91621
\(837\) 6.39305i 0.220976i
\(838\) 21.5604 0.744791
\(839\) 1.38600i 0.0478502i −0.999714 0.0239251i \(-0.992384\pi\)
0.999714 0.0239251i \(-0.00761632\pi\)
\(840\) 0 0
\(841\) 10.1756 27.1561i 0.350884 0.936419i
\(842\) 57.7093i 1.98879i
\(843\) 22.1658 0.763429
\(844\) 1.06672i 0.0367180i
\(845\) 0 0
\(846\) −3.30396 −0.113593
\(847\) 85.1595i 2.92611i
\(848\) 3.20391i 0.110023i
\(849\) 13.1225i 0.450362i
\(850\) 0 0
\(851\) 11.4447i 0.392318i
\(852\) 3.69226 0.126495
\(853\) −36.3453 −1.24444 −0.622219 0.782843i \(-0.713769\pi\)
−0.622219 + 0.782843i \(0.713769\pi\)
\(854\) −27.5034 −0.941145
\(855\) 0 0
\(856\) 10.2951i 0.351881i
\(857\) 42.3964i 1.44823i −0.689678 0.724116i \(-0.742248\pi\)
0.689678 0.724116i \(-0.257752\pi\)
\(858\) −48.8791 −1.66871
\(859\) 14.1971i 0.484398i −0.970227 0.242199i \(-0.922131\pi\)
0.970227 0.242199i \(-0.0778687\pi\)
\(860\) 0 0
\(861\) 1.87778 0.0639946
\(862\) 34.5531 1.17688
\(863\) 23.0565i 0.784853i −0.919783 0.392426i \(-0.871636\pi\)
0.919783 0.392426i \(-0.128364\pi\)
\(864\) −5.92988 −0.201739
\(865\) 0 0
\(866\) 36.2851 1.23302
\(867\) 2.64320 0.0897678
\(868\) −19.6266 −0.666170
\(869\) −7.83397 −0.265749
\(870\) 0 0
\(871\) −22.6241 −0.766589
\(872\) −26.5491 −0.899066
\(873\) 6.44090 0.217991
\(874\) −31.2294 −1.05635
\(875\) 0 0
\(876\) 18.5195 0.625717
\(877\) 31.7600i 1.07246i 0.844073 + 0.536229i \(0.180152\pi\)
−0.844073 + 0.536229i \(0.819848\pi\)
\(878\) −15.0226 −0.506988
\(879\) 17.1631 0.578897
\(880\) 0 0
\(881\) 12.5647i 0.423316i 0.977344 + 0.211658i \(0.0678864\pi\)
−0.977344 + 0.211658i \(0.932114\pi\)
\(882\) −0.390646 −0.0131537
\(883\) 39.7039i 1.33614i 0.744098 + 0.668071i \(0.232880\pi\)
−0.744098 + 0.668071i \(0.767120\pi\)
\(884\) 18.5245i 0.623048i
\(885\) 0 0
\(886\) 13.4248 0.451014
\(887\) 19.0472 0.639543 0.319771 0.947495i \(-0.396394\pi\)
0.319771 + 0.947495i \(0.396394\pi\)
\(888\) 6.79974 0.228184
\(889\) 12.8460i 0.430842i
\(890\) 0 0
\(891\) 6.61083i 0.221471i
\(892\) 31.7814i 1.06412i
\(893\) 13.1732i 0.440824i
\(894\) 11.7213 0.392018
\(895\) 0 0
\(896\) 27.9266i 0.932961i
\(897\) −10.2176 −0.341157
\(898\) 55.5282i 1.85300i
\(899\) 19.6134 + 28.2945i 0.654144 + 0.943673i
\(900\) 0 0
\(901\) 2.44360i 0.0814081i
\(902\) −8.49960 −0.283006
\(903\) 9.30346i 0.309600i
\(904\) −7.31527 −0.243302
\(905\) 0 0
\(906\) −19.3575 −0.643111
\(907\) −9.30880 −0.309094 −0.154547 0.987985i \(-0.549392\pi\)
−0.154547 + 0.987985i \(0.549392\pi\)
\(908\) 3.92833i 0.130366i
\(909\) 17.6420i 0.585148i
\(910\) 0 0
\(911\) 15.8924i 0.526539i −0.964722 0.263270i \(-0.915199\pi\)
0.964722 0.263270i \(-0.0848009\pi\)
\(912\) 35.3165i 1.16945i
\(913\) 69.5696 2.30242
\(914\) 10.6354i 0.351789i
\(915\) 0 0
\(916\) 3.62192i 0.119672i
\(917\) 21.0762 0.695998
\(918\) 6.75570 0.222971
\(919\) −26.1892 −0.863904 −0.431952 0.901897i \(-0.642175\pi\)
−0.431952 + 0.901897i \(0.642175\pi\)
\(920\) 0 0
\(921\) 8.04069 0.264950
\(922\) 39.8111i 1.31111i
\(923\) 12.9875i 0.427488i
\(924\) −20.2952 −0.667662
\(925\) 0 0
\(926\) 21.6086i 0.710103i
\(927\) 1.97699i 0.0649328i
\(928\) −26.2445 + 18.1924i −0.861519 + 0.597196i
\(929\) −44.7041 −1.46669 −0.733347 0.679854i \(-0.762043\pi\)
−0.733347 + 0.679854i \(0.762043\pi\)
\(930\) 0 0
\(931\) 1.55754i 0.0510464i
\(932\) 22.0160i 0.721160i
\(933\) 3.67741i 0.120393i
\(934\) 63.8749 2.09005
\(935\) 0 0
\(936\) 6.07073i 0.198428i
\(937\) 28.9245i 0.944923i −0.881351 0.472462i \(-0.843366\pi\)
0.881351 0.472462i \(-0.156634\pi\)
\(938\) −25.3298 −0.827046
\(939\) 17.6267i 0.575224i
\(940\) 0 0
\(941\) 1.16465 0.0379664 0.0189832 0.999820i \(-0.493957\pi\)
0.0189832 + 0.999820i \(0.493957\pi\)
\(942\) −23.2920 −0.758894
\(943\) −1.77675 −0.0578589
\(944\) −65.6850 −2.13786
\(945\) 0 0
\(946\) 42.1113i 1.36916i
\(947\) 12.4430 0.404343 0.202171 0.979350i \(-0.435200\pi\)
0.202171 + 0.979350i \(0.435200\pi\)
\(948\) 1.39707i 0.0453748i
\(949\) 65.1423i 2.11461i
\(950\) 0 0
\(951\) −17.4787 −0.566784
\(952\) 14.4440i 0.468132i
\(953\) 15.1160i 0.489655i 0.969567 + 0.244827i \(0.0787313\pi\)
−0.969567 + 0.244827i \(0.921269\pi\)
\(954\) 1.14985i 0.0372279i
\(955\) 0 0
\(956\) −15.9340 −0.515343
\(957\) 20.2816 + 29.2583i 0.655610 + 0.945787i
\(958\) 47.6933i 1.54090i
\(959\) 23.6596i 0.764008i
\(960\) 0 0
\(961\) −9.87112 −0.318423
\(962\) 34.3435i 1.10728i
\(963\) 7.03263i 0.226623i
\(964\) 10.9523 0.352751
\(965\) 0 0
\(966\) −11.4396 −0.368062
\(967\) −51.6458 −1.66082 −0.830408 0.557156i \(-0.811893\pi\)
−0.830408 + 0.557156i \(0.811893\pi\)
\(968\) −47.8745 −1.53874
\(969\) 26.9356i 0.865296i
\(970\) 0 0
\(971\) 7.30486i 0.234424i −0.993107 0.117212i \(-0.962604\pi\)
0.993107 0.117212i \(-0.0373957\pi\)
\(972\) −1.17894 −0.0378146
\(973\) 36.4452i 1.16838i
\(974\) 0.681763i 0.0218451i
\(975\) 0 0
\(976\) 29.4293i 0.942010i
\(977\) 13.5367i 0.433077i 0.976274 + 0.216539i \(0.0694768\pi\)
−0.976274 + 0.216539i \(0.930523\pi\)
\(978\) −42.5531 −1.36070
\(979\) −28.7361 −0.918409
\(980\) 0 0
\(981\) −18.1357 −0.579029
\(982\) 45.6557i 1.45693i
\(983\) −17.1481 −0.546940 −0.273470 0.961881i \(-0.588171\pi\)
−0.273470 + 0.961881i \(0.588171\pi\)
\(984\) 1.05564i 0.0336526i
\(985\) 0 0
\(986\) 29.8995 20.7260i 0.952193 0.660050i
\(987\) 4.82544i 0.153596i
\(988\) −34.7549 −1.10570
\(989\) 8.80290i 0.279916i
\(990\) 0 0
\(991\) 62.2864 1.97859 0.989296 0.145923i \(-0.0466153\pi\)
0.989296 + 0.145923i \(0.0466153\pi\)
\(992\) 37.9100i 1.20365i
\(993\) 22.9479i 0.728231i
\(994\) 14.5407i 0.461202i
\(995\) 0 0
\(996\) 12.4067i 0.393121i
\(997\) 17.0038 0.538516 0.269258 0.963068i \(-0.413222\pi\)
0.269258 + 0.963068i \(0.413222\pi\)
\(998\) −36.0249 −1.14035
\(999\) 4.64491 0.146959
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.f.c.724.3 10
5.2 odd 4 435.2.d.b.376.3 10
5.3 odd 4 2175.2.d.g.376.8 10
5.4 even 2 2175.2.f.f.724.8 10
15.2 even 4 1305.2.d.c.811.8 10
29.28 even 2 2175.2.f.f.724.7 10
145.28 odd 4 2175.2.d.g.376.3 10
145.57 odd 4 435.2.d.b.376.8 yes 10
145.144 even 2 inner 2175.2.f.c.724.4 10
435.347 even 4 1305.2.d.c.811.3 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.d.b.376.3 10 5.2 odd 4
435.2.d.b.376.8 yes 10 145.57 odd 4
1305.2.d.c.811.3 10 435.347 even 4
1305.2.d.c.811.8 10 15.2 even 4
2175.2.d.g.376.3 10 145.28 odd 4
2175.2.d.g.376.8 10 5.3 odd 4
2175.2.f.c.724.3 10 1.1 even 1 trivial
2175.2.f.c.724.4 10 145.144 even 2 inner
2175.2.f.f.724.7 10 29.28 even 2
2175.2.f.f.724.8 10 5.4 even 2